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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 5 , PAGES 7 0 6 – 7 2 4

RISK AVERSION, PRUDENCE AND
MIXED OPTIMAL SAVING MODELS

Irina Georgescu

The paper studies risk aversion and prudence of an agent in the face of a risk situation with
two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The
first contribution of the paper is the characterization of risk aversion and prudence in mixed
models by conditions on the concavity and the convexity of the agent’s utility function and its
partial derivatives. The second contribution is the building of mixed models of optimal saving
and their connection with the concept of prudence and downside risk aversion.

Keywords: possibilistic risk aversion, prudence, optimal saving

Classification: 91B30, 94D05

1. INTRODUCTION

Risk aversion, prudence and optimal saving are important topics in probability theory of
risk [1, 11, 17]. The first two regard attitudes of an agent in the face of risk and the third
one studies the way the presence of risk influences the choice of level of optimal saving.
These topics have been tackled both in case of a single risk parameter (represented by
a random variable) and in case of several risk parameters (represented by a random
vector).

In the last years, risk phenomena have been also studied in the context of Zadeh’s
possibility theory [28]. This approach assumes risk modeling by possibility distributions
(in particular, by fuzzy numbers) and usual probabilistic indicators (expected value,
variance, covariance, etc.) are replaced by corresponding possibilistic indicators [2],
[3, 8, 13, 29].

The study of risk by mixed models appears in [16]: some risk parameters are fuzzy
numbers and other parameters are random variables. The building of mixed models
is based on mixed expected utility, concept which encompasses both the probabilistic
expected utility [11, 17] and possibilistic expected utility [3, 14, 15].

This paper aims to approach risk aversion, prudence and optimal saving in the frame-
work of mixed models, in which the agent will be represented by a bidimensional utility
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function 1. We will define risk aversion and prudence of an agent in the face of risk with
two parameters (a fuzzy number and a random variable), then we will characterize these
notions by conditions on partial derivatives of the utility function. We will build mixed
models of optimal saving which we later relate to the notions of prudence and downside
risk aversion.

In Section 2 possibilistic expected utility and two indicators of fuzzy numbers are
recalled: the expected value and variance (cf. [2, 3, 13, 29]). Section 3 deals with bi-
variate mixed expected utility, concept introduced in [16]. The main results are three
Jensen–type theorems (Propositions 3.9, 3.11 and 3.13) which represent the mathemat-
ical instrument to prove the results of the next sections.

Risk aversion is a topic whose study begins with papers by Arrow [1] and Pratt
[26]. In case of risk with several parameters, the probabilistic theory of risk aversion
has been developed in [9, 18, 19, 20]. Papers [14, 15] propose an approach to risk
aversion in the context of possibility theory. In these papers risk is modeled by a fuzzy
number and the definition and evaluation of risk aversion are done by the possibilistic
indicators mentioned in Section 2. Section 4 approaches the risk aversion when the
agent is represented by a bidimensional utility function and the risk by a mixed vector
(a component is a fuzzy number, the other is a random variable). For such a model, three
notions of risk aversion are defined: mixed risk aversion, possibilistic risk aversion and
probabilistic risk aversion. Then three notions of risk premium are defined as a measure
of the three types of risk aversion and formulas for their approximate calculation are
proved.

Optimal saving under uncertainty is a topic which starts with the papers by Leland
[22] and Sandmo [27], in which the notion of precautionary saving is introduced as a
measure of the change in optimal saving by adding risk.

Kimball [21] connects the optimal saving and the agent’s prudence in the face of risk.
Optimal saving models for probabilistic risk with two parameters can be found in [4, 23]
and the n–dimensional case is treated in [19].

Section 5 deals with optimal saving in case of risk represented by a mixed vector. After
four optimization problems are formulated, three notions of precautionary saving are
defined, indicators which measure the action of various types of risk (mixed, possibilistic,
probabilistic) on the level of optimal saving. Using these notions of precautionary saving,
three types of consumer’s prudence are defined: mixed prudence, possibilistic prudence
and probabilistic prudence. The main results of the section (Propositions 5.2, 5.3, 5.4)
characterize the three types of prudence by positivity conditions of third–order partial
derivatives of the utility function.

In [24], Menezes et al. have characterized prudence by the notion of downside risk
aversion. The study of the relation between prudence and downside risk aversion has
been deepened in [6, 10], and in [19] these results have been extended to the multidi-
mensional case.

In Section 6 the connection between mixed prudence and a notion of downside risk
aversion defined in mixed models is studied. Two new concepts are introduced: mixed
utility premium and mixed prudence utility premium. The first notion is similar to

1The notions and results of the paper can be extended to a multidimensional utility function. For
the clarity of presentation we chose to approach the bidimensional case.
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utility premium defined by Friedman and Savage [12], and the second one is similar
to prudence utility premium of [5]. Using these notions one defines what means that
an agent displays mixed downside risk aversion (MDRA), then one proves that this
condition is equivalent to mixed prudence.

2. INDICATORS OF FUZZY NUMBERS

In this section we recall the definition of fuzzy numbers and two of their indicators: the
possibilistic expected value and variance [2, 3, 7, 8, 13, 29].

Let A be a fuzzy subset of R. The support of A is the crisp subset of R defined by
supp(A) = {x ∈ R|A(x) > 0}. A is normal if A(x) = 1 for some x ∈ R.

Let γ ∈ [0, 1]. The γ–level set of A is the crisp subset of R defined by:

[A]γ =
{
{x ∈ R|A(x) ≥ γ} if γ > 0
cl(supp(A)) if γ = 0.

(Note that cl(supp(A)) is the topological closure of supp(A).)
A is said to be fuzzy convex if [A]γ is convex for all γ ∈ [0, 1].
A fuzzy number2 A is a fuzzy subset of R which is normal, fuzzy convex, upper

semi–continuous and with bounded support.
Let A be a fuzzy number and γ ∈ [0, 1]. Then [A]γ is a closed and convex subset of

R. We denote a1(γ) = min[A]γ and a2(γ) = max[A]γ . Hence [A]γ = [a1(γ), a2(γ)] for
all γ ∈ [0, 1].

A function f : [0, 1] → R is a weighting function if it is non–negative, monotone
increasing and satisfies the normalization condition

∫ 1

0
f(γ) dγ = 1.

We fix a weighting function f and a fuzzy number A. If g : R → R is a continuous
utility function then the possibilistic expected utility E(f, g(A)) associated with A, g and
f is defined by:

(1) E(f, g(A)) =
1
2

∫ 1

0

[g(a1(γ)) + g(a2(γ))]f(γ) dγ.

If g = 1R then E(f, g(A)) is exactly the possibilistic expected value E(f,A) defined in
[2, 3]:

(2) E(f,A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ) dγ.

If g(x) = (x − E(f,A))2 for any x ∈ R then E(f, g(A)) is the possibilistic variance
V ar(f,A) defined in [2, 29]:

(3) V ar(f,A) =
1
2

∫ 1

0

[(a1(γ)− E(f,A))2 + (a2(γ)− E(f,A))2]f(γ) dγ.

If a ∈ R then the characteristic function ā of the crisp set {a} is called fuzzy point
([3], p. 10). We will identify ā with a.

2For the definition of fuzzy numbers and their properties we refer to [7, 8].
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3. BIVARIATE MIXED EXPECTED UTILITY

The notion of (bidimensional) mixed vector describes uncertainty situations with two
risk parameters: one parameter is described by a random variable, the other by a fuzzy
number.

Let (A,X) be a mixed vector with A a fuzzy number and X a random variable. 3We
denote by M(X) the expected value of X and by V ar(X) its variance. If g : R → R is
a continuous utility function then M(g(X)) will be the probabilistic expected utility of
X w.r.t. g.

Assume that the level sets of A are [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1].
We fix a weighting function f : [0, 1] → R and a bidimensional utility function

g : R2 → R of class C2. For any a ∈ R, u(a,X) : Ω → R will be the random variable
defined by:

u(a,X)(w) = u(a,X(w)) for any w ∈ Ω.

Definition 3.1. (Georgescu and Kinnunen [16]) The mixed expected utility associated
with f , u and the mixed vector (A,X) is defined by:

(4) E(f, u(A,X)) =
1
2

∫ 1

0

[M(u(a1(γ), X)) + M(u(a2(γ), X))]f(γ) dγ.

For b ∈ R let us denote also by b the constant random variable always equal to b.

Remark 3.2.
(i) If the fuzzy number A is the fuzzy point ā with a ∈ R then

E(f, u(A,X)) = M(u(a,X)).
(ii) If the random variable X is b ∈ R then

E(f, u(A,X)) = 1
2

∫ 1

0
[u(a1(γ), b) + u(a2(γ), b)]f(γ) dγ.

(iii) If A is the fuzzy point ā and X is the constant random variable b then
E(f, u(A,X)) = u(a, b).

Proposition 3.3. (Georgescu and Kinnunen [16]) Let g, h be two bidimensional utility
functions and α, β ∈ R. If u = αg + βh then:

(i) E(f, u(A,X)) = αE(f, g(A,X)) + βE(f, h(A,X))
(ii) g ≤ h implies E(f, g(A,X)) ≤ E(f, h(A,X)).

Proposition 3.4. If u(y, x) = (y−E(f,A))(x−M(X)) for any y, x ∈ R then E(f, u(A,X))
= 0.

P r o o f . For any γ ∈ [0, 1] and i=1, 2 we have u(ai(γ), X) = (ai(γ) − E(f,A))(X −
M(X)), therefore M(u(ai(γ), X)) = (ai(γ)−E(f,A))M(X −M(X)) = 0. From this it
follows immediately that E(f, u(A,X)) = 0. �

Next we will use the usual notations:

u1 =
∂u

∂y
, u2 =

∂u

∂x
, u11 =

∂2u

∂y2
, u22 =

∂2u

∂x2
, u12 = u21 =

∂2u

∂y∂x
, etc.

3All the random variables which appear in the paper will be defined on a fixed probability space
(Ω,K, P ), with Ω ⊆ R.
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Proposition 3.5. E(f, u(A,X)) ≈ u(E(f,A),M(X))+ 1
2u11(E(f,A),M(X))V ar(f,A)

+ 1
2u22(E(f,A),M(X))V ar(X).

P r o o f . The second–order Taylor approximation formula, Propositions 3.3 and 3.4 are
applied. �

Proposition 3.6. (Niculescu and Perrson [25]) A continuous function g : R → R is
convex if and only if for any a, b ∈ R, g(a+b

2 ) ≤ g(a)+g(b)
2 .

Proposition 3.7. (Niculescu and Perrson [25]) Let g : R → R be a continuous func-
tion. The following are equivalent:

(i) g is convex;
(ii) g(M(X)) ≤ M(g(x)) for any random variable X.

Proposition 3.8. (Niculescu and Perrson [25]) (Jensen’s Inequality) Let u : R → R be
a convex function and [a, b] a real interval. If h : [a, b] → R is integrable on [a, b] then
u(

∫ b

a
h(x)f(x) dx) ≤

∫ b

a
u(h(x))f(x) dx.

The versions of Propositions 3.6, 3.7, 3.8 for concave functions are formulated simi-
larly.

We consider now a bidimensional utility function u : R2 → R. We say that the
function u(y, x) is convex in y if for any x ∈ R, the unidimensional function u(., x) is
convex. Analogously one defines what means that u(y, x) is convex in x, what means
that u(y, x) is concave in y, resp. in x, etc.

We assume everywhere in this paper that the utility function u is of the class C2.
Next we will prove the equivalence between some convexity and concavity conditions

of the utility function and some Jensen–type inequalities.

Proposition 3.9. The following statements are equivalent:

(i) u(y, x) is convex in each of the variables y and x;
(ii) For any mixed vector (A,X) the following inequality holds:
u(E(f,A),M(X)) ≤ E(f, u(A,X))

P r o o f . (i) ⇒ (ii) Assume that [A]γ = [a1(γ), a2(γ)] for any γ ∈ [0, 1]. By hypothesis,
the function v = u(.,M(X)) is convex. Applying Proposition 3.6 for any γ ∈ [0, 1] we
have

(5) v
(a1(γ) + a2(γ)

2

)
≤ v(a1(γ)) + v(a2(γ))

2
.

By Proposition 3.8 and (5) it follows:

u(E(f,A),M(X)) = v(E(f,A)) = v
( ∫ 1

0

a1(γ) + a2(γ)
2

f(γ) dγ
)

≤
∫ 1

0

v
(a1(γ) + a2(γ)

2

)
f(γ) dγ ≤ 1

2

∫ 1

0

[v(a1(γ)) + v(a2(γ))]f(γ) dγ

which can be written:
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(6) u(E(f,A),M(X)) ≤ 1
2

∫ 1

0

[u(a1(γ),M(X)) + u(a2(γ),M(X))]f(γ) dγ.

For any fixed y, the function u(y, .) is convex. Then, by Proposition 3.7, for any
γ ∈ [0, 1] the following inequalities hold:

u(a1(γ),M(X)) ≤ M(u(a1(γ), X))
u(a2(γ),M(X)) ≤ M(u(a2(γ), X)).
By the property of monotony of the integral, one obtains:

1
2

∫ 1

0

[u(a1(γ),M(X)) + u(a2(γ),M(X))]f(γ) dγ

≤ 1
2

∫ 1

0

[M(u(a1(γ), X)) + M(u(a2(γ), X))]f(γ) dγ = E(f, u(A,X)).

From (6) and the previous inequality u(E(f,A),M(X)) ≤ E(f, u(A,X)) follows.

(ii) ⇒ (i) We fix x ∈ R. We will prove that u(·, x) is convex. Let a, b ∈ R with a < b.
Let X be the constant random variable x ∈ R and the fuzzy number A defined by:

A(t) =
{

1 if t ∈ [a, b]
0 otherwise.

Then M(X) = x and a1(γ) = a, a2(γ) = b for any γ ∈ [0, 1]. Then E(f,A) = a+b
2

and by Remark 3.2 (ii):

E(f, u(A,X)) =
1
2

∫ 1

0

[u(a, x) + u(b, x)]f(γ) dγ =
u(a, x) + u(b, x)

2
.

The inequality u(E(f,A),M(X)) ≤ E(f, u(A,X)) becomes u(a+b
2 , x) ≤ u(a,x)+u(b,x)

2 .
Since this last inequality holds for any a, b ∈ R, by Proposition 3.6, u(·, x) is convex.
We fix a ∈ R and we prove that u(a, ·) is convex. Let X be an arbitrary random

variable. We consider that A is the fuzzy point ā. Then E(f,A) = a and by Remark
3.2 (i), E(f, u(A,X)) = M(u(a,X)). The inequality u(E(f,A),M(X)) ≤ E(f, u(A,X))
becomes u(a,M(X)) ≤ M(u(a,X)). Since this last inequality holds for any random
variable X, from Proposition 3.7 it follows that u(a, ·) is convex. �

Corollary 3.10. The following statements are equivalent:

(i) u(y, x) is concave in each of the variables y and x;
(ii) For any mixed vector (A,X), u(E(f,A),M(X)) ≥ E(f, u(A,X)).

Proposition 3.11. The following statements are equivalent:

(i) u is convex in y;
(ii) For any mixed vector (A,X), M(u(E(f,A), X)) ≤ E(f, u(A,X)).

P r o o f . (i) ⇒ (ii) Let (A,X) be an arbitrary mixed vector. We consider the function
v : R → R defined by v(y) = M(u(y, X)) for any y ∈ R. For any a, b ∈ R the following
holds:
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v
(a + b

2
)

= M
(
u(

a + b

2
, X)

)
≤ M

(u(a,X) + u(b, X)
2

)
=

1
2
(M(u(a,X)) + M(u(b, X))) =

v(a) + v(b)
2

thus, by Proposition 3.6, v is convex. By formula (2) of Section 2,

E(f, v(A)) =
1
2

∫ 1

0

[v(a1(γ)) + v(a2(γ))]f(γ) dγ

=
1
2

∫ 1

0

[M(u(a1(γ), X)) + M(u(a2(γ), X))]f(γ) dγ

= E(f, u(A,X)).

Also, v(E(f,A)) = M(u(E(f,A), X)), thus the inequality M(u(E(f,A), X))
≤ E(f, u(A,X)) gets the form v(E(f,A)) ≤ E(f, v(A)). This last inequality follows
using v’s convexity and Propositions 3.8 and 3.6:

v(E(f,A)) = v
( ∫ 1

0

a1(γ) + a2(γ)
2

f(γ) dγ
)
≤

∫ 1

0

v
(a1(γ) + a2(γ)

2

)
f(γ) dγ

≤ 1
2

∫ 1

0

[v(a1(γ)) + v(a2(γ))]f(γ) dγ = E(f, v(A)).

(ii) ⇒ (i) Let x ∈ R. We will prove that the function u(·, x) is convex. Let
a, b ∈ R such that a < b. As in the proof of Proposition 3.9, we consider the con-
stant random variable X being x ∈ R and a fuzzy number A such that a1(γ) = a

and a2(γ) = b for any γ ∈ [0, 1]. Then E(f,A) = a+b
2 , E(f, u(A,X)) = u(a,x)+u(b,x)

2

and M(u(E(f,A), X)) = u(a+b
2 , x). This way the inequality M(u(E(f,A), X)) ≤

E(f, u(A,X)) becomes u(a+b
2 , x) ≤ u(a,x)+u(b,x)

2 , thus, by Proposition 3.6, the function
u(·, x) is convex. �

Corollary 3.12. The following statements are equivalent:

(i) u is concave in y;
(ii) For any mixed vector (A,X), M(u(E(f,A), X) ≥ E(f, u(A,X)).

Proposition 3.13. The following statements are equivalent:

(i) u is convex in x;
(ii) For any mixed vector (A,X), E(f, u(A,M(X)) ≤ E(f, u(A,X)).

P r o o f . (i) ⇒ (ii) Let (A,X) be an arbitrary mixed vector. For any γ ∈ [0, 1], the
unidimensional functions u(a1(γ), ·) and u(a2(γ), ·) are convex, thus by Proposition 3.7,

u(ai(γ),M(X)) ≤ M(u(ai(γ), X)) for i=1, 2.
Then

E(f, u(A,M(X)) =
1
2

∫ 1

0

[u(a1(γ),M(X)) + u(a2(γ),M(X))]f(γ) dγ

≤ 1
2

∫ 1

0

[M(u(a1(γ), X)) + M(u(a2(γ), X))]f(γ) dγ

= E(f, u(A,X)).
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(ii) ⇒ (i) Let y ∈ R. We prove that the function u(y, ·) is convex. Let X
be an arbitrary random variable. Taking A = ȳ, by Remark 3.2 (i), we will have
E(f, u(A,M(X)) = u(y, M(X)) and E(f, u(A,X)) = M(u(y, X)). Then the inequality
E(f, u(A,M(X)) ≤ E(f, u(A,X)) becomes u(y, M(X)) ≤ M(u(y, X)). By Proposition
3.7, u(y, ·) is convex. �

Corollary 3.14. The following statements are equivalent:

(i) u is concave in x;

(ii) For any mixed vector (A,X), E(f, u(A,M(X)) ≥ E(f, u(A,X)).

4. RISK AVERSION IN A MIXED FRAMEWORK

In this section we will consider an agent represented by a utility function u : R2 → R
in the face of a risk situation with two parameters: one described by a fuzzy number A
and another by a random variable X.

We fix a weighting function f and we assume that u is of the class C2 and u1 > 0,
u2 > 0.

Proposition 4.1. Let (y, x) ∈ R2 and the mixed vector (A,X) with E(f,A) = 0 and
M(X) = 0. Then:

(7) E(f, u(y + A, x + X)) ≈ u(y, x) +
1
2
u11(y, x)V ar(f,A) +

1
2
u22V ar(X)

(8) E(f, u(y + A, x)) ≈ u(y, x) +
1
2
u11(y, x)V ar(f,A)

(9) M(u(y, x + X)) ≈ u(y, x) +
1
2
u22(y, x)V ar(X)

(10) E(f, u(y + A, x + X))− E(f, u(y + A, x)) ≈ 1
2
u22(y, x)V ar(f,A)

(11) E(f, u(y + A, x + X))−M(u(y, x + X)) ≈ 1
2
u11(y, x)V ar(X).

P r o o f . By applying Proposition 3.5 to the mixed vector (y + A, x + X) one obtains:

E(f, u(y + A, x + X)) ≈ u(E(f, y + A),M(x + X))

+
1
2
u11(E(f, y+A),M(x+X))V ar(f, y+A)+

1
2
u22(E(f, y+A),M(x+X))V ar(x+X).

Taking into account that E(f, y +A) = y, M(x+X) = x, V ar(f, y +A) = V ar(f,A)
and V ar(x + X) = V ar(X), (7) is immediately obtained.

(8) and (9) are particular cases of (7), (10) is obtained from (7) and (8), and (11) is
obtained from (7) and (9). �

Next we will identify the agent with its utility function u.
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Definition 4.2. We say that the agent u is

(a) mixed risk averse if for any (x, y) ∈ R2 and for every mixed vector (A,X) with
E(f,A) = 0 and M(X) = 0 we have E(f, u(y + A, x + X)) ≤ u(y, x).

(b) possibilistically risk averse if for any (x, y) ∈ R2 and for every mixed vector (A,X)
with E(f,A) = 0 and M(X) = 0 we have E(f, u(y + A, x + X)) ≤ M(u(y, x + X)).

(c) probabilistically risk averse if for any (x, y) ∈ R2 and for every mixed vector (A,X)
with E(f,A) = 0 and M(X) = 0 we have E(f, u(y + A, x + X)) ≤ E(f, u(y + A, x)).

According to the previous definition, the agent u is mixed averse if for any wealth
level (y, x), it prefers the sure value (y, x) to the average gain obtained by adding a
mixed risk (A,X) with E(f,A) = M(X) = 0. The other two notions of risk aversion
from Definition 4.2 regard the possibilistic, resp. probabilistic component of mixed risk
and have similar interpretations.

The following three propositions characterize the notions of risk aversion of Definition
4.2 in terms of the concavity of the agent’s utility function.

Proposition 4.3. The following assertions are equivalent:

(i) The agent u is mixed risk averse.
(ii) The function u is concave in each of the variables y and x.

P r o o f . We will prove that the following assertions are equivalent:

(a) The agent u is mixed risk averse.
(b) For any (x, y) ∈ R2 and for every mixed vector (A,X) with E(f,A) = 0 and

M(X) = 0 we have E(f, u(y + A, x + X)) ≤ u(E(f, y + A),M(x + X)).
(c) For every mixed vector (B, Y ) we have E(f, u(B, Y )) ≤ u(E(f,B),M(Y )).
(d) u is concave in each of the variables y and x.

One notices that (b) is a rewriting of (a) and the equivalence (c) ⇔ (d) follows from
Corollary 3.10. To prove (b) ⇒) (c), let (B, Y ) be an arbitrary mixed vector. Denoting
A = B − E(f,B) and X = Y − M(Y ) we have B = E(f,B) + A, Y = M(Y ) + X,
E(f,A) = 0 and M(X) = 0. Applying (b) to the pair (E(f,B),M(B)) ∈ R2 and to the
mixed vector (A,X) (c) is obtained. The implication (c) ⇒ (b) is immediate. �

Proposition 4.4. The following assertions are equivalent:

(i) The agent u is possibilistically risk averse.
(ii) The function u is concave in y.

P r o o f . Similar to the proof of Proposition 4.3, applying Corollary 3.12. �

Proposition 4.5. The following assertions are equivalent:

(i) The agent u is probabilistically risk averse.
(ii) The function u is concave in x.
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P r o o f . Corollary 3.14 is applied. �

Proposition 4.6. The agent u is mixed risk averse iff it is simultaneously possibilisti-
cally risk averse and probabilistically risk averse.

P r o o f . By Propositions 4.3 – 4.5. �

In the probability theory of risk, risk premium is the main indicator of risk aversion
[1, 26]. In case of risk represented by a mixed vector (A,X) we will define three notions
of risk premium: one refers to the possibilistic component, the second refers to the
probabilistic component and the third to the overall risk aversion.

For the rest of this section we assume that the utility function u is of the class C2, is
strictly increasing in each argument and strictly concave in each argument.

Definition 4.7. Let (x, y) ∈ R2 and the mixed vector (A,X) with E(f,A) = 0 and
M(X) = 0. Then we define:

• the possibilistic risk premium π = π(y, x, A,X, u) as the unique solution of the
equation

(12) E(f, u(y + A, x + X)) = u(y − π, x).

• the probabilistic risk premium ρ = ρ(y, x, A,X, u) as the unique solution of the
equation

(13) E(f, u(y + A, x + X)) = u(y, x− ρ).

• a mixed risk premium vector (π, ρ) as a solution of the equation:

(14) E(f, u(y + A, x + X)) = u(y − π, x− ρ).

Remark 4.8. The uniqueness of the solutions of equations (12) and (13) results from
the injectivity of u in y. Equation (14) may have several solutions (π, ρ).

Proposition 4.9. Let (x, y) ∈ R2 and the mixed vector (A,X) with E(f,A) = 0 and
M(X) = 0. Then:

(a) the possibilistic risk premium π can be approximated by

(15) π ≈ −1
2

u11(y, x)V ar(f,A) + u22(y, x)V ar(X)
u1(y, x)

(b) the probabilistic risk premium ρ can be approximated by

(16) ρ ≈ −1
2

u11(y, x)V ar(f,A) + u22(y, x)V ar(X)
u2(y, x)

(c) any mixed risk premium vector (π, ρ) can be approximated by

(17) π ≈ −1
4

u11(y, x)V ar(f,A) + u22(y, x)V ar(X)
u1(y, x)



716 I. GEORGESCU

(18) ρ ≈ −1
4

u11(y, x)V ar(f,A) + u22(y, x)V ar(X)
u2(y, x)

.

P r o o f . (a) The first–order Taylor formula gives:

(19) u(y − π, x) ≈ u(y, x)− πu1(y, x).

Replacing in (12) E(f, u(y+A, x+X)) and u(y−π, x) with their approximate values
given by (7) and (19) it follows:

1
2
u11(y, x)V ar(f,A) +

1
2
u22(y, x)V ar(X) ≈ −πu1(y, x)

from where one obtains (15).

(b) Similar to (a).
(c) Let π0, ρ0 be the members of the right hand side of (17) and (18). The first–order

Taylor formula gives:

u(y − π0, x− ρ0) ≈ u(y, x)− π0u1(y, x)− ρ0u2(y, x)
= u(y, x) + 1

2u11(y, x)V ar(f,A) + 1
2u22(y, x)V ar(X).

Taking (7) into account, it follows that E(f, u(y + A, x + X)) = u(y − π0, x− ρ0).
�

The formulas of the previous proposition give approximate values for possibilistic risk
premium, probabilistic risk premium and mixed risk premium vector in terms of possi-
bilistic variance V ar(f,A), the probabilistic variance V ar(X), the utility function u and
its second–order derivatives. They are similar to approximation formulas of probabilistic
risk premium from [9, 18, 19, 20].

Remark 4.10. From Definition 4.7 a way to rank the solutions of equation (14) does
not arise. Nevertheless the fact that all these solutions are approximated by the same
vector (π0, ρ0) (defined by the right hand side member of formulas (17), (18)) suggests
to use (π0, ρ0) in applications as “unique approximate solution”.

5. MIXED MODELS OF OPTIMAL SAVING

In this section we intend to investigate the effect of the risk presence on the optimal
saving when we admit the existence of two risk parameters: one represented by a fuzzy
number A and another represented by a random variable X.

As a starting point of our approach we indicate the multidimensional optimal saving
model of [19] and especially the two-period models from [4, 23]. In these models, both
risk parameters are assumed to be random variables.

Our two–period models will be characterized by the following initial data:

• u(y, x) and v(y, x) are consumer’s utility functions for period 0, resp. 1.

• for period 0, the variables y and x have sure values y0 and x0.

• for period 1, one variable is a fuzzy number and the other is a random variable.
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• s is the level of saving.

Next we will study the case when a fuzzy number A corresponds to y and a random
variable X corresponds to x. The other case, when a random variable corresponds to y
and a fuzzy number corresponds to x, is tackled similarly.

We will identify the consumer with the pair (u, v) of its utility functions. We assume
that u and v are of the class C3, are strictly increasing in each argument and strictly
concave. We shall denote by ui, uij , uijk (resp. vi, vij , vijk) the first, the second and
the third partial derivatives of u (resp. v).

We fix a weighting function f . We consider a mixed vector (A,X) and we denote
a = E(f,A) and x̄ = M(X). The following four situations are possible:

(a) y = A, x = X

(b) y = A, x = x̄

(c) y = a, x = X

(d) y = a, x = x̄.

In the probabilistic models of [4, 23], the variable y is interpreted as income risk, and
the variable x as non–financial background risk. Then, in our models the fuzzy number
A will represent an income risk and the random variable X will be a background risk.

Then, the interpretation of the four situations (a) – (d) is:

y x

(a) possibilistic income risk probabilistic background risk
(b) possibilistic income risk deterministic variable
(c) deterministic variable probabilistic background risk
(d) deterministic variable deterministic variable

We intend to study the changes of the optimal saving to each of the following three
routes: (b) → (a), (c) → (a), (d) → (a). This problem has been inspired by [4, 23], where
the change of optimal saving in the presence of a risk with two probabilistic parameters
has been analyzed.

For the four situations (a) – (d) above we will consider the following lifetime utilities:

(20) V1(s) = u(y0 − s, x0) + E(f, v(A + s,X))

(21) V2(s) = u(y0 − s, x0) + E(f, v(A + s, x̄))

(22) V3(s) = u(y0 − s, x0) + M(v(a + s,X))

(23) V4(s) = u(y0 − s, x0) + v(a + s, x̄)

and the corresponding optimization problems:

(24) max
s

V1(s)

(25) max
s

V2(s)
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(26) max
s

V3(s)

(27) max
s

V4(s).

The form of the functions V1, . . . , V4 is inspired by the expressions of lifetime utilities
of the probabilistic models of [4, 23]; the distinction between them consists in the fact
that the lifetime utilities from [4, 23] are expressed as probabilistic expected utilities,
while V1, . . . , V4 use the mixed expected utilities of Section 3.

One notices that in the above models the saving s acts on the “possibilistic” parameter
y. We can consider models in which s acts on the ”probabilistic” parameter x, and
models in which s acts on both parameters. In the latter case the lifetime utilities will
have the form:

(28) W1(s) = u(y0 − s, x0 − s) + E(f, v(A + s,X + s))

(29) W2(s) = u(y0 − s, x0 − s) + E(f, v(A + s, x̄ + s))

(30) W3(s) = u(y0 − s, x0 − s) + M(v(a + s,X + s))

(31 (31) W4(s) = u(y0 − s, x0 − s) + v(a + s, x̄ + s).

We will deal only with the models defined by (20) – (23). For the other cases the
theory can be developed similarly. Using Definition 3.1 and Remark 3.2, from (20) –
(23) it follows

(32) V ′
1(s) = −u1(y0 − s, x0) + E(f, v1(A + s,X))

(33) V ′
2(s) = −u1(y0 − s, x0) + E(f, v1(A + s, x̄))

(34) V ′
3(s) = −u1(y0 − s, x0) + M(v1(a + s,X))

(35) V ′
4(s) = −u1(y0 − s, x0) + v1(a + s, x̄).

From (32) – (35) it easily follows that V1, . . . , V4 are strictly concave functions. To ex-
emplify, we will prove formula (32). By Definition 3.1,

V1(s) = u(y0 − s, x0) +
1
2

∫ 1

0

[M(v(a1(γ) + s,X)) + M(v(a2(γ) + s,X))]f(γ) dγ,

from where, by derivation, one obtains:

V ′
1(s) = −u1(y0 − s, x0)

+
1
2

∫ 1

0

[M(v1(a1(γ) + s,X)) + M(v1(a2(γ) + s,X))]f(γ) dγ

= −u1(y0 − s, x0) + E(f, v1(A + s,X)).

Similarly, by deriving (32) one obtains:

V ′′
1 (s) = u11(y0 − s, x0)

+
1
2

∫ 1

0

[M(v11(a1(γ) + s,X)) + M(v11(a2(γ) + s,X))]f(γ) dγ.
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From this formula it follows immediately that V1 is strictly concave. One can prove
analogously that V2, V3 and V4 are concave.

Hence, the optimal solutions s∗i = s∗i (A,X), i = 1, . . . , 4 of problems (24) – (27) will
be given by:

(36) V ′
i (s∗i ) = 0, i = 1, . . . , 4.

By (32) – (35), conditions (36) are written:

(37) u1(y0 − s∗1, x0) = E(f, v1(A + s∗1, X))

(38) u1(y0 − s∗2, x0) = E(f, v1(A + s∗2, x̄))

(39) u1(y0 − s∗3, x0) = M(v1(a + s∗3, X))

(40) u1(y0 − s∗4, x0) = v1(a + s∗4, x̄).

We define the following notions of precautionary saving :

s∗1 − s∗2 indicates the variation of optimal saving on the route (b) → (a)

s∗1 − s∗3 indicates the variation of optimal saving on the route (c) → (a)

s∗1 − s∗4 indicates the variation of optimal saving on the route (d) → (a)

s∗1 − s∗2 measures the effect of a possibilistic income risk on optimal saving in the
presence of a probabilistic background risk. The precautionary saving s∗1 − s∗3 evaluates
the change of optimal saving when a background risk is added to a possibilistic income
risk model. Finally, s∗1 − s∗4 shows the change of optimal saving when we go from a
deterministic situation to a mixed risk situation.

Definition 5.1. We say that the consumer (u, v) is:

(a) mixed prudent if for any mixed vector (A,X) we have
s∗1(A,X)− s∗4(E(f,A),M(X)) ≥ 0

(b) possibilistically prudent if for any mixed vector (A,X) we have
s∗1(A,X)− s∗3(E(f,A), X)) ≥ 0

(c) probabilistically prudent if for any mixed vector (A,X) we have
s∗1(A,X)− s∗2(A,M(X)) ≥ 0.

A consumer (u, v) is mixed prudent if the presence of mixed risk (A,X) has as a con-
sequence the increase of the level of optimal saving. The other two notions of prudence
have a natural interpretation too.

The following propositions characterize the three notions of prudence of Definition 5.1.

Proposition 5.2. The following assertions are equivalent:

(i) The consumer (u, v) is mixed prudent.

(ii) v111 ≥ 0 and v122 ≥ 0.
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P r o o f . Since V4 is strictly concave, the function V ′
4 is strictly decreasing, hence:

s∗1 ≥ s∗4 iff V ′
4(s∗1) ≤ V ′

4(s∗4) = 0.

By (35) and (37):

V ′
4(s∗1) = −u1(y0 − s∗1, x0) + v1(a + s∗1, x̄)

= −E(f, v1(A + s∗1, X)) + v1(a + s∗1, x̄)
= −E(f, v1(A + s∗1(A,X), X)) + v1(E(f,A) + s∗1(A,X),M(X)).

Then taking into account Proposition 3.9 the following assertions are equivalent:

• Consumer (u, v) is risk averse.
• For any mixed vector (A,X), v1(E(f,A + s∗1(A,X)),M(X)) ≤ E(f, v1(A + s,X)).
• v1 is convex in each of the variables y and x.
• v111 ≥ 0 and v122 ≥ 0. �

Proposition 5.3. The following assertions are equivalent:

(i) The consumer (u, v) is possibilistically prudent.
(ii) v111 ≥ 0.

P r o o f . Similar to the proof of Proposition 5.2, using Proposition 3.11. �

Proposition 5.4. The following assertions are equivalent:

(i) The consumer (u, v) is probabilistically prudent.
(ii) v122 ≥ 0.

P r o o f . Similar to the proof of Proposition 5.2, using Proposition 3.13. �

The definition of a consumer’s prudence by the positivity of precautionary saving is
similar to the approach in [19]. Saying that a consumer is prudent if the occurrence
of some type of risk makes it raise its level of optimal saving is very intuitive. At the
same time, the characterizations of the three types of prudence by positivity conditions
of Propositions 5.2 – 5.4 relate the above approach to that from [4, 21, 23].

6. MIXED DOWNSIDE RISK AVERSION AND PRUDENCE

The probabilistic downside risk aversion, introduced by Menezes et al. [24] is tightly
connected to probabilistic prudence (see [6, 10]). Following a parallel line to that from
[6, 10] in this section we will define the notion of mixed downside risk aversion and we
will establish the relation between this concept and the property of mixed prudence from
Section 5.

We will define first the notions of mixed utility premium and mixed prudence utility
premium.

Consider an agent with the utility function u : R2 → R of class C2, strictly increasing
in each argument and strictly concave in each argument.
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We fix a weighted function f . We consider (y, x) ∈ R2 and a mixed vector (A,X)
with E(f,A) = 0 and M(X) = 0.

By analogy with the notion of utility premium of Friedman and Savage [12], we will
define the mixed utility premium.

Definition 6.1. The mixed utility premium w(y, x, A,X, u) associated with the pair
(y, x), the mixed vector (A,X) and the utility function u is given by

(41) w(y, x, A,X, u) = u(y, x)− E(u(y + A, x + X)).

By Definition 3.1, if [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1] then

(42) w(y, x, A,X, u) = u(y, x)− 1
2

∫ 1

0

[M(u(y + a1(γ), x + X))

+ M(u(y + a2(γ), x + X))]f(γ) dγ.

Proposition 6.2. An approximate value of mixed utility premium is given by:

(43) w(y, x, A,X, u) ≈ 1
2
u11(y, x)V ar(f,A) +

1
2
u22(y, x)V ar(X).

P r o o f . By Proposition 4.1 (7). �

Remark 6.3. By Definition 4.2 (a), the agent u is mixed risk averse iff for any (y, x) ∈
R2 and for any mixed vector (A,X) with E(f,A) = 0 and M(X) = 0, we have
w(y, x, A,X, u) ≤ 0.

The notion of mixed prudence utility premium, similar to the one of (probabilistic)
prudence utility premium of [5], is introduced by the following definition:

Definition 6.4. Let k > 0. The mixed prudence utility premium is defined by

(44) S(y, x, k,A, x, u) ≈ w(y − k, x, A,X, u)− w(y, x, A,X, u).

Now we can define the notion of mixed downside risk aversion.

Definition 6.5. The agent u displays mixed downside risk aversion (MDRA) if for any
(y, x) ∈ R2, k > 0 and for any mixed vector (A,X) with E(f,A) = 0 and M(X) = 0,
S(y, x, k,A, X, u) ≥ 0 holds.

Remark 6.6. The agent u displays MDRA iff the function S(y, x, k,A, X, u) is decreas-
ing in y.

Proposition 6.7. The following assertions are equivalent:

(i) The agent u displays MDRA.

(ii) u111 ≥ 0 and u122 ≥ 0.
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P r o o f . From (42) it follows:

∂w(y, x, A,X, u)
∂y

= u1(y, x)− 1
2

∫ 1

0

[M(u1(y + a1(γ), x + X))

+M(u2(y + a1(γ), x + X))]f(γ) dγ

= u1(y, x)− E(f, u1(y + A, x + X))
= u1(F (f, y + A),M(x + X))− E(f, u1(y + A, x + X)).

Applying Remark 6.6 and Proposition 3.9, the following assertions are equivalent:

• The agent u displays MDRA.

• ∂w(y,x,A,X,u)
∂y ≤ 0 for any (y, x) ∈ R2, k > 0 and for any mixed vector (A,X) with

E(f,A) = 0 and M(X) = 0.
• u1(E(f, y + A),M(X)) ≤ E(f, u1(y + A, x + X)) for any (y, x) ∈ R2, k > 0 and for

any mixed vector (A,X) with E(f,A) = 0 and M(X) = 0.
• u1(y, x) is convex in each of the variables y and x.
• u111 ≥ 0 and u122 ≥ 0. �

Now we go back to the mixed optimal saving model of Section 5 in which u(y, x) and
v(y, x) are consumer’s utility functions in period 0, resp. 1.

Proposition 6.8. Under the conditions of Section 5 on the mixed optimal saving model
the following conditions are equivalent:

(a) Consumer (u, v) is mixed prudent.
(b) v111 ≥ 0 and v122 ≥ 0.
(c) Consumer (u, v) displays MDRA.

P r o o f . (a) ⇔ (b) By Proposition 5.2.
(b) ⇔ (c) By Proposition 6.7. �

7. CONCLUSIONS

For risk situations with mixed parameters, in the paper the following topics have been
studied: risk aversion, prudence and optimal saving. These topics are developed in the
framework of an expected utility theory whose main concept is mixed expected utility.

We resume the main contributions of the paper:
First we mention the characterization of some concavity and convexity conditions

of bivariate utility functions by Jensen-type inequalities (expressed in terms of mixed
expected utility). Some notions of risk aversion of an agent in the face of mixed risk
are defined; then they are characterized by positivity conditions on third–order partial
derivatives of the utility functions. Some indicators of mixed risk aversion are introduced
and formulas for their approximate calculation are proved.

Then the effect of mixed risk and its components on the variation of the level of
optimal saving is studied. The prudence of an agent (= consumer) faced with mixed
risk is defined and is characterized in terms of partial derivatives of the utility function.
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Finally the notion of mixed downside risk aversion is introduced and its connection to
mixed prudence is analyzed.

We mention the following open problems:

(1) proving some Pratt-type theorems [9, 18, 19, 26] in order to compare the mixed
risk aversions of two or more agents.

(2) the study of higher- order attitudes of agents [6, 10] faced with mixed risk.

(3) the definition of a notion similar to stochastic dominance [11, 17] in order to
compare the situations of mixed risks.
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