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ON THE HYPERSPACE OF BOUNDED CLOSED SETS
UNDER A GENERALIZED HAUSDORFF STATIONARY
FUZZY METRIC

Dong Qiu, Chongxia Lu, Shuai Deng and Liang Wang

In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic
properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero
divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set
of the nonempty bounded closed subsets. Finally we discuss several important properties as
completeness, completion and precompactness.
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1. INTRODUCTION

It is well known that the Hausdorff metric is very important concept not only in gen-
eral topology but also in other areas of Mathematics and Computer Science, such as
convex analysis and optimization, fractals, mathematical economics, image computing,
etc. (see [2, 15, 27, 29]). As a natural generalization of the concept of set, fuzzy sets
was introduced initially by Zadeh [39]. Since then, to use this concept in topology and
analysis many authors have expansively developed the theory of fuzzy sets and applica-
tion [3, 6, 16, 17, 18, 19, 23, 24, 28, 32, 37, 38]. Various concepts of fuzzy metrics on
ordinary set were considered in [7, 9, 13, 20, 26].

In [35] J. Rodŕıguez-López and S. Romaguera introduced and discussed a suitable
notion for the Hausdorff fuzzy metric of a given fuzzy metric space (in the sense of
George and Veeramani) on the set of its nonempty compact subsets. In particular, they
explored several properties of the Hausdorff fuzzy metric. They also pointed out that in
general the Hausdorff fuzzy metric does not work on the set of bounded closed subsets.
As is known, in finite dimensional metric space a set is compact iff it is bounded and
closed; in infinite dimensional metric space a set is compact, then it is also bounded and
closed but not vice versa.

The stationary fuzzy metric space was introduced by V. Gregori and S. Romaguera
in [13] and it has been studied in [14, 31, 33, 34]. In this paper, we will generalize the
Hausdorff metrics with t-norms and investigate some basic properties of this generalized
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Hausdorff metric. Furthermore, for a given stationary fuzzy metric space with a t-norm
without zero divisors, we will propose a method for constructing a generalized Hausdorff
fuzzy metric on the set of the nonempty bounded closed subsets. And then we will
discuss several important properties as completeness, completion and precompactness
for the hyperspace of bounded closed sets under the generalized Hausdorff stationary
fuzzy metric.

2. PRELIMINARIES

We start this section by recalling some pertinent concepts.

Definition 2.1. (Klement et al. [25]) A triangular norm (or t-norm for short) is a
binary operation ∗ on the unit interval [0, 1], i. e., a function ∗ : [0, 1]2 → [0, 1], such that
for all a, b, c, d ∈ [0, 1] the following four axioms are satisfied:

(i) a ∗ 1 = a; (boundary condition)
(ii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d; (monotonicity)
(iii) a ∗ b = b ∗ a; (commutativity)
(iv) a ∗ (b ∗ c) = (a ∗ b) ∗ c; (associativity).

A t-norm ∗ is said to be continuous if it is a continuous function in [0, 1]2; a t-norm ∗
is called a t-norm without zero divisors if a ∗ b > 0 whenever a, b ∈ (0, 1]. The following
are examples of t-norms: a ∧ b = min(a, b); a ∗P b = a · b, where a · b denotes the usual
multiplication for all a, b ∈ [0, 1].

Definition 2.2. (Qiu et al. [34]) A stationary fuzzy pseudo-metric space is an ordered
triple (X, M, ∗) such that X is an arbitrary nonempty set, ∗ is a continuous t-norm and
M is a fuzzy set of X ×X satisfying the following conditions, for all x, y, z ∈ X:

(i) M(x, x) = 1 for all x ∈ X;

(ii) M(x, y) = M(y, x);

(iii) M(x, y) ≥ M(x, z) ∗M(z, y).

If (X, M, ∗) is a stationary fuzzy pseudo-metric space, we will say that (M, ∗) is a
stationary fuzzy pseudo-metric on X.

Definition 2.3. (Gregori and Romaguera [13]) A stationary fuzzy metric space is an
ordered triple (X, M, ∗) such that X is an arbitrary nonempty set, ∗ is a continuous t-
norm and M is a fuzzy set of X×X satisfying the following conditions, for all x, y, z ∈ X:

(i) M(x, y) > 0;

(ii) M(x, y) = 1 iff x = y;

(iii) M(x, y) = M(y, x);

(iv) M(x, y) ≥ M(x, z) ∗M(z, y).
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If (X, M, ∗) is a stationary fuzzy metric space, we will say that (M, ∗) is a stationary
fuzzy metric on X.

Example 2.1. Let (X, d) be a metric space. Denote by a · b the usual multiplication
for all a, b ∈ [0, 1], and define Md on X ×X by

Md(x, y) =
1

1 + d(x, y)
,

for all x, y ∈ X. Then (Md, ·) is a stationary fuzzy metric on X which will be called a
standard stationary fuzzy metric.

Since a stationary fuzzy metric is a special fuzzy metric, just like fuzzy metrics in [9],
we can prove that every stationary fuzzy metric (M, ∗) on X generates a topology τM

on X which has as a base the family of sets of the form {BM (x, ε) : x ∈ X, 0 < ε < 1},
where BM (x, ε) = {y ∈ X : M(x, y) > 1− ε} for all ε ∈ (0, 1). A sequence {xi}i∈N in a
stationary fuzzy metric space (X, M, ∗) is said to be Cauchy if limi,j→∞ M(xi, xj) = 1;
a sequence {xi}i∈N in X converges to x if limi→∞ M(xi, x) = 1 [13].

Definition 2.4. Let (X, M, ∗) be a stationary fuzzy metric space and A ⊂ X. If for
all ε ∈ (0, 1), BM (x, ε)

⋂
(A− {x}) 6= ∅, then x is an accumulation point of A. The set

of all accumulation points of A is called the derived set of A and denoted by A◦. The
union of A and A◦ is called the closure of A and denoted by A. If A◦ ⊂ A, then A is a
closed set of X.

Definition 2.5. Let (X, M, ∗) be a stationary fuzzy metric space and A ⊂ X. If there
exists x0 ∈ X, r ∈ (0, 1) such that A ⊂ BM (x0, r), then we say A is a bounded subset
of X; if X itself is a bounded set we will say (X, M, ∗) is a bounded stationary fuzzy
metric space.

Definition 2.6. (Gregori and Romaguera [12]) Let (X, M, ∗), (X̃, M̃ , ∗̃) be two station-
ary fuzzy metric spaces. If there exists an isometry f : X → X̃, i. e., M̃(f(x), f(y)) =
M(x, y) for all x, y ∈ X, then (X, M, ∗) and (X̃, M̃ , ∗̃) are said to be isometric, and f is
called an isometric mapping.

Definition 2.7. (Gregori and Romaguera [13]) Let (X, M, ∗) be a stationary fuzzy
metric space, if there exists a complete stationary fuzzy metric space (Ỹ , M̃ , ∗̃) such
that (X, M, ∗) is isometrically isometric to a dense subspace (X̃, M̃ , ∗̃) of (Ỹ , M̃ , ∗̃), we
say that (X, M, ∗) is a completeable stationary fuzzy metric space.

Given a stationary fuzzy metric space (X, M, ∗), we shall denote by P(X), P0(X)
and CB(X), the powerset, the set of nonempty subsets and the set of nonempty bounded
closed subsets of X, respectively.

Let B be a nonempty subset of a stationary fuzzy metric space (X, M, ∗). For all
x ∈ X, let

M(x,B) = sup
y∈B

M(x, y) = M(B, x).



On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric 761

For the empty index set ∅, we will make the convention that for ax ∈ [0, 1],

sup
x∈∅

ax = 0 and inf
x∈∅

ax = 1.

It follows that M(x, ∅) = M(∅, x) = 0.

Definition 2.8. Let (X, M, ∗) be a stationary fuzzy metric space. For all A,B ∈ P(X),
we define a function H∗

M : P(X)× P(X) → [0, 1] by

H∗
M (A,B) = inf

x∈A
M(x,B) ∗ inf

y∈B
M(y, A) = M(A,B) ∗M(B,A),

where M(A,B) = infx∈A M(x,B).

3. MAIN RESULTS

In this section we will establish our main theorems.

Proposition 3.1. Let (X, M, ∗) be a stationary fuzzy metric space. Then for all
A,B, C ∈ P0(X) it holds

(1) M(A,B) = 1 iff A ⊂ B iff A ⊂ B iff M(A,B) = 1;

(2) M(x,B) ≥ M(x, x′) ∗M(x′, B) for all x, x′ ∈ X;

(3) M(A,B) = M(A,B) = M(A,B);

(4) M(C,A) ≥ M(B,A) ∗M(C,B);

(5) H∗
M (A,B) = 1 iff A = B.

P r o o f . (1) On the one hand, let M(A,B) = infx∈A supy∈B M(x, y) = 1. Then, for
each x ∈ A, we have supy∈B M(x, y) = M(x,B) = 1, which implies that for all n ∈ N

there exists yn ∈ B such that M(x, yn) > 1− 1
n

, i. e., limn→∞ M(x, yn) = 1. Hence, we

get A ⊂ B.
On the other hand, let A ⊂ B. Then, for each x ∈ A ⊂ B, there exists a sequence

{yn} ⊂ B converging to x, which implies limn→∞ M(x, yn) = 1.
Then for all x ∈ A, we can get that supy∈B M(x, y) = 1. Thus we have M(A,B) =

infx∈A supy∈B M(x, y) = 1. Consequently, M(A,B) = 1 iff A ⊂ B. It is obvious that
A ⊂ B iff A ⊂ B. By a similar proof, we have A ⊂ B iff M(A,B) = 1.

(2) For all x, x′ ∈ X and y ∈ B ⊂ X, we have

M(x,B) = sup
y∈B

M(x, y) ≥ M(x, y) ≥ M(x, x′) ∗M(x′, y).

Since ∗ is continuous, we get

M(x,B) ≥ M(x, x′) ∗ sup
y∈B

M(x′, y) = M(x, x′) ∗M(x′, B).
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(3) We will only prove M(A,B) = M(A,B). Since by an analogous proof, we can
also obtain M(A,B) = M(A,B) .

For any given x ∈ A, let α = M(x,B) = supy∈B M(x, y). Then for each n ∈ N, there

exists yn ∈ B, such that M(x, yn) > α− 1
n

.

For each n ∈ N, there is a sequence {y(m)
n } ⊂ B converging to yn, which implies that

for each n ∈ N, there exists mn ∈ N, such that M(yn, y
(m)
n ) > 1− 1

n
, whenever m ≥ mn.

Now, for the sequence {y(mn)
n }n, by monotonicity of ∗, we get that

M(x, y
(mn)
n ) ≥ M(x, yn) ∗M(yn, y

(mn)
n ) ≥

(
α− 1

n

)
∗

(
1− 1

n

)
.

Since M(x,B) = supy∈B M(x, y) ≥ M(x, y
(mn)
n ). Thus M(x,B) ≥

(
α− 1

n

)
∗
(
1− 1

n

)
.

By taking limits as n →∞, we obtain

M(x,B) ≥ lim
n→∞

(
α− 1

n

)
∗ lim

n→∞

(
1− 1

n

)
= α ∗ 1 = α.

In addition, we have that

M(x,B) = sup
y∈B

M(x, y) ≤ sup
y∈B

M(x, y) = M(x,B).

Consequently, we get M(x,B) = M(x,B), for all x ∈ A. Eventually, we obtain

M(A,B) = inf
x∈A

M(x,B) = inf
x∈A

M(x,B) = M(A,B).

(4) For each x0 ∈ A, y0 ∈ B, z0 ∈ C, we have M(x0, z0) ≥ M(x0, y0) ∗M(y0, z0). By
the continuity of ∗, we obtain that

M(A, y0) ∗M(y0, z0) = sup
x∈A

M(x, y0) ∗M(y0, z0) ≤ sup
x∈A

M(x, z0) = M(A, z0)

and

M(B,A) ∗M(B, z0) = inf
y∈B

M(A, y) ∗ sup
y∈B

M(y, z0) ≤ M(A, z0).

Then

M(B,A) ∗ inf
z∈C

M(B, z) ≤ M(B,A) ∗M(B, z0) ≤ M(A, z0),

that is, M(B,A) ∗M(C,B) ≤ M(A, z0). Consequently,

M(B,A) ∗M(C,B) ≤ inf
z∈C

M(A, z) = M(C,A).

(5) Since

H∗
M (A,B) = M(A,B) ∗M(B,A) = 1

and



On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric 763

M(A,B) ∗M(B,A) ≤ M(A,B) ∧M(B,A) ≤ 1,

we obtain that M(A,B) = M(B,A) = 1. It follows from (1) that H∗
M (A,B) = 1 iff

A = B. �

In fact, the conclusions of Proposition 3.1 still hold on P(X).

Proposition 3.2. Let (X, M, ∗) be a stationary fuzzy metric space. Then for all
A,B, C ∈ P(X), we have the following conclusions:

(1) M(A,B) = 1 iff A ⊂ B iff A ⊂ B iff M(A,B) = 1;

(2) M(x,B) ≥ M(x, x′) ∗M(x′, B) for all x, x′ ∈ X;

(3) M(A,B) = M(A,B) = M(A,B);

(4) M(A,C) ≥ M(A,B) ∗M(B,C);

(5) H∗
M (A,B) = 1 iff A = B.

P r o o f . From Proposition 3.1, it is true for all nonempty sets. Here we need to prove
this proposition holds in those cases that at least one of the concerned sets is empty.
We only prove (1). Similarly, the others can be proved.

(1) If A= ∅, B 6= ∅, then M(∅, B)= infx∈∅ M(x,B)=1; if A 6= ∅, B = ∅, then M(A, ∅)=
infx∈A M(x, ∅)=0; if A=∅, B=∅, then M(∅, ∅)=infx∈∅ supy∈∅ M(x, y)=1.

�

Theorem 3.1. Let (X, M, ∗) be a stationary fuzzy metric space, then (P(X),H∗
M , ∗)

is a stationary fuzzy pseudo-metric space.

P r o o f . (a) By the definition we have H∗
M (∅, ∅) = infx∈∅ M(x, ∅) ∗ infy∈∅ M(∅, y) =

1 ∗ 1 = 1, and H∗
M (A,A) = M(A,A) ∗M(A,A) = 1 ∗ 1 = 1.

(b) Symmetry follows from commutativity of t-norm ∗.
(c) Since

H∗
M (A,C) = M(A,C) ∗M(C,A),

H∗
M (A,B) = M(A,B) ∗M(B,A),

H∗
M (B,C) = M(B,C) ∗M(C,B),

from (4) of Proposition 3.2, we obtain

M(A,C) ≥ M(A,B) ∗M(B,C) and M(C,A) ≥ M(B,A) ∗M(C,B).

Hence by the commutativity and associativity of t-norm, we have

M(A,C) ∗M(C,A) ≥ M(A,B) ∗M(B,A) ∗M(B,C) ∗M(C,B),
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i. e., H∗
M (A,C) ≥ H∗

M (A,B) ∗H∗
M (B,C).

Consequently, (P(X),H∗
M , ∗) is a stationary fuzzy pseudo-metric space. �

Theorem 3.2. Let (X, M, ∗) be a stationary fuzzy metric space and A ⊂ X, where ∗
is a t-norm without zero divisors. Then the following conditions are equivalent.

(1) A is a bounded subset of X.

(2) There exists r ∈ (0, 1) such that for all x, y ∈ A we have M(x, y) > 1− r.

(3) For each x ∈ X, there exists rx ∈ (0, 1) such that A ⊂ BM (x, rx).

P r o o f . (1) ⇒ (2) Suppose A is a bounded subset of X. Then there exists x0 ∈ X,
r1 ∈ (0, 1) such that A ⊂ BM (x0, r1) = {y : M(x0, y) > 1 − r1}. Thus for all x, y ∈ A,
we have

M(x0, x) > 1− r1,M(x0, y) > 1− r1.

Consequently, since ∗ is without zero divisors, we obtain that

M(x, y) ≥ M(x, x0) ∗M(x0, y)
= M(x0, x) ∗M(x0, y)
≥ (1− r1) ∗ (1− r1) > 1− r

where r ∈ (1− (1− r1) ∗ (1− r1), 1).
(2) ⇒ (3) Since (2) holds, then there exists r1 ∈ (0, 1) such that M(x, y) > 1 − r1

for all x, y ∈ A. Fix x0 ∈ A, for any y ∈ A, we have M(y, x0) > 1 − r1. Thus for each
x ∈ X, we obtain

M(x, y) ≥ M(x, x0) ∗M(x0, y) ≥ M(x, x0) ∗ (1− r1).

Since M(x, x0) ∈ (0, 1] and ∗ is a t-norm without zero divisors, there exists rx ∈ (0, 1)
such that

M(x, x0) ∗ (1− r1) > 1− rx,

i. e., y ∈ BM (x, rx). By the arbitrariness of y, we have A ⊂ BM (x, rx).
The implication (3) ⇒ (1) is obvious. �

Proposition 3.3. Let (X, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. If A,B ⊂ X are any two bounded subsets of X, then A ∪ B is a
bounded subset of X.

P r o o f . Fix x0 ∈ A, y0 ∈ B, z0 ∈ X. For any x ∈ A, y ∈ B, we have

M(x, y) ≥ M(x, x0) ∗M(x0, z0) ∗M(z0, y0) ∗M(y0, y).

Since A,B are bounded subsets of X, there exists rA, rB ∈ (0, 1) such that for any
x1, x2 ∈ A and y1, y2 ∈ B, M(x1, x2) > 1− rA and M(y1, y2) > 1− rB . Hence we have
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M(x, y) > (1− rA) ∗ (1− rB) ∗M(x0, z0) ∗M(y0, z0) > 0.

Let 1− r1 = (1− rA)∗ (1− rB)∗M(x0, z0)∗M(y0, z0) ∈ (0, 1) then we obtain M(x, y) >
1− r1.

In addition, if x, y ∈ A − B, we have M(x, y) > 1 − rA; if x, y ∈ B − A, we have
M(x, y) > 1− rB . Thus let r = max{r1, rA, rB} ∈ (0, 1). Then for any x, y ∈ A ∪B, we
have M(x, y) > 1− r which implies A ∪B is a bounded subset of X. �

Theorem 3.3. Let (X, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. Then (CB(X),H∗

M , ∗) is a stationary fuzzy metric space.

P r o o f . Let A,B, C ∈ CB(X). By Proposition 3.3, we have A ∪ B ∈ CB(X) which
means there exists r ∈ (0, 1) such that for all x ∈ A, y ∈ B, M(x, y) > 1− r. Hence for
any x ∈ A, we can get that

M(x,B) = sup
y∈B

M(x, y) > 1− r > 0.

Thus we obtain

M(A,B) = inf
x∈A

M(x,B) ≥ (1− r) > 0.

Similarly,

M(B,A) = inf
y∈A

M(y, A) ≥ (1− r) > 0.

Since ∗ is a t-norm without zero divisors, thus we have H∗
M (A,B) = M(A,B)∗M(B,A)

> 0.
By (5) of Proposition 3.1, we have H∗

M = 1 iff A = B; by the definition of H∗
M , we

get

H∗
M (A,B) = M(A,B) ∗M(B,A) = M(B,A) ∗M(A,B) = H∗

M (B,A).

In addition, by (4) of Proposition 3.1, we have

M(A,C) ≥ M(A,B) ∗M(B,C) and M(C,A) ≥ M(B,A) ∗M(C,B).

which implies

M(A,C) ∗M(C,A) ≥ M(A,B) ∗M(B,A) ∗M(B,C) ∗M(C,B),

i. e.,

H∗
M (A,C) ≥ H∗

M (A,B) ∗H∗
M (B,C).

Consequently, (CB(X),H∗
M , ∗) is a stationary fuzzy metric space. �

The following example shows that the condition: “∗ is a t-norm without zero divisors”
in the above theorem is essential.
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Example 3.1. Let X = R and let ∗ be the Lukasiewicz t-norm which is defined by
a∗b = max{0, a+b−1} for all a, b ∈ [0, 1] [25]. It is easy to see that Lukasiewicz t-norm
is not a t-norm without zero divisors. We define a fuzzy set M on X ×X by

M (x, y) =
{

1, if x = y,
0.5, if x 6= y,

for all x, y ∈ X.
It is obvious that M satisfies (i), (ii) and (iii) of Definition 2.3. Next, we will show

that M satisfies Condition (iv) of Definition 2.3.
Let x, y, z ∈ X. If x = y, then M(x, y) = 1. Since M(x, z) ≤ 1 and M(z, y) ≤ 1, we

have
M(x, z) ∗M(z, y) = max{0,M(x, z) + M(z, y)− 1} ≤ 1 = M(x, y).

Thus without loss of generality, suppose x 6= y and x 6= z. Then M(x, y) = M(x, z) = 0.5
and M(x, z)∗M(z, y) = max{0,M(x, z)+M(z, y)−1} = 0. Hence M(x, y) ≥ M(x, z)∗
M(z, y). Consequently, (X, M, ∗) is a stationary fuzzy metric space. In addition, since
BM (x, 0.2) = {x} for all x ∈ X, we have τM is a discrete topology on X.

However (CB(X),H∗
M , ∗) is not a stationary fuzzy metric space. In fact, for any

nonempty subset A, we have A ⊆ BM (0, 0.5), which implies CB(X) = P0(X). Let
A = [−1, 0] and B = [1, 2]. Thus A,B ∈ CB(X). Since M(x, y) = 0.5 for any x ∈ A and
y ∈ B, we have M(A,B) = M(B,A) = 0.5. Hence

H∗
M (A,B) = M(A,B) ∗M(B,A) = max{0, 0.5 + 0.5− 1} = 0,

which implies that H∗
M does not satisfy Condition (i) of Definition 2.3.

Let us recall that if (X,U) is a uniform space, then the Hausdorff–Bourbaki uniformity
HU (of U) on P(X), has a base the family of sets of the form

HU = {(A,B) ∈ P(X)× P(X) : B ⊂ U(A), A ⊂ U(B)}

where U ∈ U [8].
The restriction of HU to CB(X)× CB(X) will also be denoted by HU . On the other

hand, if (X, M, ∗) is a stationary fuzzy metric space, then {Uε : ε ∈ (0, 1)} is a base for
the uniformity UM on X compatible with τM , where

Uε = {(x, y) ∈ X ×X : M(x, y) > 1− ε}

for all ε ∈ (0, 1). UM is called the uniformity induced by (M, ∗). In particular, UH∗
M

is
the uniformity induced by the Hausdorff stationary fuzzy metric of (M, ∗). We have the
following useful result.

Theorem 3.4. Let (X, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. Then the Hausdorff–Bourbaki uniformity HUM

coincides with the
uniformity UH∗

M
on CB(X).

P r o o f . For any ε ∈ (0, 1), by the continuity of ∗, there exists ε1 ∈ (0, ε) such that
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(1− ε1) ∗ (1− ε1) > 1− ε.

For any

(A,B) ∈ {(A,B) ∈ CB(X)× CB(X) : B ⊂ Uε1(A), A ⊂ Uε1(B)},

and y ∈ B, since B ⊂ Uε1(A), there exists xy ∈ A satisfies M(xy, y) > 1 − ε1. For all
y ∈ B, we have

M(A, y) = sup
x∈A

M(x, y) ≥ M(xy, y) > 1− ε1.

Hence,

inf
y∈B

M(A, y) ≥ 1− ε1.

Similarly,

inf
x∈A

M(x,B) ≥ 1− ε1.

Thus we obtain

H∗
M (A,B) = inf

y∈B
M(y, A) ∗ inf

x∈A
M(x,B) ≥ (1− ε1) ∗ (1− ε1) > 1− ε.

Consequently,

(A,B) ∈ {(A,B) ∈ CB(X)× CB(X) : H∗
M (A,B) > 1− ε}

i. e.,
{(A,B) ∈ CB(X)× CB(X) : B ⊆ Uε1(A), A ⊆ Uε1(B)}

⊆ {(A,B) ∈ CB(X)× CB(X) : H∗
M (A,B) > 1− ε}.

Conversely, for any

(A,B) ∈ {(A,B) ∈ CB(X)× CB(X) : H∗
M (A,B) > 1− ε},

since

H∗
M (A,B) = inf

y∈B
M(y, A) ∗ inf

x∈A
M(y, B) > 1− ε

and

inf
y∈B

M(y, A) ∗ inf
x∈A

M(x,B) ≤ inf
y∈B

M(y, A) ∧ inf
x∈A

M(x,B),

we have

inf
y∈B

M(y, A) ∧ inf
x∈A

M(x,B) > 1− ε.

Thus we can get that

inf
y∈B

M(y, A) > 1− ε, inf
x∈A

M(x,B) > 1− ε.
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Since infx∈A M(x,B) > 1− ε, for every x ∈ A, we have

M(x,B) = sup
y∈B

M(x, y) > 1− ε.

Then there exists yx ∈ B such that M(x, yx) > 1 − ε, i. e., A ⊂ Uε(B). Similarly
B ⊂ Uε(A). Thus

(A,B) ∈ {(A,B) ∈ CB(X)× CB(X) : B ⊂ Uε(A), A ⊂ Uε(B)},

i. e.,
{(A,B) ∈ CB(X)× CB(X) : H∗

M (A,B) > 1− ε}

⊆ {(A,B) ∈ CB(X)× CB(X) : B ⊆ Uε(A), A ⊆ Uε(B)}.

We conclude that HUM
= UH∗

M
on CB(X). �

Theorem 3.5. Let (X, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. Then (CB(X),H∗

M , ∗) is complete iff (X, M, ∗) is complete.

P r o o f . By Theorem 2 of [36], we have (CB(X),H∗
M , ∗) is complete iff (CB(X),UH∗

M
)

is complete. Since, by Theorem 3.4, HUM
= UH∗

M
on CB(X), it follows from [4] that

(CB(X),UH∗
M

) is complete iff (X,UM ) is complete. Thus (CB(X),H∗
M , ∗) is complete iff

(X, M, ∗) is complete. �

Analogous arguments yield the following result.

Theorem 3.6. Let (X, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. Then (CB(X),H∗

M , ∗) is precompact iff (X, M, ∗) is precompact.

Lemma 3.1. Let (Y, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. If X is a dense subset of Y , then CB(X) is a dense subset of
(CB(Y ),H∗

M , ∗).

P r o o f . For each ε ∈ (0, 1), by the continuity of ∗, there exists ε1 such that

(1− ε1) ∗ (1− ε1) > 1− ε.

For each A ∈ CB(Y ), we have

A ⊂
⋃

x∈A

BM (x, ε1).

Since X is a dense subset of Y , for every x ∈ A, there exists yx ∈ BM (x, ε1) ∩X. Let
C = {yx : x ∈ A}. Since A ∈ CB(Y ), there exists an r ∈ (0, 1) such that M(x1, x2) >
1− r for any x1, x2 ∈ A. Then we have

M(yx1 , yx2) ≥ M(yx1 , x1) ∗M(x1, x2) ∗M(x2, yx2) > (1− ε1) ∗ (1− r) ∗ (1− ε1).

Let
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r′ = 1− [(1− ε1) ∗ (1− r) ∗ (1− ε1)] ∈ (0, 1).

Hence, we obtain M(yx1 , yx2) > 1− r′, i. e., C is a bounded subset of X.
Let C be the closure of C in X. Now we verify that

C ∈ BH∗
M

(A, ε) = {B ∈ P(Y ) : (A,B) ∈ CB(X)× P(Y ),H∗
M (A,B) > 1− ε}.

Since for any x ∈ A, we have

M(A, yx) = sup
x∈A

M(x, yx) ≥ M(x, yx) > 1− ε1.

Thus, we obtain

M(C,A) = inf
yx∈C

M(yx, A) ≥ 1− ε1.

Similarly, we can get

M(A,C) = inf
x∈A

M(x,C) ≥ 1− ε1.

Therefore, by Proposition 3.1, we have

H∗
M (A,C) = H∗

M (A,C) = M(C,A) ∗M(A,C) ≥ (1− ε1) ∗ (1− ε1) > 1− ε

i. e., C ∈ CB(X)∩BH∗
M

(A, ε). We conclude that CB(X) is a dense subset of (CB(Y ),H∗
M , ∗). �

Lemma 3.2. (Gregori and Romaguera [13]) A stationary fuzzy metric space (X, M, ∗)
is completable iff limn→∞ M(xn, yn) > 0 for each pair of Cauchy sequence {xn}n, {yn}n

in X.

Theorem 3.7. Let (X, M, ∗) be a stationary fuzzy metric space, where ∗ is a t-norm
without zero divisors. Then (CB(X),H∗

M , ∗) is completable iff (X, M, ∗) is completable.

P r o o f . If (X, M, ∗) is completable, then there exists a complete stationary fuzzy met-
ric space (Ỹ , M̃ , ∗̃), such that (X, M, ∗) is isometric to a dense subspace (X̃, M̃ , ∗̃) of
(Ỹ , M̃ , ∗̃), where ∗̃ is a t-norm without zero divisors. By Lemma 3.1, we know that
(CB(X̃),He∗fM , ∗̃) is a dense subspace of a stationary fuzzy metric space (CB(Ỹ ),He∗fM , ∗̃).
Since (Ỹ , M̃ , ∗̃) is complete, by Theorem 3.5, we have (CB(Ỹ ),He∗fM , ∗̃) is complete. Be-

cause (X, M, ∗) and (X̃, M̃ , ∗̃) are isometric, there exists an isometry mapping f from
X to X̃.

According to the classical extension principle, from mapping f , we can induce the
following mappings

f : P(X) −→ P(X̃), A 7−→ f(A) ∈ P(X̃);
f−1 : P(X̃) −→ P(X), B 7−→ f−1(B) ∈ P(X).
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Now we shall prove that f is the isometry mapping from CB(X) to CB(X̃).
Let A ∈ CB(X). Since f is a homeomorphic mapping, we have that f(A) is a closed

set of X̃. For each x̃, ỹ ∈ f(A), there exists a unique x, y ∈ A such that x̃ = f(x), ỹ =
f(y), which implies M̃(x̃, ỹ) = M̃(f(x), f(y)) = M(x, y). Since A ∈ CB(X), there
exists r ∈ (0, 1) such that for all x, y ∈ A, we have M(x, y) > 1 − r, Consequently
M̃(x̃, ỹ) > 1− r, i. e., f(A) ∈ CB(X̃).

For any Ã ∈ CB(X̃) we have f−1(Ã) = {x ∈ X : f(x) ∈ Ã}. Then for each
x, y ∈ f−1(Ã), there exists a unique x̃, ỹ ∈ Ã such that x̃ = f(x), ỹ = f(y), which
implies

M(x, y) = M(f−1(x̃), f−1(ỹ)) = M̃(f(f−1(x̃)), f(f−1(ỹ))) = M̃(x̃, ỹ).

Since Ã ∈ CB(X̃), there exists r ∈ (0, 1) such that for all x̃, ỹ ∈ Ã, we have M̃(x̃, ỹ) >

1− r. Hence M(x, y) > 1− r, i. e., f−1(Ã) ∈ CB(X).
For any A,B ∈ CB(X), we have

He∗fM (f(A), f(B)) = inf
x∈A

sup
y∈B

M̃(f(x), f(y)) ∗ inf
y∈B

sup
x∈A

M̃(f(y), f(x))

and

H∗
M (A,B) = inf

x∈A
sup
y∈B

M(x, y) ∗ inf
y∈B

sup
x∈A

M(y, x).

Because for any x, y ∈ X, M̃(f(x), f(y)) = M(x, y), we obtain that

He∗fM (f(A), f(B)) = H∗
M (A,B).

From what we have proved above, we can get that f is the isometry mapping from
CB(X) to CB(X̃) and (CB(X),H∗

M , ∗) to (CB(X̃),He∗fM , ∗̃) are isometric. Consequently,
(CB(X),H∗

M , ∗) is completeable.
Conversely, suppose (CB(X),H∗

M , ∗) is completeable. For any ε ∈ (0, 1), by the
continuity of ∗, there exists ε1 ∈ (0, 1) such that

1− ε < (1− ε1) ∗ (1− ε1).

Let {xn} be a Cauchy sequence of X. For any ε1 ∈ (0, 1), there exist N ∈ N+, such
that

M(xn, xm) > 1− ε1

whenever n, m > N . Hence, for the sequence {{xn}} ⊂ CB(X) we have

H∗
M ({xn}, {xm}) = M(xn, xm) ∗M(xm, xn) ≥ (1− ε1) ∗ (1− ε1) > 1− ε,

whenever n, m > N . Thus {{xn}} is a Cauchy sequence of CB(X). Because (CB(X),H∗
M , ∗)

is completeable, by Lemma 3.2, for any Cauchy sequences {xn}, {yn} of X, we have

lim
n→∞

H∗
M ({xn}, {yn}) > 0,

i. e.,

lim
n→∞

M(xn, yn) ∗ lim
n→∞

M(xn, yn) > 0.

In addition, since ∗ is a t-norm without zero divisors, thus we can get that a > 0,
whenever a ∗ a > 0. It follows that limn→∞ M(xn, yn) > 0. By Lemma 3.2, we conclude
that (X, M, ∗) is completeable. �
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4. CONCLUSIONS

We have generalized the classical Hausdorff metrics with triangular norms and pro-
posed a method for constructing a generalized Hausdorff fuzzy metric on the set of the
nonempty bounded closed subsets of a given stationary fuzzy metric space. We also have
discussed several important properties as completeness, completion and precompactness
for this hyperspace. In fuzzy functional analysis, many researchers have been working on
the fixed point theory in the space of compact fuzzy sets equipped with the supremum
metric [1, 5, 10, 11, 21, 22, 30, 40]. The approach of this paper, however, enables us to
use fixed point theory to study the fuzzy mappings from the new perspective. So, we
assume our results would provide a mathematical background for ongoing work in the
problems of those related fields.
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