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Discontinuity of the Fuglede-Kadison determinant on
a group von Neumann algebra

Benjamin Küster

Abstract. We show that in contrast to the case of the operator norm topol-
ogy on the set of regular operators, the Fuglede-Kadison determinant is not
continuous on isomorphisms in the group von Neumann algebra N (Z) with
respect to the strong operator topology. Moreover, in the weak operator
topology the determinant is not even continuous on isomorphisms given by
multiplication with elements of Z[Z]. Finally, we define T ∈ N (Z) such that
for each λ ∈ R the operator T +λ · idl2(Z) is a self-adjoint weak isomorphism
of determinant class but limλ→0 det(T + λ · idl2(Z)) 6= det(T ).

1 Introduction
Fuglede and Kadison [1] introduce their determinant for operators in a finite factor.
They prove that, for regular (i.e. invertible) operators, the new determinant shares
many algebraic and analytic properties with the usual matrix determinant (which
it generalises). That includes continuity with respect to the operator norm. We
consider the continuity properties of the generalised Fuglede-Kadison determinant
which is used for example by Lück [4, p. 127] to define the topological invariant
“L2-torsion”. Let f be an element of a finite von Neumann algebra (N, τ). The
(generalised) Fuglede-Kadison determinant of f is

det(f) :=

{
exp

(∫∞
0+

ln(λ) dF (f)
)
, if

∫∞
0+

ln(λ) dF (f) > −∞,
0 , otherwise.

(1)

In this definition, F (f) : [0,∞)→ [0,∞) is the spectral density function of f which
is defined by F (f)(λ) = τ(Ef

∗f
λ2 ), where Ef

∗f
λ2 is a spectral projection of the self-

-adjoint operator f∗f . The associated measure on the Borel σ-algebra of R is given
by dF (f) ((a, b]) = F (f)(b) − F (f)(a) for a, b ∈ R, a < b. The notation “0+”
in 1 means that we omit the possible atom 0 in the domain of integration. The
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omission of that atom is the reason why definition (1) is slightly more general than
the original analytic extension of the Fuglede-Kadison determinant to non-regular
operators [1, p. 528]. In that extension, all operators with non-zero kernel have
determinant zero. In contrast, the generalised Fuglede-Kadison determinant (1)
completely ignores the kernel, which leads for example to the odd equation det 0 =
1. However, for injective operators in a finite factor, the original Fuglede-Kadison
determinant and its generalisation (1) agree.

Applications
An example of a finite von Neumann algebra is the group von Neumann algebra
N (G) of a discrete group G. It is defined as the set of all operators in B(l2(G))
that commute with the G-action on l2(G) given by left multiplication. The trace
is

τ = trN (G) : N (G)→ C ,
T 7→ 〈Te, e〉l2(G) , (2)

where e is the neutral element of G. In [4, chapter 1], Lück extends that example to
the more general theory of morphisms of finite-dimensional Hilbert N (G)-modules.
In that context, the Fuglede-Kadison determinant is the main technical ingredient
in the definition of L2-torsion (see [4, chapter 3]).

An important class of operators in N (G) are those which are given by left
multiplication with an element of the integer group ring ZG. Let (a : G→ Z) ∈ ZG,
i.e. a(g) 6= 0 for only finitely many g ∈ G. The operator in N (G) defined by a is

A : l2(G)→ l2(G)

(cg)g∈G 7→
(
(Ac)g

)
g∈G , (Ac)g =

∑
h∈G

ahch−1g .

Matrices of such operators are exactly the morphisms of Hilbert N (G)-modules
that occur in the study of L2-invariants of finite free G-CW-complexes. Therefore,
determinants of those operators are an important special case of research.

A different example of application of the determinant is the case of the von Neu-
mann algebra associated to an equivalence relation in a probability space, see [2].

Motivation
The motivation to study the continuity properties of the determinant springs from
the desire to understand the behaviour under limits of all constructions that use
the determinant, e.g. the L2-torsion invariant.

The few positive results about the continuity properties of the determinant
of morphisms of finite-dimensional Hilbert N (G)-modules [4, p. 129] all consider
operator norm convergence and follow essentially from the classical dominated or
monotone convergence theorems of Lebesgue and Levi. For example, there is the
result that for an injective positive morphism f : U → U in a finite-dimensional
Hilbert N (G)-module, we have

lim
λ→0+

det(f + λ · idU ) = det(f) . (3)
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Naturally, for such continuity results one expects non-trivial counterexamples when
the conditions of no classical convergence theorem for integrals are fulfilled. By non-
-trivial counterexamples, we mean operators which are as regular as possible. By
the latter we shall mean that the kernel and the cokernel are as small as possible,
the operator has useful properties such as being self-adjoint, and the operator is of
determinant class, i.e. has strictly positive determinant.

For the strong and weak operator topologies, positive results are much harder
to obtain since the convergence of operators in those topologies does not imply con-
vergence of the spectral density functions of the operators in any usable sense. We
are not aware of any published research in the study of the continuity of the deter-
minant with respect to other topologies than the one induced by the operator norm.

Main results
Our three main results are: The determinant is not continuous on all isomorphisms
in N (Z) with respect to the strong operator topology. In the case of the weak
operator topology, the example of discontinuity can be constructed within the class
of operators inN (Z) given by left multiplication with elements of Z[Z]. Considering
the operator norm topology, the Fuglede-Kadison determinant can be discontinuous
at λ = 0 on a line {T+λ·idl2(Z) |λ ∈ R} that consists entirely of weak isomorphisms
of determinant class. That is a non-trivial counterexample to (3) in absence of
positivity. In all cases the operators are constructed explicitly and the short proofs
of their properties suggest how one might construct similar “pathologic” examples
in other situations.

Method
The basis for the construction of our examples is the following model for the group
von Neumann algebra of the integers. Lück remarks in [4, p. 15] that there is an
isometric ?-algebra-isomorphism N (Z) ∼= L∞(S1), where L∞(S1) is identified with
the set of pointwise multiplication operators {Mg | g ∈ L∞(S1)} ⊂ B(L2(S1)) and
the involution on L∞(S1) is pointwise complex conjugation. That isomorphism of
algebras is induced by an isometry of Hilbert spaces

l2(Z)
∼=7−→ L2(S1) ,

(ak)k∈Z 7−→
(
z 7→

∑
k∈Z

akz
k
)
, z = eiϕ ∈ C . (4)

Note that (4) implies that an operator in N (Z) given by left multiplication with
an element (ak)k∈Z ∈ C[Z] is identified with the polynomial

∑
k∈Z akz

k in L∞(S1).
The identification N (Z) ∼= L∞(S1) allows for simple constructions of concrete mor-
phisms in N (Z) with prescribed spectral density functions. Moreover, under the
identification there is the following simple formula for the determinant [4, p. 128]:

ln det g =

∫
S1

ln |g(z)| · χ{u∈S1 | g(u)6=0} d volz, g ∈ L∞(S1) (5)

where d volz is the usual “round” measure on S1, scaled such that vol(S1) = 1.
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At this point we would like to remark that although N (Z) ∼= L∞(S1) is not a
type II factor (because Z has no infinite conjugacy classes, see [3, Theorem 6.7.5]),
L∞(S1) can be embedded into a type II factor as a maximal commutative subal-
gebra, by the classical group measure space construction. Therefore, operators in
N (Z) can be regarded as elements in a type II factor. Moreover, since all operators
involved in our counterexamples are injective, their determinant agrees in fact with
the original Fuglede-Kadison determinant from [1], which means that our results
apply in particular to the original Fuglede-Kadison determinant.

2 Discontinuity in the Weak Operator Topology
Proposition 1. There is a sequence (An)n∈N ⊂ N (Z) of isomorphisms, given by
left multiplication with elements in Z[Z], which converges to idl2(Z) with respect to
the weak operator topology but limn→∞ det(An) 6= 1 = det(idl2(Z)).

Proof. Define An to be left multiplication with (nak)k∈Z, where na0 = 1, nan = 2
and nak = 0 for all k ∈ Z other than 0 and n. Under the isometric isomorphism
N (Z) ∼= L∞(S1), An corresponds to the polynomial

pn(z) := 1 + 2zn, z ∈ S1 ⊂ C .

The polynomial 1 + 2zn on S1 is bounded away from zero for each n ∈ N. Hence
An is invertible with inverse the operator corresponding to 1/pn ∈ L∞(S1). In [4,
p. 136], Lück proves an example that implies det(An) = 2 for all n ∈ N. From (2)
follows immediately that det(idl2(Z)) = 1. What is left to show is that (An)n∈N
converges to idl2(Z) in the weak operator topology as n→∞. Let f, g ∈ C∞(S1).
Then we have∣∣∣∣12〈(pn − 1)f, g

〉
L2(S1)

∣∣∣∣ =
∣∣∣∣∣
∫
S1

znf(z) g(z) d volz

∣∣∣∣∣
=

∣∣∣∣∣
2π∫
0

eintf
(
exp(it)

)
g
(
exp(it)

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
2π∫
0

1

in
eint

d

dt
(fg)

(
exp(it)

)
dt

∣∣∣∣∣
≤ 1

n

∥∥(fg)′∥∥∞ n→∞−→ 0 . (6)

Now, since C∞(S1) is dense in L2(S1) with respect to its Hilbert space norm, we can
conclude from (6) that the sequence of operators in B(L2(S1)) given by pointwise
multiplication with pn converges to idL2(S1) in the weak operator topology as n→
∞. The corresponding claim about the sequence (An)n∈N follows immediately. �

Note that the sequence (An)n∈N from the previous proof does not converge to
idl2(Z) in the strong operator topology: For each polynomial pn corresponding to
An, we have ‖(pn − 1)f‖L2(S1) = 2 ‖f‖L2(S1) for all f ∈ L2(S1).
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3 Discontinuity in the Strong Operator Topology
Proposition 2. Let r = (rn)n∈N be a sequence of non-negative real numbers (e.g.
rn = sin(n) + 1). There is a sequence of isomorphisms (frn)n∈N ⊂ N (Z) such that
frn → idl2(Z) in the strong operator topology as n→∞ and det(frn) = exp(−rn).

Proof. We use the identification L∞(S1) ∼= N (Z). Let for n ∈ N the operator frn
correspond to the function grn ∈ L∞(S1) given by

grn (exp(2πit)) :=

{
exp (−n · rn) , 0 < t ≤ 1

n ,

1, 1
n < t ≤ 1.

Then frn is self-adjoint, as grn is real, and invertible with inverse the operator cor-
responding to the well-defined function 1/grn ∈ L∞(S1).

We prove first that frn converges to idl2(Z) in the strong operator topology.
This is equivalent to proving that the pointwise multiplication operator Mgrn

∈
B(L2(S1)) converges to idL2(S1).

Let h ∈ L2(S1).∥∥Mgrn
(h)− h

∥∥
L2(S1)

=

∫
S1

∣∣grn(z)h(z)− h(z)∣∣2 d volz
=

1∫
0

∣∣∣grn(exp(2πit))h(exp(2πit))− h(exp(2πit))∣∣∣2dt
=

1/n∫
0

∣∣∣h(exp(2πit))(exp(−n · rn)− 1
)∣∣∣2dt

≤
1/n∫
0

∣∣∣h(exp(2πit))∣∣∣2dt .
The final integral converges to zero as n → ∞ due to σ-additivity of Lebesgue
measure. The calculation of the determinant of frn is a very easy task using (5):

ln det(frn) =

∫
S1

ln
(
|grn(z)|

)
· χ{u∈S1 | grn(u)6=0} d volz

=

1∫
0

ln
(
grn(exp(2πit))

)
dt

=

1/n∫
0

ln
(
exp (−n · rn)

)
dt

= −rn . �
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4 Discontinuity in the Operator Norm Topology
Define T ∈ N (Z) as the operator corresponding to g ∈ L∞(S1), where

g (exp(2πix)) :=

(
1

n
− x
)n(n+1)

− e−
√
n−1, x ∈

(
1

n+ 1
,
1

n

]
, n ∈ N. (7)

The shape of the graph of g is illustrated in Figure 1 below. One property of g is
that for all x ∈ ( 1

n+1 ,
1
n ], n ∈ N, there is a δn > 0 such that

−e−
√
n − δn ≥ g (exp(2πix)) ≥ −e−

√
n−1.

The statement in line (4) can be verified using∣∣∣∣∣
(
1

n
− x
)n(n+1)

∣∣∣∣∣ ≤
(
1

n
− 1

n+ 1

)n(n+1)

=

(
1

n(n+ 1)

)n(n+1)

≤ 1

2

(
e−
√
n−1 − e−

√
n
)
,

where the second inequality is a straightforward check. For example, we can set
δn := 1

3 (e
−
√
n−1− e−

√
n). Note that (4) implies that x 7→ g (exp(2πix)) is a strictly

decreasing function since it is strictly decreasing on each interval ( 1
n+1 ,

1
n ].

Figure 1: Qualitative picture of the graph of g. The slope

of the
(
1
n − x

)n(n+1)
-segments is strongly exaggerated.

4.1 Verification of the properties of T

Note that for λ ∈ R, the operator T + λ · idl2(Z) corresponds to g+ λ · 1, where 1 is
the “constant 1” function on S1.

Proposition 3. For each λ ∈ R the operator T + λ · idl2(Z) is a weak isomorphism.
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Proof. As T is self-adjoint, the claim is equivalent to the claim that T + λ · idl2(Z)
is injective, i.e. for λ ∈ R the zero locus of g + λ · 1 is a null set in S1. Since
x 7→ g (exp(2πix)) is strictly decreasing, g + λ · 1 can have at most one zero. �

Proposition 4. For each λ ∈ R the operator T + λ · idl2(Z) is of determinant class.

Proof. To simplify notation, set γλ(x) := g (exp(2πix)) + λ for x ∈ (0, 1].
Case λ = 0: We use equation (5).

ln det(T ) =

∫
S1

ln (|g(z)|) · χ{u∈S1 | g(u)6=0} d volz =
∑
n∈N

1
n∫

1
n+1

ln |γλ(x)| dx

(4)

≥
∑
n∈N

1
n∫

1
n+1

ln
(
e−
√
n
)
dx

=
∑
n∈N

(
1

n
− 1

n+ 1

)
·
(
−
√
n
)
=
∑
n∈N

−1√
n(n+ 1)

> −∞ .

Case λ = e−
√
m−1, m ∈ N : Again, we use equation (5).

ln det
(
T + λm · idl2(Z)

)
=
∑
n∈N

1
n∫

1
n+1

ln |γλ(x)| dx

≥

1
m∫

1
m+1

ln |γλ(x)| dx+

1∫
0

lnmin{δm, δm−1} dx

=

1
m∫

1
m+1

ln

((
1

m
− x
)m(m+1)

)
dx+ lnmin{δm, δm−1}

= ln

(
1

m(m+ 1)

)
− 1 + ln (min{δm, δm−1})

> −∞ . (8)

Case λ = e−
√
m−1 + ( 1

m −
1

m+1 )
m(m+1), m ∈ N : The point ( 1

m+1 , 0) is a limit
point of the graph of γλ. We have |γλ(x)| ≥ δm for all x ∈ ( 1

m+2 ,
1

m+1 ]. Note

that γλ|( 1
m+1 ,

1
m ] is a polynomial whose derivative has a right limit for x → 1

m+1

+

which is strictly greater than zero. If dm is that limit, we can find ε > 0 such that
|γλ(x)| ≥ dm

2 |x−
1

m+1 | for all x ∈ [ 1
m+1 − ε,

1
m+1 + ε]. On (0, 1]\[ 1

m+1 − ε,
1

m+1 + ε],
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γλ is bounded away from zero by some bound δ > 0. We can estimate using (5):

ln det
(
T + λ · idl2(Z)

)
=
∑
n∈N

1
n∫

1
n+1

ln |γλ(x)| dx

≥

1
m+1+ε∫
1

m+1−ε

ln

∣∣∣∣12dm
(
x− 1

m+ 1

)∣∣∣∣ dx+

1∫
0

ln δ dx

= 2ε

(
ln

(
1

2
dm

)
+ ln (ε)− 1

)
+ ln δ

> −∞ .

Case e−
√
m−1 < λ < e−

√
m−1 +

(
1
m −

1
m+1

)m(m+1)

, m ∈ N : The graph of γλ

cuts the x-axis at some x0 ∈ ( 1
m+1 ,

1
m ). We can proceed as in the previous case.

For other λ ∈ R : The function γλ is bounded away from 0 so the case is trivial.
�

Proposition 5. There is a sequence (λm)m∈N ⊂ (0, 1] converging to zero such that
det
(
T + λm · idl2(Z)

)
< 1

m(m+1) . So limm→∞ det
(
T + λm · idl2(Z)

)
= 0 6= det (T ).

Proof. Set λm := e−
√
m−1. Similarly as in the previous proof, use (5):

ln det
(
T + λm · idl2(Z)

)
=
∑
n∈N

1
n∫

1
n+1

ln
∣∣∣g(exp(2πix))+ λm

∣∣∣dx

≤

1
m∫

1
m+1

ln
∣∣∣g(exp(2πix))+ λm

∣∣∣dx (9)

= ln

(
1

m(m+ 1)

)
− 1 . (10)

In line (9) we used that the summands in the previous line are non-positive. In
line (10) we used the estimate (8). �
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