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DERIVED CONES TO REACHABLE SETS OF A

NONLINEAR DIFFERENTIAL INCLUSION

Aurelian Cernea, Bucures̨ti
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Abstract. We consider a nonlinear differential inclusion defined by a set-valued map with
nonconvex values and we prove that the reachable set of a certain variational inclusion
is a derived cone in the sense of Hestenes to the reachable set of the initial differential
inclusion. In order to obtain the continuity property in the definition of a derived cone
we use a continuous version of Filippov’s theorem for solutions of our differential inclusion.
As an application, in finite dimensional spaces, we obtain a sufficient condition for local
controllability along a reference trajectory.
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1. Introduction

The concept of the derived cone to an arbitrary subset of a normed space has been

introduced by M. Hestenes in [8] and successfully used to obtain necessary optimality

conditions in Control Theory. Afterwards, this concept has been largely ignored in

favor of other concepts of tangent cones that may intrinsically be associated with

a point of a given set: the cone of interior directions, the contingent, the quasitangent

and, above all, Clarke’s tangent cone (e.g., [1]). Mirică ([10], [11]) obtained “an

intersection property” of derived cones that allowed a conceptually simple proof

and significant extensions of the maximum principle in optimal control; moreover,

other properties of derived cones may be used to obtain controllability and other

results in the qualitative theory of control systems. In our previous papers [4]–[7]

we identified derived cones to the reachable sets of certain classes of discrete and

differential inclusions in terms of a variational inclusion associated with the initial

discrete or differential inclusion.
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In the present note we consider differential inclusions of the form

(1.1) x′ ∈ Ax+ F (t, x), x(0) ∈ X0,

where X is a separable Banach space, A is an m-dissipative operator on X , F :

[0, T ]×X → P(X) is a set valued map and X0 ⊂ X is a closed set.

Our aim is to prove that the reachable set of a certain variational inclusion is

a derived cone in the sense of Hestenes to the reachable set of the problem (1.1). In

order to obtain the continuity property in the definition of a derived cone we shall

use a continuous version of Filippov’s theorem for solutions of differential inclusions

(1.1) obtained in [3]. As an application, when X is finite dimensional, we obtain

a sufficient condition for local controllability along a reference trajectory.

2. Preliminaries

Let (X, ‖·‖) be a normed space.

Definition 2.1 ([8]). A subset M ⊂ X is said to be a derived set to E ⊂ X at

x ∈ E if for any finite subset {v1, . . . , vk} ⊂ M there exist s0 > 0 and a continuous

mapping a(·) : [0, s0]
k → E such that a(0) = x and a(·) is (conically) differentiable

at s = 0 with the derivative col[v1, . . . , vk] in the sense that

lim
Rk

+
∋θ→0

∥

∥a(θ)− a(0)−
∑k

i=1 θivi
∥

∥

‖θ‖
= 0.

We shall write in this case that the derivative of a(·) at s = 0 is given by

Da(0)θ =
k
∑

i=1

θjvj ∀θ = (θ1, . . . , θk) ∈ R
k
+ := [0,∞)k.

A subset C ⊂ X is said to be a derived cone of E at x if it is a derived set and

also a convex cone.

For the basic properties of derived sets and cones we refer to M.Hestenes [8]; we

recall that if M is a derived set, then M ∪ {0}, as well as the convex cone generated

by M , is also a derived set, hence a derived cone.

On the other hand, the up-to-date experience in Nonsmooth Analysis shows that

for some problems, the use of one of the intrinsic tangent cones may be prefer-

able. From the multitude of intrinsic tangent cones in the literature (e.g. [1]), the
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contingent, the quasitangent (intermediate) and Clarke’s tangent cones, defined, re-

spectively, by

KxE =
{

v ∈ X ; ∃ sm → 0+, ∃xm → x, xm ∈ E :
xm − x

sm
→ v

}

,

QxE =
{

v ∈ X ; ∀sm → 0+, ∃xm → x, xm ∈ E :
xm − x

sm
→ v

}

,

CxE =
{

v ∈ X ; ∀ (xm, sm) → (x, 0+), xm ∈ E, ∃ ym ∈ E :
ym − xm

sm
→ v

}

seem to be among the most often used in the study of different problems involving

nonsmooth sets and mappings.

A useful property of the derived cone, obtained by Hestenes ([8], Theorem 4.7.4)

is stated in the next lemma.

Lemma 2.2 ([8]). Let X = R
n. Then x ∈ int(E) if and only if C = R

n is

a derived cone at x ∈ E to E.

The property in Lemma 2.2 is not satisfied by every tangent cone. For example,

the contingent and quasitangent cones satisfy only: if x ∈ int(E) then KxE = R
n

(QxE = R
n). The converse statement is not true. Clarke’s tangent cone satisfies

the property in Lemma 2.2, but Clarke’s tangent cone often reduces to {0}. The

advantage in using derived cones must be regarded with respect to this property

and, therefore, in obtaining a result as in Theorem 3.4 below.

Corresponding to each type of tangent cone, say τxE, one may introduce (e.g. [1])

the set-valued directional derivative of a multifunction G(·) : E ⊂ X → P(X) (in

particular, of a single-valued mapping) at a point (x, y) ∈ Graph(G) as follows:

τyG(x; v) = {w ∈ X ; (v, w) ∈ τ(x,y)Graph(G)}, ∀v ∈ τxE.

We recall that a set-valued map A(·) : X → P(X) is said to be a convex or closed

convex process if Graph(A(·)) ⊂ X × X is, respectively, a convex or closed convex

cone.

Let us denote by I the interval [0, T ] and let X be a real separable Banach space

with the norm ‖·‖ and with the corresponding metric d(·, ·). Denote by L(I) the σ-

algebra of all Lebesgue measurable subsets of I, by P(X) the family of all nonempty

subsets of X and by B(X) the family of all Borel subsets of X . Recall that the

Pompeiu-Hausdorff distance between nonempty closed subsets A,B ⊂ X is defined

by dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}, where

d(x,B) = inf
y∈B

d(x, y). As usual, we denote by C(I,X) the Banach space of all

continuous functions x(·) : I → X endowed with the norm ‖x(·)‖C = sup
t∈I

‖x(t)‖ and
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by L1(I,X) the Banach space of all (Bochner) integrable functions x(·) : I → X

endowed with the norm ‖x(·)‖1 =
∫

I
‖x(t)‖ dt.

For x, y ∈ X we denote by (x, y) = lim
h→0

(‖x+ hy‖2 − ‖x‖2)/(2h) the left sided

directional derivative of 1
2‖·‖

2 at x in the direction y.

Consider an operator A : X → P(X). By D(A) we denote its domain. We recall

that A is called dissipative if (x1 − x2, y1 − y2) 6 0 for any x1, x2 ∈ D(A) and

y1 ∈ Ax1, y2 ∈ Ax2. A is called m-dissipative if it is dissipative and R(I − λA) = X

for any (equivalently, for some) λ > 0.

Let A : D(A) ⊂ X → P(X) be m-dissipative and f(·) ∈ L1(I,X) and consider

the differential equation

(2.1) x′ ∈ Ax+ f(t).

A mapping x(·) : I → X is called a strong solution of (2.1) if x(t) ∈ D(A) a.e. on

(0, T ), x(·) is locally absolute continuous on (0, T ] and there exists g ∈ L1
loc((0, T ], X)

such that g(t) ∈ Ax(t) a.e. on (0, T ) and x′(t) = g(t) + f(t) a.e. on (0, T ).

It is well-known that if X is reflexive then for any x0 ∈ D(A) equation (2.1)

has a unique strong solution on I which satisfies x(0) = x0 (e.g. [2]). In general,

equation (2.1) need not have strong solutions and a way to overcome this difficulty

is the concept of C0-solutions (e.g. [9]).

Definition 2.3. A function x(·) ∈ C(I,X) is called a C0-solution of (2.1) if it

satisfies: for every c ∈ (0, T ) and ε > 0 there exist

(i) 0 < t1 < . . . < c 6 tn < T , tk − tk−1 6 ε, t0 = 0 for k = 1, 2, . . . , n;

(ii) f1, f2, . . . , fn ∈ X with
n
∑

k=1

∫ tk

tk−1
‖f(t)− fk‖ dt 6 ε;

(iii) v0, v1, . . . , vn ∈ X with (vk − vk−1)/(tk − tk−1) ∈ Avk + fk for k = 1, 2, . . . , n

and ‖x(t)− vk‖ 6 ε for t ∈ [tk−1, tk), k = 1, 2, . . . , n.

According to [9], if A is m-dissipative, f ∈ L1(I,X) and x0 ∈ D(A), there exists

a unique C0-solution of (2.1) with x(0) = x0. Denote by x(·, x0, f) : I → D(A) the

unique C0-solution of (2.1) which satisfies x(0, x0, f) = x0.

Theorem 2.4 ([10]). Let X be a real Banach space, let A : D(A) ⊆ X → X be

an m-dissipative operator, let ξ, η ∈ D(A) and f, g ∈ L1(I,X). Then for any t ∈ I

(2.2) ‖x(t, ξ, f)− x(t, η, g)‖ 6 ‖ξ − η‖+

∫ t

0

‖f(s)− g(s)‖ ds.

Next we are concerned with the Cauchy problem

(2.3) x′ ∈ Ax+ F (t, x), x(0) = x0,
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where A is an m-dissipative operator on the separable Banach space X , F : I×X →

P(X) and x0 ∈ X.

A continuous mapping x : I → D(A) is said to be a C0-solution of problem (2.3)

if x(0) = x0 and there exists f(·) ∈ L1(I,X) with f(t) ∈ F (t, x(t)) a.e. on I and x(·)

is a C0-solution on I of equation (2.1) in the sense of Definition 2.1.

We shall call (x(·), f(·)) a trajectory-selection pair of (2.3) if f(t) ∈ F (t, x(t)) a.e.

on I and x(·) is a C0-solution of (2.3).

Hypothesis 2.5. (i) F (·, ·) : I ×X → P(X) has nonempty closed values and is

L(I)⊗ B(X) measurable.

(ii) There exists L(·) ∈ L1(I,R+) such that, for any t ∈ I, F (t, ·) is L(t)-Lipschitz

in the sense that

dH(F (t, x1), F (t, x2)) 6 L(t)‖x1 − x2‖ ∀x1, x2 ∈ X.

The main tool in characterizing derived cones to reachable sets of semilinear dif-

ferential inclusions is a certain version of Filippov’s theorem for differential inclu-

sion (2.3).

Hypothesis 2.6. Let S be a separable metric space, X0 ⊂ D(A) a closed set,

let a0(·) : S → X0 and c(·) : S → (0,∞) be given continuous mappings.

The continuous mappings g(·) : S → L1(I,X), y(·) : S → C(I,X) are given such

that for any s ∈ S, y(s)(·) is a C0-solution of x′ ∈ Ax+g(s)(t), x(0) ∈ X0 and there

exists a continuous function q(·) : S → L1(I,R+) such that d(g(s)(t), F (t, y(s)(t))) 6

q(s)(t) a.e. t ∈ I, for every s ∈ S.

Theorem 2.7 ([3]). Assume that Hypotheses 2.5 and 2.6 are satisfied. Then

there exist M > 0 and a continuous function x(·) : S → L1(I,X) such that for any

s ∈ S, x(s)(·) is a C0-solution of the problem

x′ ∈ Ax+ F (t, x), x(0) = a0(s),

satisfying for any (t, s) ∈ I × S

(2.4) ‖x(s)(t) − y(s)(t)‖ 6 M

[

c(s) + ‖a0(s)− y(s)(0)‖ +

∫ t

0

q(s)(u) du

]

.
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3. The main result

Our object of study is the reachable set of (2.3) defined by

RF (T,X0) := {x(T ) ; x(·) is a solution of (2.3)}.

We consider a certain variational second-order differential inclusion and prove that

the reachable set of this variational inclusion from derived cones C0 ⊂ X to X0 at

time T is a derived cone to the reachable set RF (T,X0).

Throughout this section we assume

Hypothesis 3.1. (i) Hypothesis 2.5 is satisfied and X0 ⊂ D(A) is a closed set.

(ii) (z(·), f(·)) ∈ C(I,X) × L1(I,X) is a trajectory-selection pair of (2.3) and

a family P (t, ·) : X → P(X), t ∈ I of convex processes satisfying the condition

(3.1) P (t, u) ⊂ Qf(t)F (t, ·)(z(t);u) ∀u ∈ dom(P (t, ·)), a.e. t ∈ I

is given and defines the variational inclusion

(3.2) v′(t) ∈ Av(t) + P (t, v(t)).

R em a r k 3.2. As a family of convex processes P (t, ·), t ∈ I, satisfying condi-

tion (3.1) one may take, for example, Clarke’s convex-valued directional derivatives

Cf(t)F (t, ·)(z(t); ·).

We recall (e.g. [1]) that, since F (t, ·) is assumed to be Lipschitz a.e. on I, the

quasitangent directional derivative is given by

(3.3) Qf(t)F (t, ·)((z(t);u)) =
{

w ∈ X ; lim
θ→0+

1

θ
d(f(t) + θw, F (t, z(t) + θu)) = 0

}

.

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied, let C0 ⊂ X be a derived

cone to X0 at z(0). Then the reachable set RP (T,C0) of (3.2) is a derived cone to

RF (T,X0) at z(T ).

P r o o f. In view of Definition 2.1, let {v1, . . . , vm} ⊂ RP (T,C0), hence such

that there exist trajectory-selection pairs (u1(·), g1(·)), . . . , (um(·), gm(·)) of the vari-

ational inclusion (3.2) such that

(3.4) uj(T ) = vj , uj(0) ∈ C0, j = 1, 2, . . . ,m.

Since C0 ⊂ X is a derived cone to X0 at z(0) there exists a continuous mapping

a0 : S = [0, θ0]
m → X0, such that

(3.5) a0(0) = z(0), Da0(0)s =

m
∑

j=1

sjuj(0) ∀ s ∈ R
m
+ .
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Further on, for any s = (s1, . . . , sm) ∈ S and t ∈ I we denote

(3.6) y(s)(t) = z(t) +

m
∑

j=1

sjuj(t),

g(s)(t) = f(t) +

m
∑

j=1

sjgj(t),

q(s)(t) = d(g(s)(t), F (t, y(s)(t)))

and prove that y(·), q(·) satisfy the hypothesis of Theorem 2.7.

Using the lipschitzianity of F (t, ·, ·) we have that for any s ∈ S, the measurable

function q(s)(·) in (3.6) it is also integrable.

q(s)(t) = d(g(s)(t), F (t, y(s)(t)))

6

m
∑

j=1

sj‖gj(t)‖ + dH(F (t, z(t)), F (t, y(s)(t)))

6

m
∑

j=1

sj‖gj(t)‖ + L(t)

m
∑

j=1

sj‖uj(t)‖.

Moreover, the mapping s → q(s)(·) ∈ L1(I,R+) is continuous (in fact Lipschitzian)

since for any s, s′ ∈ S one may write succesively

‖q(s)(·)− q(s′)(·)‖1 =

∫ T

0

‖q(s)(t)− q(s′)(t)‖ dt

6

∫ T

0

[‖g(s)(t)− g(s′)(t)‖ + dH(F (t, y(s)(t)), F (t, y(s′)(t)))] dt

6 ‖s− s′‖

( m
∑

j=1

∫ T

0

[‖gj(t)‖ + L(t)‖uj(t)‖] dt

)

.

Let us define S1 := S \ {(0, . . . , 0)} and c(·) : S1 → (0,∞), c(s) := ‖s‖2. Theo-

rem 2.7 yields the existence of a continuous function x(·) : S1 → C(I,X) such that

for any s ∈ S1, x(s)(·) is a C
0-solution of (2.3) with the property (2.4).

For s = 0 we define x(0)(t) = y(0)(t) = z(t) for all t ∈ I. Obviously, x(·) : S →

C(I,X) is also continuous. Finally, we define the function a(·) : S → RF (T,X0)

by a(s) = x(s)(T ) for all s ∈ S. Obviously, a(·) is continuous on S and satisfies

a(0) = z(T ).

To complete the proof we need to show that a(·) is differentiable at s0 = 0 ∈ S

and its derivative is given by Da(0)(s) =
m
∑

j=1

sjvj for all s ∈ R
m
+ , which is equivalent
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to the fact that

(3.7) lim
s→0

1

‖s‖

(

‖a(s)− a(0)−

m
∑

j=1

sjvj‖

)

= 0.

From (2.4) we obtain

1

‖s‖
‖a(s)− a(0)−

m
∑

j=1

sjvj‖ 6
1

‖s‖
‖x(s)(T )− y(s)(T )‖

6 M‖s‖+
M

‖s‖

∥

∥

∥

∥

a0(s)− z(0)−

m
∑

j=1

sjuj(0)

∥

∥

∥

∥

+M

∫ T

0

q(s)(u)

‖s‖
du

and therefore in view of (3.5), relation (3.7) is implied by the following property of

the mapping q(·) in (3.6):

(3.8) lim
s→0

q(s)(t)

‖s‖
= 0 a.e. t ∈ I.

In order to prove the last property, we note that, since P (t, ·) is a convex process

for any s ∈ S, one has

m
∑

j=1

sj
‖s‖

gj(t) ∈ P

(

t,

m
∑

j=1

sj
‖s‖

uj(t)

)

⊂ Qf(t)F (t, ·)

(

z(t);

m
∑

j=1

sj
‖s‖

uj(t)

)

a.e. t ∈ I.

Hence by (3.3) we obtain

(3.9) lim
h→0+

1

h
d

(

f(t) + h
m
∑

j=1

sj
‖s‖

gj(t), F

(

t, z(t) + h
m
∑

j=1

sj
‖s‖

uj(t)

))

= 0.

In order to prove that (3.9) implies (3.8) we consider the compact metric space

Sm−1
+ = {σ ∈ R

m
+ ; ‖σ‖ = 1} and the real function ϕt(·, ·) : (0, θ0] × Sm−1

+ → R+

defined by

(3.10) ϕt(h, σ) =
1

h
d

(

f(t) + h

m
∑

j=1

σjgj(t), F

(

t, z(t) + h

m
∑

j=1

σjuj(t)

))

,

where σ = (σ1, . . . , σm), which according to (3.9) has the property

(3.11) lim
θ→0+

ϕt(θ, σ) = 0 ∀σ ∈ Sm−1
+ a.e. t ∈ I.

Using the fact that ϕt(θ, ·) is Lipschitzian and the fact that Sm−1
+ is a com-

pact metric space, from (3.11) it follows easily (e.g. Proposition 4.4 in [7]) that

lim
θ→0+

max
σ∈S

m−1

+

ϕt(θ, σ) = 0, which implies that lim
s→0

ϕt(‖s‖, s/‖s‖) = 0 a.e. t ∈ I and

the proof is complete. �
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An application of Theorem 3.3 concerns local controllability of the differential

inclusion in (2.3) along a reference trajectory, z(·) at time T , in the sense that

z(T ) ∈ int(RF (T,X0)).

Theorem 3.4. Let X = R
n, z(·), F (·, ·) and P (·, ·) satisfy Hypothesis 3.1, let

C0 ⊂ X be a derived cone to X0 at z(0). If the variational differential inclusion

in (3.2) is controllable at T , in the sense that RP (T,C0) = R
n, then the differential

inclusion (2.3) is locally controllable along z(·) at time T .

P r o o f. The proof is a straightforward application of Lemma 2.2 and of Theo-

rem 3.3. �

References

[1] J.P. Aubin, H.Frankowska: Set-Valued Analysis. Systems and Control: Foundations
and Applications 2, Birkhäuser, Boston, 1990.

[2] V.Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noord-
hoff, Leyden, 1976.
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