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RHYTHMS BY DELAYED QUASI-STEADY STATE ASSUMPTIONS

Tomáš Vejchodský, Oxford, Praha
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Abstract. Quasi-steady state assumptions are often used to simplify complex systems of
ordinary differential equations in the modelling of biochemical processes. The simplified
system is designed to have the same qualitative properties as the original system and to
have a small number of variables. This enables to use the stability and bifurcation analysis
to reveal a deeper structure in the dynamics of the original system. This contribution shows
that introducing delays to quasi-steady state assumptions yields a simplified system that
accurately agrees with the original system not only qualitatively but also quantitatively.
We derive the proper size of the delays for a particular model of circadian rhythms and
present numerical results showing the accuracy of this approach.
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1. Introduction

Model reduction is a crucial technique in large biochemical systems, because it

enables us to employ analytical and numerical methods to reveal detailed structure

of the kinetics [2], [3]. As an example, we consider a theoretical biochemical model

of circadian rhythms described in [9]. Using the law of mass action [6], the kinetics

of this chemical system can be described by a system of nine nonlinear ordinary

differential equations (ODEs). The authors of [9] use various quasi-steady state as-

sumptions to reduce the system to just two ODEs in such a way that the reduced
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system has the same qualitative behaviour as the original system, i.e., a periodic so-

lution. Then, they use the reduced system to perform the bifurcation and stochastic

analysis.

However, using the parameters introduced in [9], the period of the original system

is about 25 hours, while the period of the reduced system is roughly 18 hours. Thus,

the relative error in the period is approximately 30%. The error in the amplitude is

even close to 100%, as we show in Table 1.

In this contribution we study the quasi-steady state assumptions in detail. We

use numerical quadrature to derive explicit formulas for delays for approximated

chemical species and reduce the original system of nine chemical reactions to two

delay ODEs. Some of the delays depend on the state variables in a complicated way,

which might be problematic for the subsequent analysis, therefore we show that this

dependence can be simplified. Finally, numerical solutions show that periods of the

original and reduced system agree within 2% relative error and that the error in the

amplitude decreases to about 20%.

The following section introduces the model of circadian rhythms and its quasi-

steady state reduction. Section 3 justifies the quasi-steady state assumptions and

Section 4 derives the delayed quasi-steady state assumption. The accuracy of these

approximations is assessed in Section 6 and final conclusions are drawn in Section 7.

2. Model of circadian rhythms

Circadian rhythms are modelled in [9] by the following system of nine ODEs:

dDA/dt = θAD
′

A − γADAA,(2.1)

dD′

A/dt = −θAD
′

A + γADAA,(2.2)

dDR/dt = θRD
′

R − γRDRA,(2.3)

dD′

R/dt = −θRD
′

R + γRDRA,(2.4)

dMA/dt = α′

AD
′

A + αADA − δMA
MA,(2.5)

dMR/dt = α′

RD
′

R + αRDR − δMR
MR,(2.6)

dA/dt = βAMA + θAD
′

A + θRD
′

R −A(γADA + γRDR + γCR+ δA),(2.7)

dR/dt = βRMR − γCAR+ δAC − δRR,(2.8)

dC/dt = γCAR − δAC.(2.9)

Here, the time variable is denoted by t, the capital letters stand for the copy numbers

of molecules that evolve in time and Greek letters stand for the rate constants.

Namely, A = A(t), R = R(t), MA = MA(t), MR = MR(t), DA = DA(t), DR =
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DR(t) denote the numbers of molecules of the activator, represor, their mRNA and

genes, respectively. Functions D′

A = D′

A(t) and D
′

R = D′

R(t) stand for the number of

molecules of the activated forms of genes and C = C(t) for the complex of A and R.

Values for the rate constants are taken from [9] as

αA = 50 h−1, α′

A = 500 h−1, αR = 0.01 h−1, α′

R = 50 h−1,(2.10)

βA = 50 h−1, βR = 5 h−1, γA = 1Mol−1h−1, γR = 1Mol−1h−1,

γC = 2Mol−1h−1, δA = 1 h−1, δR = 0.2 h−1, δMA
= 10 h−1,

δMR
= 0.5 h−1, θA = 50 h−1, θR = 100 h−1.

Notice that by Mol and h we understand the number of molecules and the hour. The

initial condition for system (2.1)–(2.9) is considered as

(2.11) DA = DR = 1Mol, D′

A = D′

R = MA = MR = A = R = C = 0Mol.

Figure 1 shows three components of the solution of system (2.1)–(2.9) with parameter

values (2.10) and initial condition (2.11) as solid lines.

To reduce the system, let us first notice that d(DA + D′

A)/dt = 0 and d(DR +

D′

R)/dt = 0. Thus, due to the initial condition we infer conservation relations

(2.12) D′

A = 1−DA and D′

R = 1−DR

that enable us to eliminate D′

A and D′

R from the system by simple substitution.

To simplify the system further we use the so-called quasi-steady state assumptions

[5], [7].

In general, the idea of quasi-steady state assumptions is based on splitting the

system into slow and fast variables. The steady state of fast variables depends on

the values of slow variables. If slow variables change, the steady states change as

well and the fast variables go quickly towards their new steady states. Thus it is

a reasonable approximation to consider the fast variables to be effectively in their

steady states. Of course, the quality of this approximation depends on actual speeds

of the dynamics of the slow and fast variables.

In case of system (2.1)–(2.9), we simply assume that DA, DR, MA, MR, and A

are fast and stay in their steady states that may however change with the values of

the slow variables R and C. From (2.1), (2.3), (2.5), and (2.6) with (2.12), we easily

obtain steady states for DA, DR, MA and MR as functions of A:

(2.13) Ds
A(A) =

θA
θA + γAA

, M s
A(A) =

α′

A

δMA

+
θA(αA − α′

A)

δMA
(θA + γAA)

,

Ds
R(A) =

θR
θR + γRA

, M s
R(A) =

α′

R

δMR

+
θR(αR − α′

R)

δMR
(θR + γRA)

.
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Approximating DA, DR, MA, and MR by their respective steady states in (2.7), we

can express the steady state of A as the following function of R:

(2.14) Ãs(R) =
1

2
(α′

A̺(R)−Kd) +
1

2

√

(α′

A̺(R)−Kd)2 + 4αA̺(R)Kd,

where ̺(R) = βA/(δMA
(γCR+ δA)) and Kd = θA/γA, see [9]. Using the approxima-

tion A = Ãs(R), we may express steady states (2.13) as functions of R and reduce

the original system (2.1)–(2.9) to just two ODEs for R and C:

dR/dt = βRM
s
R(Ã

s(R))− γCÃ
s(R)R+ δAC − δRR,(2.15)

dC/dt = γCÃ
s(R)R − δAC.(2.16)

Figure 1 (left panel) shows R(t) as the solution of (2.15)–(2.16) together with ap-

proximations of DR = Ds
R(Ã

s(R)) and MR = M s
R(Ã

s(R)) as dashed lines.
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Figure 1. Components DR, MR, and R of the solution of the original system (2.1)–(2.9)
(solid lines), reduced system (2.15)–(2.16) (dashed lines, left panel), and delay
system (5.7)–(5.8) (dashed lines, right panel).

3. Justification of quasi-steady state assumptions

Let us justify the above described quasi-steady state assumptions on an illustrative

example of equation (2.5). Using (2.12), we can express equation (2.5) as

(3.1) dMA(t)/dt = Φ(t)− δMA
MA(t), where Φ(t) = α′

A + (αA − α′

A)DA(t).

If the function Φ(t) was explicitly known, we could easily find an expression for the

solution MA(t) to (3.1) with the initial condition (2.11) as

(3.2) MA(t) =

∫ t

0

Φ(τ) exp[δMA
(τ − t)] dτ.
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To obtain a quasi-steady state approximation of MA(t) we employ one-point nu-

merical quadrature in (3.2) and approximate MA(t) ≈ w1Φ(t1), where t1 = t

is the quadrature point and the corresponding quadrature weight w1 is deter-

mined such that the resulting rule integrates constant functions exactly: w1 =
∫ t

0 exp[δMA
(τ − t)] dτ = (1 − exp(−δMA

t))/δMA
. Since the exponential function

exp(−δMA
t) decays quickly to zero, we may neglect it with respect to 1 for suffi-

ciently large t. As a result we approximate w1 ≈ 1/δMA
and MA(t) ≈ Φ(t)/δMA

,

which is exactly the quasi-steady state approximation M s
A(A) from (2.13), provided

DA = Ds
A(A).

4. Derivation of delayed quasi-steady state assumptions

The reasoning from the previous section can be made more accurate, because one-

point quadrature rules have the capability to be exact for all linear functions. More

precisely, we consider a quadrature point t2 = t− τMA
, a corresponding weight w2,

and approximate the integral in (3.2) by w2Φ(t2). We find the particular values of

τMA
and w2 such that this quadrature rule is exact for all linear functions.

Any linear function can be expressed as l(τ) = α1l1(τ) + α2l2(τ), where l1(τ) =

(τ + τMA
− t)/τMA

and l2(τ) = (t − τ)/τMA
. Clearly, l is determined by its values

α1 and α2 at points t1 = t and t2 = t− τMA
. Thus, the requirement of exactness for

all linear functions can be formulated as

w2α2 =

∫ t

0

l(τ) exp[δMA
(τ − t)] dτ =

1− (1 + δMA
t) exp(−δMA

t)

τMA
δ2MA

α2

+
(1 + δMA

(t− τMA
)) exp(−δMA

t)− 1 + δMA
τMA

τMA
δ2MA

α1.

This equality is satisfied for all α1 and α2 if

τMA
=

1− (1 + δMA
t) exp(−δMA

t)

δMA
(1− exp(−δMA

t))
and w2 =

1− exp(−δMA
t)

δMA

.

As above, since the exponential exp(−δMA
t) decays rapidly towards zero, we can

simplify the expressions for τMA
and w2 to τMA

= 1/δMA
and w2 = 1/δMA

.

Consequently, the variableMA can be approximated as MA(t) = w2Φ(t− τMA
) =

(α′

A + (αA − α′

A)DA(t − τMA
))/δMA

. Clearly, this is the steady state value of MA

evaluated at time delayed by τMA
= 1/δMA

.
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5. Delayed quasi-steady state approximation

of the circadian system

Delayed quasi-steady state assumptions derived above are now applied to equations

(2.1)–(2.7). All these equations have the same structure, namely

(5.1) dX(t)/dt = f(t)− g(t)X(t)

for suitably chosen coefficients f(t) and g(t). The template derivation performed

above for equation (2.5) is now used for equation (5.1) and we define formally its

time delay as τX(t) = 1/g(t) and its delayed quasi-steady state approximation as

Xτ (t) = f(t− τX(t))/g(t− τX(t)).

Applying this methodology to (2.1)–(2.7) with (2.12), we obtain the following

delays and approximations:

τDA
(t) = [θA + γAÃ

s(R(t))]−1, Dτ
A(t) = Ds

A(A
τ (t− τDA

(t))),(5.2)

τDR
(t) = [θR + γRÃ

s(R(t))]−1, Dτ
R(t) = Ds

R(A
τ (t− τDR

(t))),(5.3)

τMA
= δ−1

MA
, M τ

A(t) = M s
A(A

τ (t− τMA
)),(5.4)

τMR
= δ−1

MR
, M τ

R(t) = M s
R(A

τ (t− τMR
)),(5.5)

τA(t) = [γAD
τ
A(t) + γRD

τ
R(t) + γCR(t) + δA]

−1, Aτ (t) = As(t− τA(t)),(5.6)

where the definition of As comes directly from (2.7) with (2.12) and reads

As(t) =
βAM

τ
A(t) + θA(1−Dτ

A(t)) + θR(1−Dτ
R(t))

γADτ
A(t) + γRDτ

R(t) + γCR+ δA
.

Note that Ãs was defined already in (2.14).

The remaining two variables R and C are naturally computed by their ODEs

(2.8)–(2.9), where MR and A are replaced by their respective approximations:

dR(t)/dt = βRM
τ
R(t)− γCA

τ (t)R(t) + δAC(t) − δRR(t),(5.7)

dC(t)/dt = γCA
τ (t)R(t) − δAC(t).(5.8)

To solve this system of delayed differential equations, we constantly extend the initial

condition (2.11) to the interval (−∞, 0].

System (5.7)–(5.8) with (5.2)–(5.6) is a system of delay differential equations with

state dependent delays [4]. The dependence of the delays on R is complicated,

but it can be simplified. Instead of variable delays τDA
(t), τDR

(t), and τA(t) we

may consider constant delays τ∗DA
= 1/θA, τ

∗

DR
= 1/θR, and state dependent delay

τ∗A(t) = 1/(γCR(t) + δA). The effect of this simplification is numerically assessed in

the following section.
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6. Numerical assessment of the accuracy

System (5.7)–(5.8) with (5.2)–(5.6) can be easily solved numerically. We obtained

high accuracy by implicit Euler method with time step 10−3 h. Three components

of this numerical solution are presented in Figure 1 (right panel) as dashed lines.

Comparing the two panels in Figure 1 we clearly see that delayed approximations

are much more accurate. However, in order to quantify the accuracy we measure

and compare both the period and amplitude of oscillations.

Let f(t) = (DA, D
′

A, DR, D
′

R,MA,MR, A,R,C)(t) be the solution of the original

system (2.1)–(2.9). Except for an initial transient, it is a periodic vector with period

porig. Similarly, let g(t) be a solution of one of the approximate systems described

above and let its period be papprox. To quantify the accuracy of the proposed ap-

proximations, we define the relative error in the period and the relative L2-error

as

RelErr(period) =
|porig − papprox|

porig
and RelErr(L2) =

‖f − g̃‖L2(a,b)

‖f‖L2(a,b)
,

where b − a = porig and g̃ is linearly scaled and shifted vector g such that the error

in period is eliminated. In particular, g̃ is linearly scaled so that its period is exactly

porig and it is shifted so that local maxima of f and g̃ match.

Table 1 presents the periods and relative errors for the original system (2.1)–(2.9)

and for its various approximations. Namely, the third column corresponds to problem

(2.15)–(2.16), which is the original system simplified by standard quasi-steady state

assumptions. The fourth column shows problem (5.7)–(5.8) with delays (5.2)–(5.6)

and the fifth column presents the same problem with simplified delays τ∗DA
, τ∗DR

,

and τ∗A. The last column corresponds to the same case as the fifth, but the only

state dependent delay τ∗A is replaced by a constant delay τ
∗∗

A = τMA
.

original approximations

system standard derived simplified constant

(no delays) delays delays delays
period 25.6 h 17.9 h 25.1 h 25.3 h 26.1 h

RelErr(period) — 29.8% 1.65% 1.02% 2.28%

RelErr(L2) — 92.7% 19.0% 19.0% 22.7%

Table 1. Period and relative errors for various approximations.

We clearly observe the quantitatively poor approximation properties of the stan-

dard quasi-steady state assumptions. However, introducing delays yields approxi-

mations with relative errors in the period about 1–2% only. The amplitude and the
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actual shape of the solution measured by relative L2-error considerably improved as

well.

7. Conclusions

Results presented above indicate that introducing delays to standard quasi-steady

state assumptions considerably improves the quantitative accuracy of the reduced

system. Furthermore, the derivation based on quadrature formulas results in ex-

plicit expressions for the actual size of the delays. The presented numerical results

demonstrate the accuracy of the proposed approach and show that the derived com-

plicated dependence of delays on the state variables can be simplified up to constant

delays.

Since the studied model of circadian rhythms is based on standard biochemical

processes such as transcription and translation, the presented technique of delayed

quasi-steady state assumptions can be easily applied to many other biochemical

networks. The simplest case is the kinetics of mRNA, where the derived delays are

constant and inversely proportional to the decay rates δA and δR. More complicated

expressions for delays were derived in the case of genes. However, their fast kinetics

and the fact that there is just one molecule of DNA in a cell enables us to simplify

these delays to constants with practically no influence on the accuracy. Finally, the

complicated dependence of delays on the state variables for some proteins can be

simplified up to constant delays.

Certain mathematical models of gene expression are based on ODEs [9], [10],

others are based on delay differential equations [1], [8]. The presented study may

contribute to the understanding of the connection between these models and it may

suggest that models with and without delays are just two sides of the same coin.

A c k n ow l e d g em e n t. I wish to thank R.Erban and P.K.Maini for introduc-

ing me to this topic and for fruitful discussions.
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