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Abstract. The (modified) two-parametric Mittag-Leffler function plays an essential role
in solving the so-called fractional differential equations. Its asymptotics is known (at least
for a subset of its domain and special choices of the parameters). The aim of the paper is
to introduce a discrete analogue of this function as a solution of a certain two-term linear
fractional difference equation (involving both the Riemann-Liouville as well as the Caputo
fractional h-difference operators) and describe its asymptotics. Here, we shall employ our
recent results on stability and asymptotics of solutions to the mentioned equation.
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1. Introduction

The classical Mittag-Leffler function is a special function generalizing the expo-

nential function. Its two-parametric variant is given by the power series

Eα,β(t) :=

∞
∑

k=0

tk

Γ(αk + β)
, t ∈ R (or C), α, β > 0.(1.1)

This function plays a key role in the fractional calculus (theory of differentiation and

integration of non-integer order). In particular, the modified Mittag-Leffler function

Eλ
α,β(t) := tβ−1Eα,β(λt

α) =

∞
∑

k=1

λk tαk+β−1

Γ(αk + β)
, λ ∈ C(1.2)
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solves the fractional differential equation Dαx(t) = λx(t), t > 0, 0 < α < 1, with

β = α if Dα is the Riemann-Liouville fractional derivative and with β = 1 if Dα is

the Caputo fractional derivative.

Considering any special function of this type, it is always worth to know its asymp-

totic behaviour as its definition form (usually via series or infinite products) does

not provide such an information. In this connection, let us mention, e.g., the well-

known case of Stirling’s formula for the gamma function growth. Some asymptotic

expansions for Eα,β were obtained by Wright in 1940, see [18], Theorem 1.4. As

a consequence of these expansions it can be shown that

Eλ
α,α(t) = O(t−1−α) and Eλ

α,1(t) = O(t−α) as t → ∞(1.3)

provided |arg(λ)| > απ/2. This fact was used in [15] and [19] in order to establish

stability regions for the fractional equation (system of equations) of the above type.

Moving from the “continuous” world to a “discrete” one, some natural questions

arise. How to introduce a discrete analogue of (1.2)? Can such a function retain

the same qualitative properties as in (1.3)? The aim of the paper is to answer

these questions. More precisely, inspired by (1.2), we introduce the discrete Mittag-

Leffler function Eλ,h
α,β(tn) as a solution of the two-term fractional difference equation

∇α
hy(tn) = λy(tn), 0 < α < 1, λ ∈ C, considered on a uniform mesh of points

tn (with distance h). The symbol ∇α
h represents either the Riemann-Liouville or

Caputo fractional h-difference operator. Then, we are going to derive an asymptotic

description of Eλ,h
α,β for β = α and β = 1. To this end we shall exploit some of our

recent results [9]. This asymptotic result seems to be new.

The foundations of fractional difference calculus (for the case of h = 1) were laid

down in the papers by Miller and Ross [16] (for the case of forward sums and differ-

ences) and by Gray and Zhang [14] (for the case of backward sums and differences).

Since then quite a number of contributions to the topic have appeared including also

an analysis of fractional difference equations, see, e.g., [1], [2], [5], [6], [11] and the

references therein. The form of the mentioned discrete Mittag-Leffler function also

has been observed and analysed several times (for the first time by Nagai in [17],

including the case of q-calculus as well). In this connection we refer to [3], [4] and [10].

The paper is organized as follows. To keep the text self-contained, Section 2 recalls

basic definitions and notions related to fractional differentiation. It also discusses

the backward h-Laplace transform and its properties as a main tool for our analysis.

In Section 3 we shall discuss the solvability of the testing two-term equation under

a special choice of the initial conditions, while Section 4 is devoted to the discrete

Mittag-Leffler function and to the description of its asymptotic. Additional remarks

in Section 5 close the paper.
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2. Preliminaries

A basic domain for our considerations is formed by the equidistant points tn := hn,

n = 1, 2, . . ., h > 0. This set (time scale) is denoted by hN (we shall also need the

set hN0 := hN ∪ {0}). Considering a function f : hN → C, the backward fractional

h-sum is introduced as

∇−µ
h f(tn) :=

h

Γh(µ)

n
∑

k=1

(tn−k+1)
(µ−1)
h f(tk), n = 1, 2, . . . , µ > 0,(2.1)

where (tn)
(µ)
h := Γh(tn + µh)/Γh(tn), µ ∈ R, is a discrete analogue of the

power function tµ and Γh denotes the h-gamma function defined by Γh(x) :=

lim
k→∞

k!hk(kh)x/h−1[x(x+ h) . . . (x+ (k− 1)h)]−1, x ∈ Z \ {0,−h,−2h, . . .}. The key

property of the standard Euler gamma function Γ(x + 1) = xΓ(x) is replaced by

Γh(x+ h) = xΓh(x) and we have Γh(x) = hx−1Γ(x/h), for details see, e.g., [12].

The definition (2.1) originates from an extension of the right-hand side of the

backward h-Cauchy formula for repeated summation (for details, see [10], Proposi-

tion 2.1). Note also that this definition is not quite identical with that originally

introduced in [14] (for h = 1), where also the point t0 = 0 has been involved in the

summation. However, we prefer to stay with (2.1) as it conforms well to the general

theory of nabla integration on time scales, see [8], Section 8.4. Here we also mention

that lately the backward fractional difference calculus has started to be preferred

over the forward one as it does not “shift” the domain of differentiated functions, for

details see, e.g., [1] and [11].

Then, analogously to the continuous case, the Riemann-Liouville backward frac-

tional h-difference of order 0 < α < 1 is defined by RL∇
α
hf(tn) := ∇h∇

−(1−α)
h f(tn),

n = 2, 3, . . . and the Caputo backward fractional h-difference of order 0 < α < 1 is

defined by C∇
α
hf(tn) := ∇

−(1−α)
h ∇hf(tn), n = 1, 2, . . . provided f is defined on hN0.

Here, ∇h is the standard backward h-difference, i.e.∇hf(tn) := h−1(f(tn)−f(tn−1)).

Expanding these definitions we can easily verify that both definitions are related as

C∇
α
hf(tn) = RL∇

α
hf(tn) − f(0)(tn)

(−α)
h /Γ(1 − α), n = 2, 3, . . . For a discussion on

properties and relations between the Riemann-Liouville and Caputo fractional dif-

ferences we refer to [1].

For convenience, we introduce the function M
(µ)
h (tn) := (tn)

(µ)
h /Γ(µ + 1), n =

1, 2, . . ., as an analogue to the Taylor monomial tµ/Γ(µ+ 1).

The convolution product of functions f, g : hN → C is given by (f ∗ g)(tn) :=

h
n
∑

k=1

f(tn−k+1)g(tk), n = 1, 2, . . .

Following the approach presented in [7], the backward h-Laplace transform of

a function f : hN → C is introduced as Lh{f}(s) := h
∞
∑

k=1

f(tk)(1 − hs)k−1 for all
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the points s ∈ C, where the series is convergent. The backward h-Laplace transform

is given by a power series with centre at s0 = h−1, i.e., if the series converges at

s 6= h−1, then there exists r > 0 such that the series converges locally uniformly

and absolutely in the open disk D(h−1, r) := {s ∈ C : |s − h−1| < r}. Moreover,

the series expansion is determined uniquely (i.e. two distinct functions on hN cannot

have the same Laplace image) and Lh{f}(s) is an analytic function on D(h−1, r).

We shall use the following properties (for a guide to the proofs, see [9]).

Lemma 2.1. Let f, g : hN → C be functions such that Lh{f}(s) and Lh{g}(s)

converge on D(h−1, rf ) and D(h−1, rg), respectively. Then

(i) Lh{(f ∗ g)}(s) = Lh{f}(s) · Lh{g}(s) on D(h−1, r∗), where r∗ = min{rf , rg}.

(ii) If µ ∈ R, then Lh{M
µ
h }(s) = s−µ−1 on D(h−1, h−1).

(iii) If 0 < α < 1, then Lh{RL∇
α
hf}(s) = sαLh{f}(s) − ∇

−(1−α)
h f(0) on D(h−1,

h−1) ∩ D(h−1, rf ) provided ∇
−(1−α)
h f(0) is defined (see the comments in the

following section).

(iv) If 0 < α < 1 and f is defined on hN0, then Lh{C∇
α
hf}(s) = sαLh{f}(s) −

sα−1f(0) on D(h−1, h−1) ∩D(h−1, rf ).

3. Two-term linear fractional difference equation

First, let us consider a linear fractional difference equation with the Riemann-

Liouville h-difference operator in the form

RL∇
α
hy(tn) = λy(tn), n = 1, 2, . . . , 0 < α < 1, λ ∈ C.(3.1)

Note that if n = 1, the definition of RL∇
α
hf(tn) requires the value ∇

−(1−α)
h f(0)

which is not introduced by (2.1). For this case, it seems to be convenient to involve

an initial condition. Expanding RL∇
α
hy(t1) in (3.1), we (formally) get∇

−(1−α)
h y(t1)−

∇
−(1−α)
h y(0) = hλy(t1). Prescribing a value to the symbol ∇

−(1−α)
h y(0), i.e.,

∇
−(1−α)
h y(0) = ξ, ξ ∈ R,(3.2)

we arrive at a one-to-one mapping (under the assumption hαλ 6= 1) between the

values ξ and y(t1)

y(t1) = ξhα−1(1− hαλ)−1(3.3)

(for details, see [9], Section 2). The condition (3.2) can be viewed as a discrete

analogue of D−(1−α)y(0+) = ξ from the continuous (differential) case, where any
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non-zero choice of ξ yields an unbounded solution in a right neighbourhood of 0.

Overall, instead of (3.1) starting with n = 2 and equipped with the initial condition

y(t1) = ξ1, we shall write our IVP in the form (3.1)–(3.2) taking into account (3.3).

The solvability is based on the fact that (3.1)–(3.2) can be rewritten into the

equivalent form y(tn+1) = (1− hαλ)−1
n
∑

k=1

(−1)n−k
(

α
n−k+1

)

y(tk), where the starting

value y(t1) is given by (3.3) and
(

r
s

)

= Γ(r + 1)/(Γ(s+ 1)Γ(r − s+ 1)), for details,

see [9], Proof of Proposition 4. This equation is referred as the Volterra difference

equation of convolution type and it is well known that it possesses a unique solution,

see [13], Section 6.3.

Now, let us turn our attention to the Caputo case. In accordance with (3.1) we

are going to study an equation in the form

C∇
α
hy(tn) = λy(tn), n = 1, 2, . . . , 0 < α < 1, λ ∈ C(3.4)

equipped with the initial condition

y(0) = η, η ∈ R.(3.5)

Similarly to the Riemann-Liouville case, (3.4)–(3.5) is equivalent to the following

non-homogeneous Volterra difference equation of the convolution type y(tn+1) =

(1−hαλ)−1
[ n
∑

k=1

(−1)n−k
(

α
n−k+1

)

y(tk)+(−1)n
(

α−1
n

)

η
]

, where the starting value y(t1)

is given by y(t1) = η(1−hαλ)−1 and again, a unique solution follows from the theory

of Volterra difference equations.

To summarise the above considerations we can state

Proposition 3.1. Let hαλ 6= 1. Then (3.1)–(3.2) and (3.4)–(3.5) have a unique

solution.

4. Discrete Mittag-Leffler function and its asymptotics

In view of (1.2), we propose the discrete Mittag-Leffler function Eλ,h
α,β : hN → C as

Eλ,h
α,β(tn) :=

∞
∑

k=0

λk (tn)
(αk+β−1)
h

Γ(αk + β)
, λ ∈ D(0, h−α), α, β > 0.(4.1)

The restriction λ ∈ D(0, h−α) ensures the convergence of the series. The main reason

why we wish to discuss a discrete analogue to (1.2) and not to the original form (1.1),
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consists in the fact that the power law for the discrete power function does not hold,

i.e., (tn)
(µ)
h · (tn)

(ν)
h 6= (tn)

(µ+ν)
h , hence, the form analogous to (1.1) does not seem to

be convenient.

Let us show that Eλ,h
α,α solves (3.1) and Eλ,h

α,1 solves (3.4). Applying Lh on both

sides of (3.1) and using Lemma 2.1 (iii), (3.2) and the linearity of Lh, we obtain

sαLh{y}(s)− ξ = λLh{y}(s) and thus Lh{y}(s) = ξ(sα − λ)−1. On the other hand,

Lh{E
λ,h
α,β}(s) = h

∞
∑

k=1

∞
∑

j=0

λjM
(αj+β−1)
h (tk)(1 − hs)k−1

=

∞
∑

j=0

λjh

∞
∑

k=1

M
(αj+β−1)
h (tk)(1− hs)k−1 =

∞
∑

j=0

λjLh{M
(αj+β−1)
h }(s)

=
∞
∑

j=0

λjs−αj−β = s−β
∞
∑

j=0

(λs−α)j = sα−β(sα − λ)−1,

where the last equality is true if λ lies inD(0, |s|α). This restriction on s ∈ C together

with the convergence region stated in Lemma 2.1 (ii) and in the definition of Eλ,h
α,β

guarantee that Lh{E
λ,h
α,β}(s) has a positive radius of convergence.

Applying Lh on (3.4) with help of Lemma 2.1 (iv) and (3.5), we obtain s
αLh{y}(s)−

sα−1η = λLh{y}(s), hence, Lh{y}(s) = ηsα−1(sα − λ)−1. Setting β = α and β = 1

in Lh{E
λ,h
α,β}(s) with respect to the uniqueness of backward h-Laplace transform and

Proposition 3.1, we immediately see

Proposition 4.1. Let λ ∈ D(0, h−α). Then the function ξEλ,h
α,α(tn) uniquely

solves (3.1)–(3.2) and the function ηEλ,h
α,1 (tn) uniquely solves (3.4)–(3.5).

Using Lemma 2.1 (i) and (ii) we also immediately get the relation Eλ,h
α,1 (tn) =

(M
(−α)
h ∗ Eλ,h

α,α)(tn). Note that Proposition 3.1 claims the existence and uniqueness

of the solutions for any λ ∈ C such that hαλ 6= 1, while in Proposition 4.1 we have

a restriction on λ. To the author’s knowledge, explicit forms of the solutions for

λ 6∈ D(0, h−α) are not known yet.

Recently, in [9] we have derived the following stability and asymptotic result for

(3.1). Denoting Sα,h := {z ∈ C : |arg(z)| > απ/2 or |z| > h−α(2 cos(arg(z)/α))α},

we have

Theorem 4.1. Let λ ∈ Sα,h and let y(tn) be the solution of (3.1)–(3.2). Then

|y(tn)| → 0 as n → ∞. Moreover, if |1− hαλ| > 1, then y(tn) = O(n−1−α).

In other words, (3.1) is asymptotically stable on Sα,h. It even can be shown that

y(tn) ∈ l1(N). If λ 6∈ clSα,h (“cl” stands for the closure of a set), then (3.1) is
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not stable. The condition |1 − hαλ| > 1 from the second part means that λ 6∈

clD(h−α, h−α) and expresses a subset of Sα,h. In this case we even have |y(tn)| ∼

Cn−1−α (“∼” means the asymptotic equivalency and the constant C depends on ξ,

α, λ).

Now, let us consider Eλ,h
α,1 with λ ∈ D(0, h−α) \ clD(h−α, h−α). Then, using

M
(µ)
h (tn) ∼ Cnµ (see [9] for details), we have

|Eλ,h
α,1 (tn)| = |(M

(−α)
h ∗ Eλ,h

α,α)(tn)|

6 h

n
∑

k=1

M
(−α)
h (tk)|E

λ,h
α,α(tn−k+1)| 6 C1

n
∑

k=1

1

kα
|Eλ,h

α,α(tn−k+1)|

= C1

(⌊n/2⌋
∑

k=1

1

kα
|Eλ,h

α,α(tn−k+1)|+

n
∑

k=⌊n/2⌋+1

1

kα
|Eλ,h

α,α(tn−k+1)|

)

,

where ⌊x⌋ denotes the floor function, i.e., the nearest integer smaller or equal to x.

Since Eλ,h
α,α belongs to l1(N), we have Eλ,h

α,α(tn) 6 Cn−1 and the first sum of the

last line can be estimated as
⌊n/2⌋
∑

k=1

k−α|Eλ,h
α,α(tn−k+1)| 6 C2n

−1
⌊n/2⌋
∑

k=1

k−α 6 C3n
−α,

where we have used
n
∑

k=2

1/kα 6
∫ n

1
1/xα dx. The second sum is estimated as

n
∑

k=⌊n/2⌋+1

k−α|Eλ,h
α,α(tn−k+1)| 6 C4n

−α
n
∑

k=⌊n/2⌋+1

|Eλ,h
α,α(tn−k+1)| 6 C5n

−α. Conse-

quently, by the above considerations we have

Corollary 4.1. Let 0 < α < 1 and λ ∈ D(0, h−α) \ clD(h−α, h−α). Then

Eλ,h
α,α(tn) = O(n−1−α) and Eλ,h

α,1 (tn) = O(n−α) as n → ∞.

It means that the answer to our second question from Introduction is positive.

The decay rate of Eλ,h
α,β is the same as of E

λ
α,β (for the corresponding values of the

parameters).

5. Final remarks

The form (1.2) represents a starting point to defining a discrete Mittag-Leffler

function on any discrete time scale T. If we are able to find an analogueM
(µ)
T
to the

Taylor monomial tµ/Γ(µ + 1) satisfying the key property ∇TM
(µ)
T

= M
(µ−1)
T

(the

symbol∇T denotes the backward nabla derivative on T, see [8], Section 8.4), then also

the backward fractional sum and difference of a function f : T → C can be defined

analogously as in Section 2 and the discrete Mittag-Leffler will be introduced as

Eλ,T
α,β(tn) :=

∞
∑

k=0

λkM
(αk+β−1)
T

(tn). However, finding an explicit form of the monomial
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M
(µ)
T
is a difficult task and seems to be possible only in a few special cases (in [10]

and [11] it has been done for a two-parametric time scale with a linear graininess).

The asymptotics of Eλ,h
α,α (and consequently of E

λ,h
α,1 ) has been derived by an indi-

rect procedure using the qualitative properties of solutions to (3.1) stated by The-

orem 4.1. This procedure does not seem to be applicable in a general case on any

discrete time scale T (e.g. due to problems with an appropriate introduction of the

backward Laplace transform on T). Whether it is possible to use a direct approach

similar to [18], Theorem 1.4, is an open question.

Note also that by Corollary 4.1 the asymptotics Eλ,h
α,α(tn) = O(n−1−α) is valid

on a smaller set than D(0, h−α) ∩ Sα,h, where E
λ,h
α,α also belongs to l

1(N). One can

guess that in this case the decay rate is still O(n−1−α), however, a verification of

this hypothesis is an open problem.
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