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UNIFORM CONTROLLABILITY FOR THE BEAM EQUATION

WITH VANISHING STRUCTURAL DAMPING

Ioan Florin Bugariu, Craiova

(Received October 29, 2012)

Abstract. This paper is devoted to studying the effects of a vanishing structural damping
on the controllability properties of the one dimensional linear beam equation. The vanishing
term depends on a small parameter ε ∈ (0, 1). We study the boundary controllability
properties of this perturbed equation and the behavior of its boundary controls vε as ε goes
to zero. It is shown that for any time T sufficiently large but independent of ε and for each
initial data in a suitable space there exists a uniformly bounded family of controls (vε)ε in
L2(0, T ) acting on the extremity x = p. Any weak limit of this family is a control for the
beam equation. This analysis is based on Fourier expansion and explicit construction and
evaluation of biorthogonal sequences. This method allows us to measure the magnitude of
the control needed for each eigenfrequency and to show their uniform boundedness when
the structural damping tends to zero.

Keywords: beam equation; null-controllability; structural damping; moment problem;
biorthogonals
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1. Introduction

The starting point of this paper is a controllability problem for the one dimensional

linear beam equation
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(1.1)





utt(t, x) + uxxxx(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

u(t, 0) = uxx(t, 0) = uxx(t, π) = 0, t ∈ (0, T ),

u(t, π) = v(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, π),

ut(0, x) = u1(x), x ∈ (0, π).

Given T > 0 we say that equation (1.1) is null-controllable in time T if for every

initial data (u0, u1) ∈ H, there exists a control v ∈ L2(0, T ) such that the corre-

sponding solution of (1.1) verifies

(1.2) u(T, x) = ut(T, x) = 0, x ∈ (0, π),

where

(1.3) H = H−1(0, π)× V ′

and V = {ϕ ∈ H3(0, π) ; ϕ(0) = ϕ(π) = ϕxx(0) = ϕxx(π) = 0}.
In the sequel, given any function h ∈ L2(0, π), we denote by ĥn the n-th Fourier

coefficient of h,

ĥn =

∫
π

0

h(x) sin(nx) dx, n ∈ N
∗.

There exists a large literature concerning the controllability of both the linear and

nonlinear beam equation. In our case (1.1), we use one of the oldest methods used to

study the controllability problems. This consists in reducing it to a moment problem

whose solution is given in terms of an explicit biorthogonal sequence to a family of

exponential functions. The exponential functions are given by (etνn)n∈Z∗ , where

νn = −i sgn(n)n2 are the eigenvalues of the operator
(

0 −I

∂4

xxxx
0

)
.

We recall that a family (ξm)m∈Z∗ ⊂ L2(−T/2, T/2) with the property

(1.4)

∫ T/2

−T/2

ξm(t)eνnt dt = δmn, m, n ∈ Z
∗

is called a biorthogonal sequence to (eνnt)n∈Z∗ in L2(−T/2, T/2). In (1.4), δmn

stands for the Kronecker symbol.

Once a family of biorthogonal functions (ξm)m∈Z∗ verifying (1.4) is given, a con-

trol v ∈ L2(0, T ) for (1.1) may be easily constructed. Indeed, for any initial data

(u0, u1) ∈ H such that û0
n =

∫
π

0 u0(x) sin(nx) dx and û1
n =

∫
π

0 u1(x) sin(nx) dx the

formula

(1.5) v(t) =
∑

m∈Z∗

(−1)m+1

m3
(−û1

m + νmû0
m)ξm

(
t− T

2

)
e−T/2νm , t ∈ (0, T )
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gives such a control leading the solution (u, ut) of (1.1) to zero in time T , provided

that the series in (1.5) converges in L2(0, T ).

The existence of a biorthogonal sequence to (etνn)n∈Z∗ is a consequence of Ingham’s

inequality

(1.6)
∑

n∈Z∗

|an|2 6 C(T )

∫ T/2

−T/2

∣∣∣∣
∑

n∈Z∗

ane
tνn

∣∣∣∣
2

dt, (an)n∈Z∗ ⊂ l2,

which holds for any T > 0 due to the fact that lim inf
n→∞

|νn+1 − νn| = ∞ (see [2], [10]).
One of the first articles using this method in the framework of partial differential

equations is the one by Fattorini and Rusell [6], [7]. In their papers, a linear parabolic

problem is shown to be null-controllable for a large class of initial data. Some of their

ideas for the construction of a biorthogonal sequence will be used in our article, even

if the properties of the corresponding exponential functions are quite different.

In this paper, we study the possibility of obtaining a control for (1.1) as the limit

of controls of the perturbed equation

(1.7)





utt(t, x) + uxxxx(t, x)− εutxx(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

u(t, 0) = uxx(t, 0) = uxx(t, π) = 0, t ∈ (0, T ),

u(t, π) = vε(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, π),

ut(0, x) = u1(x), x ∈ (0, π),

where ε is a small parameter which tends to zero. As for (1.1), vε ∈ L2(0, T ) is

a control for (1.7) in time T if the corresponding solution verifies (1.2). If, for any

(u0, u1) ∈ H, there exists a control vε ∈ L2(0, T ) for (1.7) we say that (1.7) is

null-controllable in time T . In (1.7), −εutxx(t, x) represents the structural damping,

supposed to vanish as ε goes to zero. The introduction of a vanishing term is a

common tool in the study of Cauchy problems or in improving convergence of nu-

merical schemes for hyperbolic conservation laws and shocks. For instance, in [8], [9],

it is proved that, by adding an extra numerical viscosity term, the dispersive prop-

erties of the finite difference scheme for the nonlinear Schrödinger equation become

uniform when the mesh-size tends to zero. On the other hand, a viscosity term is

introduced in [3] to prove the existence of solutions of hyperbolic equations. In both

the examples the viscosity is supposed to tend to zero in order to obtain the original

system. Thus, a legitimate question is related to the behavior and the sensitivity of

the controls during this process which is precisely the aim of this paper. The main

result of this paper is given by the following theorem.
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Theorem 1.1. There exists T > 0 with the property that, for any (u0, u1) ∈ H
and ε ∈ (0, 1), there exists a control vε ∈ L2(0, T ) of (1.7) such that the family

(vε)ε>0 is uniformly bounded in L2(0, T ) and any weak limit v of it is a control in

time T of (1.1).

The method we use to prove Theorem 1.1 is the same as the one presented above to

show the null-controllability of (1.1). More precisely, we use an explicit biorthogonal

sequence to the family of exponential functions (eµnt)n∈Z∗ to construct a family of

controls (vε)ε>0 for (1.7) which is uniformly bounded in L
2(0, T ). Here (µn)n∈Z∗ are

the eigenvalues of the differential operator
(

0 −I

∂4

xxxx
ε∂2

xx

)
.

We remark that, unlike νn, the eigenvalues µn are no longer purely imaginary com-

plex numbers. Thus, the existence of a biorthogonal sequence to the family (eµnt)n∈Z∗

cannot be obtained as a consequence of an Ingham inequality similar to (1.6). In-

stead, we shall use the biorthogonal sequence (θm)m∈Z∗ to (eµnt)n∈Z∗ constructed and

evaluated in [14]. The main difference between (ξm)m∈Z∗ and (θm)m∈Z∗ is the fact

that the norm of (θm)m∈Z∗ is not bounded by a constant as in the case of (ξm)m∈Z∗ .

Indeed, as we shall see in the proof of Theorem 1.1, the sequence (θm)m∈Z∗ verifies

(1.8) ‖θm‖L2(−T/2,T/2) 6 C(T )eω|ℜ(µm)|,

where C(T ) and ω are two positive constants independent of m and ε.

As in the case of equation (1.1), a control vε for (1.7) is given by

vε(t) =
∑

m∈Z∗

(−1)m+1

m3 − εmµm
(−û1

|m| + (µm − εm2)û0
|m|)θm

(
t− T

2

)
e−T/2µm ,(1.9)

t ∈ (0, T ).

The absolute convergence of the series from (1.9) in L2(0, T ) will be a consequence of

the estimate (1.8) and the exponential decay of the sequence (e−T/2µn)n∈Z∗ , provided

that T is sufficiently large.

The existence of a biorthogonal sequence (θm)m∈Z∗ with the property (1.8) implies

that the following Ingham-type inequality holds, for any finite sequence (βm)m∈Z∗ :

(1.10)

∫ T

−T

∣∣∣∣
∑

m∈Z∗

βme−i sgn(m)m2+εm2

∣∣∣∣
2

dt > C(T )
∑

m∈Z∗

|βm|2e−2ωεm2

,

where T and ε are any positive numbers, ω is an absolute positive constant and C

a positive constant depending only of T . From this point of view our article ex-

tends the results obtained in [4], where Ingham-type inequalities are obtained under

the condition that the real parts of the exponents do not increase too much. As
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shown in [4], Theorem 3, a consequence of these results is the uniform controllability

property of the perturbed beam equation

(1.11) utt(t, x)+uxxxx(t, x)+ε(−∂xx)
2αut(t, x) = vε(t)f(x), (t, x) ∈ (0, T )×(0, π),

where α ∈ (0, 1/4]. Our problem (1.7) deals with the case of a much stronger

dissipation by considering α = 1/2.

The paper is related to [5] where the null-controllability of a beam equation with

hinged ends and structural damping depending on a positive parameter is studied.

The main difference with respect to our paper consists in the fact that in [5] the

control function is located on a subset of the domain. The proof of the uniform

controllability as the viscosity goes to zero is done by analyzing separately the con-

trols for the high and the low frequencies. For the high frequencies, the authors use

a Lebeau-Zuazua estimate for finite combinations of functions (sin(nπx))n>1 (see

[12]) together with exponential decay, while for low frequencies a generalization of

Ingham inequality (see [10]) for exponential functions with exponents in a bounded

vertical strip is the main ingredient. Their technique cannot be applied to our case,

since the control depends only on time and the high frequencies cannot be treated

by using the results from [12]. Inequalities similar to (1.10) are also present in [15],

where the main concern is to study the behavior of the controls as T goes to zero

(and not ε).

The rest of this paper is organized as follows. Section 2 gives the equivalent

characterization of the controllability property in terms of a moment problem. In

Section 3 we construct a biorthogonal sequence to the family (eµnt)n∈Z∗ and evaluate

its L2-norm. Finally, in Section 4 we prove the main result of the paper.

2. The moment problem

For the sake of completeness, we first present a result that concern the well-

posedness of (1.7).

Theorem 2.1. Given any T > 0, ε > 0, (u0, u1) ∈ H and h ∈ L2(0, T ), there

exists a unique weak solution (u, ut) ∈ C([0, t],H) of the problem

(2.1)





utt(t, x) + uxxxx(t, x)− εutxx(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

u(t, 0) = uxx(t, 0) = uxx(t, π) = 0, t ∈ (0, T ),

u(t, π) = h(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, π),

ut(0, x) = u1(x), x ∈ (0, π).
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P r o o f. The proof of this theorem is based on transposition method and is

similar to the proof of Theorem 4.2 from [13]. Therefore we omit it and refer the

interested reader to [13]. �

The following property concerns the spectrum of the differential operator corre-

sponding to the adjoint system of (2.1) and will be useful for the characterization of

its controllability properties.

Proposition 2.1. The unbounded operator in H1
0 (0, π) × H−1(0, π), (D(A), A)

defined by

D(A) = {u ∈ H3(0, π) ; u(0) = u(π) = uxx(0) = xxx(π) = 0}, A =

(
0 −I

∂4
x ε∂2

x

)

has a sequence of complex eigenvalues

(2.2) µn =
ε

2
n2 − i

√
4− ε2

2
sgn(n)n2, n ∈ Z

∗,

and the corresponding eigenvectors

(2.3) Φn =
1

sgn(n)n

(
1

−µn

)
sin(nx), n ∈ Z

∗

form a Schauder basis of H1
0 (0, π)×H−1(0, π).

P r o o f. It is easy to see that µ is an eigenvalue of A with the corresponding

eigenfunction
(

u

v

)
if and only if v = −µu and the pair (µ, u) verifies

(2.4)

{
uxxxx + εµuxx + µ2u = 0

u(0) = u(π) = uxx(0) = uxx(π) = 0.

Since (sin(nx))n>1 is a complete set of solutions in H1
0 (0, π) for (2.4), if fol-

lows that (µn)n∈Z∗ are all the eigenvalues of the operator A and the correspond-

ing eigenvectors orthonormalized in H1
0 (0, π) × H−1(0, π) are given by (2.3). The

fact that (Φn)n∈Z∗ forms a basis of H1
0 (0, π) × H−1(0, π) is a consequence of the

fact that
((√

2n−1 sin(nx)

0

))
n>1
is an orthonormal basis of H1

0 (0, π) × {0} whereas
((

0√
2n sin(nx)

))
n>1
is an orthonormal basis of {0} ×H−1(0, π). �

We can give now the characterization of the controllability property of (1.7) in

terms of a moment problem. We recall that, based on Fourier expansion of the

solution, the moment problems have been widely used in linear control theory. We

refer to [1], [11], [17] for a quite complete discussion on the subject.
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Theorem 2.2. Let T > 0, ε > 0 and let initial data (u0, u1) ∈ H be given. Then
there exists a control vε ∈ L2(0, T ) such that the solution (u, ut) of (1.7) verifies (1.2)

if and only if vε ∈ L2(0, T ) is a solution of

(−1)n+1(n3 − εnµn)

∫ T/2

−T/2

vε

(
t+

T

2

)
etµn dt(2.5)

= e−T/2µn(−û1
|n| + (µn − εn2)û0

|n|), n ∈ Z
∗,

where (µn)n∈Z∗ are given by (2.2).

P r o o f. Let us introduce the “backward” equation

(2.6)





ϕtt(t, x) + ϕxxxx(t, x) + εϕtxx(t, x) = 0, (t, x) ∈ (0, T )× (0, π),

ϕ(t, 0) = ϕ(t, π) = ϕxx(t, 0) = ϕxx(t, π) = 0, t ∈ (0, T ),

ϕ(T, x) = ϕ0(x), x ∈ (0, π),

ϕt(T, x) = ϕ1(x), x ∈ (0, π).

We multiply (1.7) by ϕ and integrate by parts over (0, T ) × (0, π). It follows that

vε ∈ L2(0, T ) is a control for (1.7) if and only if it verifies

∫ T

0

vε(t)(ϕxxx(t, π) + εϕtx(t, π)) dt = −
∫

π

0

u1(x)ϕ(0, x) dx(2.7)

+

∫
π

0

u0(x)(ϕt(0, x) + εϕxx(0, x)) dx− εu(0, π)ϕx(0, π),

for any solution ϕ of (2.6).

Since (sin(nx))n>1 is a basis for L
2(0, π) we have to check (2.7) only for the initial

data of the form (ϕ0, ϕ1) = (sin(nx), 0) and (ϕ0, ϕ1) = (0, sin(nx)). In the former

case the solution of (2.6) has the form

(2.8) ϕ(t, x) =
( µn

µn − µn
e(t−T )µn +

µn

µn − µn

e(t−T )µ
n

)
sin(nx), n ∈ Z

∗

and in the latter the solution of (2.6) has the form

(2.9) ϕ(t, x) =
( 1

µn − µn

e(t−T )µn +
1

µn − µn
e(t−T )µ

n

)
sin(nx), n ∈ Z

∗.

By taking in (2.7) ϕ of the form (2.8) and (2.9) we obtain that vε ∈ L2(0, T ) is

a control if and only if it verifies (2.5). �
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It is easy to see from (2.5) that, if (θm)m∈Z∗ is a biorthogonal sequence to the family

(etµn)n∈Z∗ in L2(−T/2, T/2), then a control vε of (1.7) is given by (1.9) provided

that the series from the right hand side converges in L2(0, T ). Now, the main task

is to show that there exists a biorthogonal sequence (θm)m∈Z∗ and to evaluate its

norm in order to prove the convergence of the series.

3. A biorthogonal sequence

The aim of this section is to construct and evaluate a biorthogonal sequence to

the family of exponential functions (eµnt)n∈Z∗ in L2(−T/2, T/2).

Theorem 3.1. There exists T̃ > 0 such that, for any ε ∈ (0, 1], we find a biorthog-

onal sequence (θm)m∈Z∗ to the family (eµnt)n∈Z∗ in L2(−T̃ /2, T̃ /2) with the property

(3.1) ‖θm‖L2(−T̃ /2,T̃ /2) 6 C exp(α|ℜ(µm)|), m ∈ Z
∗,

where C and α are two positive constants independent of m and ε.

P r o o f. For any p ∈ Z
∗, we define the function

(3.2) Rp(z) =
∏

k∈Z
∗

|k|6=p

(
1− z

iλk

) λk

λk − λp

sin
(
πδ(4ℑ(λp))

−1(iλp − z)
)

sin(πδ/2)
,

where δ > 0 is an arbitrary small constant and (λk)k∈Z∗ are given by

(3.3) λk =





µ√
k, k = q2, q ∈ N

∗,

i

√
(1 + ε2)(4− ε2)

2
k, k 6= q2, k > 0, q ∈ N

∗,

λ−k, k < 0.

Like in [14], Lemma 3.1, we can prove that for any m ∈ Z
∗, Rm2 is an entire

function of exponential type independent of m and ε with the property

(3.4) Rm2(iµn) = δmn, n ∈ Z
∗.

Moreover, by using the estimate from [14], Lemma 3.2, we deduce that there exist

two constants C1 and α1 independent of m and ε such that

(3.5) |Rm2(x)| 6 C1 exp(α1ε(
√
|x|+ |ℜ(µm)|)), x ∈ R.
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Finally, from [14], Lemma 3.3, it follows that there exists an entire function Mm2,ε

and two positive constants C2 and α2, independent of m and ε, such that

(3.6) Mm2,ε(iµm) = 1

and

(3.7) |Mm2,ε(x)| 6 C2 exp(−α1ε
√
|x|+ α2|ℜ(µm)|).

For each m ∈ Z
∗ we define the function

(3.8) Ψm(z) = Rm2(z)Mm2,ε(z)
sin(δ(z − iµm))

δ(z − iµm)

and deduce that there exists T̃ > 0 independent of m and ε such that Ψm is an entire

function of exponential type T̃ /2. Moreover, from (3.5), (3.7) and Plancherel-Polya’s

Theorem [16], Theorem 16, Chapter 2, Section 3, we have that

‖Ψm‖2L2(R) 6
C1C2

sin(πδ/2)
e2(α2+α1ε)|ℜ(µm)|

×
∫

R

∣∣∣∣
sin(πδ(4ℑ(λm))−1(iµm − x)) sin(δ(x − iµm))

δ(x − iµm)

∣∣∣∣
2

dx

6
C1C2π

2

sin(πδ/2)
e2(α2+α1ε+2δ)|ℜ(µm)|

×
∫

R

∣∣∣∣
sin(πδ(4ℑ(λm))−1x) sin(δx)

δx

∣∣∣∣
2

dx 6 Ce2α|ℜ(µm)|,

where α is a number greater than α2 + α1ε+ 2δ.

Now, we have all the ingredients needed to construct the biorthogonal sequence.

For each m ∈ Z
∗, we define the function

(3.9) θm(t) =
1

2π

∫

R

Ψm(x)eixt dx.

By taking into account the properties of Ψm and by applying the Paley-Wiener

Theorem we deduce that θm ∈ L2(−T̃ /2, T̃ /2). Moreover, from the inverse Fourier

transform property we obtain that (θm)m∈Z∗ is a biorthogonal sequence to (eµnt)n∈Z∗ .

Finally, from Plancherel’s Theorem we deduce that (3.1) holds and the proof of the

theorem is complete. �

To prove the uniform controllability of the beam equation with vanishing viscosity,

we have to construct a new biorthogonal sequence to the family (eµnt)n∈Z∗ with better

norm properties than those of the biorthogonal (θm)m∈Z∗ from Theorem 3.1. The

following theorem gives us such a biorthogonal sequence.
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Theorem 3.2. Let T0 be any number larger that T̃ . There exists a biorthogonal

sequence (ζm)m∈Z∗ to the family (etµm)m∈Z∗ in L2(−T0/2, T0/2) such that for any

finite sequence (αm)m∈Z∗ , we have

(3.10)

∫ T0/2

−T0/2

∣∣∣∣
∑

m∈Z∗

αmζm(t)

∣∣∣∣
2

dt 6 C(T0)
∑

m∈Z∗

|αm|2 exp(2α|ℜ(µm)|),

where α is the same as in Theorem 3.1 and C(T0) is a constant depending only on T0.

P r o o f. Let a = (T0 − T̃ )/2 > 0 and ka =
√
2πa−2(χa∗χa), where χa represents

the characteristic function χ[−a/2,a/2]. Evidently supp(ka) ⊂ [−a, a]. Also, we have

k̂a(ξ) =
1√
2π

∫

R

ka(t)e
−itξ dt =

2π

a2
χ̂a(ξ)χ̂a(ξ) =

4

a2
sin2(ξa/2)

ξ2
.

We define ̺m(x) = eixℑ(µm)ka(x), so supp(̺m) ⊂ [−a, a].

Let (θm)m∈Z∗ be the biorthogonal sequence from Theorem 3.1. We define

(3.11) ζm =
1√

2π̺̂m(iµm)
(θm ∗ ̺m), m ∈ Z

∗.

Let us show that the sequence (ζm)m∈Z∗ fulfils the requirements from our theorem.

First of all, let us remark that ζm ∈ L2(−T0/2, T0/2) and, for any m,n ∈ Z
∗, the

following relation takes place:

∫ T̃ /2+a

−T̃ /2−a

ζm(t)eµn
t dt =

√
2πζ̂m(iµn) =

θ̂m(iµn)̺̂m(iµn)

̺̂m(i µm)
= δmn.

It follows that (ζm)m∈Z∗ is a biorthogonal sequence to the family (etµn)n∈Z∗ in

L2(−T0/2, T0/2).

In order to prove (3.10) remark that

̺̂m(iµm) =
1√
2π

∫

R

̺m(t)etµm dt =
1√
2π

∫

R

eitℑ(µm)ka(t)e
tµ

m dt = k̂a(iℜ(µm)) > 1.
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Now, we evaluate the left hand side of (3.10) as follows:

∫ T̃ /2+a

−T̃ /2−a

∣∣∣∣
∑

m∈Z∗

αmζm(t)

∣∣∣∣
2

dt =

∫

R

∣∣∣∣
∑

m∈Z∗

αmζ̂m(x)

∣∣∣∣
2

dx

=

∫

R

∣∣∣∣
∑

m∈Z∗

αm
θ̂m(x)̺̂m(x)√
2π̺̂m(iµm)

∣∣∣∣
2

dx

6
1

2π

∫

R

∣∣∣∣
∑

m∈Z∗

|αm|
|̺̂m(iλm)|

‖θ̂m‖L∞(R)|̺̂m(x)|
∣∣∣∣
2

dx

6
T̃

2π

∫

R

∣∣∣∣
∑

m∈Z∗

|αm|‖θm‖L2(−T̃ /2,T̃/2)|̺̂m(x)|
∣∣∣∣
2

dx

=
T̃

2π

∫

R

∣∣∣∣
∑

m∈Z∗

|αm|‖θm‖L2(−T̃ /2,T̃/2)|k̂a(x−ℑ(µm))|
∣∣∣∣
2

dx

6
T̃

2π

∫ a

−a

k2a(t)

∣∣∣∣
∑

m∈Z∗

|αm|‖θm‖L2(−T̃ /2,T̃ /2)e
iℑ(µm)t

∣∣∣∣
2

dt

6
T̃

a2

∫ a

−a

∣∣∣∣
∑

m∈Z∗

|αm|‖θm‖L2(−T̃ /2,T̃ /2)e
iℑ(µm)t

∣∣∣∣
2

dt.

Since |ℑ(µm+1) − ℑ(µm)| >
√
4− ε2m, Ingham’s inequality (see [2], [10]) yields

that for any a > 0 there exists a positive constant C such that

∫ a

−a

∣∣∣∣
∑

m∈Z∗

|αm|‖θm‖L2(−T̃ /2,T̃ /2)e
iℑ(µm)t

∣∣∣∣
2

dt 6 C
∑

m∈Z∗

|αm|2‖θm‖2
L2(−T̃ /2,T̃ /2)

.

Now, taking into account Theorem 3.1, we deduce immediately (3.10) and the proof

is complete. �

4. Controllability results

Now we are able to prove the main result of this paper.

P r o o f of Theorem 1.1. Let T > max{2α, T̃} and (ζm)m∈Z∗ be as in Theorem 3.2

with T0 = T . We construct a control vε ∈ L2(0, T ) of (1.7) corresponding to the

initial data (u0, u1) ∈ H, as follows:

vε(t) =
∑

m∈Z∗

(−1)m+1

m3 − εmµm
(−û1

m + (µm − εm2)û0
m)e−T/2µm ζ̃m

(
t− T

2

)
,(4.1)

t ∈ (0, T ),
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where ζ̃m is the extension by zero of ζm to the interval (−T/2, T/2). From the prop-

erties of the biorthogonal sequence (ζm)m∈Z∗ it is easy to see that vε verifies (1.9).

Now, to conclude that vε is a control for (1.7), we only have to prove that the series

from (4.1) converges in L2(0, T ). This follows immediately from Theorem 3.2 and

the fact that (u0, u1) ∈ H. Indeed, we have

∫ T

0

|vε(t)|2 dt

=

∫ T

0

∣∣∣∣
∑

m∈Z∗

(−1)m+1

m3 − εmµm
(−û1

m + (µm − εm2)û0
m)e−T/2µm ζ̃m

(
t− T

2

)∣∣∣∣
2

dt

=

∫ T̃ /2+a

−T̃ /2−a

∣∣∣∣
∑

m∈Z∗

(−1)m+1

m3 − εmµm
(−û1

m + (µm − εm2)û0
m)e−T/2µmζm(t)

∣∣∣∣
2

dt

6 C(T̃ , a)‖(u0, u1)‖H.

The last inequality results from (3.10) and the constant C does not depend on ε

and m. Thus, the sequence of controls (vε)ε>0 is uniformly bounded in L
2(0, T ). Let

v be a weak limit of this sequence. In order to prove that v is a control for (1.1) we

only have to pass to the limit as ε goes to zero in (1.9). �

Remark 4.1. The space of uniformly controllable initial dataH from Theorem 1.1
coincides with that obtained in [13], Theorem 4.4, page 301, for the limit case ε = 0

when two controls are considered. Also, we note that, since H3
0 (0, π) ⊂ V , the dual

space V ′ is included in H−3(0, π). Moreover, since (sin(nx))n>1 is an orthogonal

basis of V , it is also a basis of V ′ and the following characterization holds:

V ′ =

{
u =

∑

n>1

an sin(nx) ;
∑

n>1

|an|2
n6

< ∞
}
.
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