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Abstract. We introduce semi-slant Riemannian maps from Riemannian manifolds to
almost Hermitian manifolds as a generalization of semi-slant immersions, invariant Rie-
mannian maps, anti-invariant Riemannian maps and slant Riemannian maps. We obtain
characterizations, investigate the harmonicity of such maps and find necessary and sufficient
conditions for semi-slant Riemannian maps to be totally geodesic. Then we relate the no-
tion of semi-slant Riemannian maps to the notion of pseudo-horizontally weakly conformal
maps, which are useful for proving various complex-analytic properties of stable harmonic
maps from complex projective space and give many examples of such maps.
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1. Introduction

It is known that complex techniques in physics have been very effective tools

for understanding spacetime geometry [18]. Indeed, complex manifolds have two

interesting classes of Kähler manifolds. One is Calabi-Yau manifolds, which have

their applications in superstring theory [7]. The other one is Teichmüller spaces

applicable to relativity [26]. For complex methods in general relativity, see [12].

Let M be a Kähler manifold with complex structure J and M a Riemannian

manifold isometrically immersed in M . We note that many types of submanifolds

can be defined depending on the behaviour of the tangent bundle of the submanifold

under the action of the complex structure of the ambient manifold. A submanifold

M is called holomorphic (complex) if J(TpM) ⊂ TpM for every p ∈ M , where

TpM denotes the tangent space to M at the point p. M is called totally real if

J(TpM) ⊂ TpM
⊥ for every p ∈ M , where TpM

⊥ denotes the normal space to M
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at the point p. The submanifold M is called a CR-submanifold [5] if there exists

a differentiable distribution D : p → Dp ⊂ TpM such that D is invariant with respect
to J and the complementary distribution D⊥ is anti-invariant with respect to J . The

submanifold M is called slant ([8] and [9]) if for every nonzero vector X tangent

to M the angle θ(X) between JX and TpM is constant, i.e., it does not depend

on the choice of p ∈ M and X ∈ TpM . A slant or a CR-submanifold is called

proper if it is neither holomorphic nor totally real. It is easy to see that there is no

inclusion relation between proper CR-submanifolds and proper slant submanifolds.

Therefore, as a generalization of slant submanifolds and CR-submanifolds, semi-slant

submanifolds were defined in [22].

Riemannian submersions between Riemannian manifolds were studied by O’Neill

[21] and Gray [16]. Later, such submersions were considered between manifolds with

differentiable structures. As an analogue of holomorphic submanifolds, Watson de-

fined almost Hermitian submersions between almost Hermitian manifolds and he

showed that the base manifold and each fiber have the same kind of structure as the

total space in most cases [27]. We note that almost Hermitian submersions have been

extended to almost contact manifolds [10], locally conformal Kähler manifolds [20]

and quaternion Kähler manifolds [17] (see [13] for details concerning Riemannian

submersions between Riemannian manifolds equipped with additional complex, con-

tact, locally conformal or quaternion Kähler structures).

In 1992, Fischer introduced Riemannian maps between Riemannian manifolds

in [14] as a generalization of isometric immersions and Riemannian submersions.

Let F : (M1, g1) −→ (M2, g2) be a smooth map between Riemannian manifolds such

that 0 < rankF < min{m,n}, where dimM1 = m and dimM2 = n. Then we denote

the kernel space of F∗ by kerF∗ and consider the orthogonal complementary space

(kerF∗)
⊥ to kerF∗. Then the tangent bundle ofM1 has the following decomposition:

TM1 = kerF∗ ⊕ (kerF∗)
⊥.

We denote the range of F∗p1
by rangeF∗p1

for p1 ∈ M1 and consider the orthogonal

complementary space (rangeF∗p1
)⊥ to rangeF∗p1

in the tangent space Tp2
M2, p2 =

F (p1). Since rankF < min{m,n}, we always have (rangeF∗p1
)⊥. Thus the tangent

space Tp2
M2 has the following decomposition

Tp2
M2 = (rangeF∗p1

)⊕ (rangeF∗p1
)⊥.

Now, a smooth map F : (M
m

1 , g1) −→ (M
n

2 , g2) is called a Riemannian map at

p1 ∈ M1 if the horizontal restriction F
h

∗p1
: (kerF∗p1

)⊥ −→ (rangeF∗p1
) is a lin-

ear isometry between the inner product spaces ((kerF∗p1
)⊥, g1(p1)|(kerF∗p1

)⊥) and
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(rangeF∗p1
, g2(p2)|(rangeF∗p1

)). Therefore, Fischer stated in [14] that a Riemannian

map is a map which is as isometric as it can be. In another words, a smooth map

F : (M1, g1) −→ (M2, g2) between Riemannian manifolds (M1, g1) and (M2, g2) is

called a Riemannian map if it satisfies the equation

(1.1) g2(F∗X,F∗Y ) = g1(X,Y )

for X,Y ∈ Γ((kerF∗)
⊥). It follows that isometric immersions and Riemannian sub-

mersions are particular Riemannian maps with kerF∗ = {0} and (rangeF∗)
⊥ = {0}.

It is known that a Riemannian map is a subimmersion [14]. It is also important to

note that Riemannian maps satisfy the eikonal equation which is a bridge between

geometric optics and physical optics. For Riemannian maps and their applications

in spacetime geometry, see [15].

As a generalization of holomorphic submanifolds and totally real submanifolds,

invariant Riemannian maps and anti-invariant Riemannian maps from Riemannian

manifolds to almost Hermitian manifolds were introduced in [25]. Semi-invariant

Riemannian maps from Riemannian manifolds to almost Hermitian manifolds were

defined and the geometry of such maps was studied in [24] as a generalization of in-

variant and anti-invariant Riemannian maps. On the other hand, slant Riemannian

maps were introduced in [23] and it was shown that such maps include slant sub-

manifolds (therefore holomorphic immersions and totally real immersions), invariant

Riemannian maps and anti-invariant Riemannian maps.

In this paper, we introduce semi-slant Riemannian maps from Riemannian mani-

folds to almost Hermitian manifolds. We show that such maps include semi-slant

immersions (therefore holomorphic immersions, totally real immersions, slant immer-

sions), invariant Riemannian maps, anti-invariant Riemannian maps, semi-invariant

Riemannian maps and slant Riemannian maps. We obtain characterizations of semi-

slant Riemannian maps and investigate the harmonicity of such maps. We also

investigate necessary and sufficient conditions for semi-slant Riemannian maps to

be totally geodesic. Moreover, we show that every semi-slant Riemannian map is

a pseudo-horizontally weakly conformal map. In this direction, we find necessary

and sufficient conditions for such a map to be a pseudo-homothetic map. We recall

that the notion of pseudo-horizontally weakly conformal maps was introduced in [6]

to study the stability of harmonic maps into irreducible Hermitian symmetric spaces

of compact type, later such maps have been studied in [2], [3] and [19].
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2. Preliminaries

Let F : (M, gM ) 7→ (N, gN ) be a C∞-map. The second fundamental form of F is

given by

(2.1) (∇F∗)(X,Y ) := ∇F
XF∗Y − F∗(∇XY ) for X,Y ∈ Γ(TM),

where ∇F is the pullback connection and we denote conveniently by ∇ the Levi-
Civita connections of the metrics gM and gN [4]. The tension field of F is defined

by τ(F ) := trace(∇F∗).

Now, we consider the harmonicity of the map F . Given a C∞-map F from a Rie-

mannian manifold (M, gM ) to a Riemannian manifold (N, gN ), we define a function

e(F ) : M 7→ [0,∞) given by

e(F )(x) :=
1

2
|(F∗)x|2, x ∈ M,

where |(F∗)x| denotes the Hilbert-Schmidt norm of (F∗)x [4]. Then we call e(F )

the energy density of F . Let K be a compact domain of M , i.e., K is the compact

closure U of a nonempty connected open subset U of M . The energy integral of F

over K is the integral of its energy density:

E(F ;K) :=

∫

K

e(F )vgM =
1

2

∫

K

|F∗|2vgM ,

where vgM is the volume form on (M, gM ). Let C∞(M,N) denote the space of all

C∞-maps from M to N . A C∞-map F : M 7→ N is said to be harmonic if it is

a critical point of the energy functional E(·;K) : C∞(M,N) 7→ R for any compact

domain K ⊂ M . By the result of J. Eells and J. Sampson [11], we know that the map

F is harmonic if and only if the tension field τ(F ) = trace(∇F∗) = 0. On the other

hand, a map F is called totally geodesic if (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(TM) [4].

Denote the range of F∗ by rangeF∗ as a subset of the pullback bundle F
−1TN .

With its orthogonal complement (rangeF∗)
⊥ we have the following decomposition:

F−1TN = rangeF∗ ⊕ (rangeF∗)
⊥.

Moreover, we get

TM = kerF∗ ⊕ (kerF∗)
⊥.

We now recall the following result from [25], which will be very useful when we

investigate the geometry of semi-slant Riemannian maps.
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Lemma 2.1. Let F be a Riemannian map from a Riemannian manifold (M, gM )

to a Riemannian manifold (N, gN ). Then

(∇F∗)(X,Y ) ∈ Γ((rangeF∗)
⊥) for X,Y ∈ Γ((kerF∗)

⊥).

We also recall the following result, which shows that a Riemannian map satisfies

the eikonal equation, which is a bridge between geometric optics and physical optics.

Lemma 2.2. Let F be a Riemannian map from a Riemannian manifold (M, gM )

to a Riemannian manifold (N, gN ). Then the map F satisfies a generalized eikonal

equation, see [14]

2e(F ) = ‖F∗‖2 = rankF.

As we know, ‖F∗‖2 is a continuous function on M and rankF is integer-valued,

so rankF is locally constant. Hence, if M is connected, then rankF is a constant

function [1].

3. Semi-slant Riemannian maps

In this section we are going to define semi-slant Riemannian maps and obtain

their characterizations. We also investigate the geometry of such maps. But we

first need to recall the following notions. Let F : (N, gN) 7→ (M, gM , J) be a C∞-

map. We call the map F an invariant Riemannian map [25] if F is a Riemannian

map and J((rangeF∗)F (p)) = (rangeF∗)F (p) for p ∈ N , where (rangeF∗)F (p) :=

(F∗)p((ker(F∗)p)
⊥). The map F is said to be an anti-invariant Riemannian map [25]

if F is a Riemannian map and J((rangeF∗)F (p)) ⊂ ((rangeF∗)F (p))
⊥ for p ∈ N . The

map F is said to be a slant Riemannian map [23] if F is a Riemannian map and

the angle θ = θ(X) between JF∗X and the space F∗((ker(F∗)p)
⊥) is constant for

nonzero X ∈ (ker(F∗)p)
⊥ and p ∈ N . We call the angle θ a slant angle. We are

now ready to present the following definition, which is a generalization of the above

Riemannian maps.

Definition 3.1. Let (N, gN ) be a Riemannian manifold and (M, gM , J) an al-

most Hermitian manifold. A Riemannian map F : (N, gN ) 7→ (M, gM , J) is called

a semi-slant Riemannian map if there is a distribution D1 ⊂ (kerF∗)
⊥ such that

(kerF∗)
⊥ = D1 ⊕D2, J(F∗D1) = F∗D1,

and the angle θ = θ(X) between JF∗X and the space F∗(D2)p is constant for nonzero

X ∈ (D2)p and p ∈ N , where D2 is the orthogonal complement of D1 in (kerF∗)
⊥.
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We call the angle θ a semi-slant angle.

Let F : (N, gN ) 7→ (M, gM , J) be a semi-slant Riemannian map. Then for X ∈
Γ((kerF∗)

⊥), we write

(3.1) X = PX +QX,

where PX ∈ Γ(D1) and QX ∈ Γ(D2).

For U ∈ Γ(rangeF∗), we get

(3.2) JU = ϕU + ωU,

where ϕU ∈ Γ(rangeF∗) and ωU ∈ Γ((rangeF∗)
⊥).

For V ∈ Γ((rangeF∗)
⊥), we have

(3.3) JV = BV + CV,

where BV ∈ Γ(rangeF∗) and CV ∈ Γ((rangeF∗)
⊥).

For Y ∈ Γ(TN), we obtain

(3.4) Y = VY +HY,

where VY ∈ Γ(kerF∗) and HY ∈ Γ((kerF∗)
⊥).

Define the tensors T and A by

AEF = H∇HEVF + V∇HEHF,(3.5)

TEF = H∇VEVF + V∇VEHF(3.6)

for E,F ∈ Γ(TN).

For W ∈ Γ(F−1TM), we write

(3.7) W = PW +QW,

where PW ∈ Γ(rangeF∗) and QW ∈ Γ((rangeF∗)
⊥).

For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ((rangeF∗)

⊥), define

∇̂F
XF∗Y := P∇F

XF∗Y,(3.8)

SV F∗Y := −P∇F
XV,(3.9)

∇F⊥

X V := Q∇F
XV.(3.10)
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Then

(3.11) ∇F
XV = −SV F∗Y +∇F⊥

X V

and ∇F⊥ is a connection on (rangeF∗)
⊥ such that ∇F⊥gM = 0.

For X,Y ∈ Γ((kerF∗)
⊥), define

(∇F
Xϕ)F∗Y := ∇̂F

XϕF∗Y − ϕ∇̂F
XF∗Y,(3.12)

(∇F
Xω)F∗Y := ∇F⊥

X ωF∗Y − ω∇̂F
XF∗Y.(3.13)

Then we have

(∇F
Xϕ)F∗Y = SωF∗Y F∗X +B(∇F∗)(X,Y ),(3.14)

(∇F
Xω)F∗Y = C(∇F∗)(X,Y )− (∇F∗)(X,Y ′)(3.15)

for some Y ′ ∈ Γ((kerF∗)
⊥) with F∗Y

′ = ϕF∗Y .

We call the tensor ϕ parallel if ∇Fϕ = 0 and the tensor ω is parallel if ∇Fω = 0.

Then we easily obtain the following lemma:

Lemma 3.2. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian

manifold. Let F : (N, gN ) 7→ (M, gM , J) be a semi-slant Riemannian map. Then we

get

(a) ∇̂F
XϕF∗Y = ϕ∇̂F

XF∗Y +BQ∇F
XF∗Y ,

Q∇F
XϕF∗Y = ω∇̂F

XF∗Y + CQ∇F
XF∗Y

for X,Y ∈ Γ(D1);

(b) ∇̂F
XF∗Y

′ − SωF∗Y F∗X = ϕ∇̂F
XF∗Y +BQ∇F

XF∗Y ,

Q∇F
XF∗Y

′ +∇F⊥
X ωF∗Y = ω∇̂F

XF∗Y + CQ∇F
XF∗Y

for X,Y ∈ Γ(D2) where Y
′ ∈ Γ((kerF∗)

⊥) and F∗Y
′ = ϕF∗Y .

Similarly to Theorem 3.1 of [23], we have the following theorem:

Theorem 3.3. Let F be a semi-slant Riemannian map from a Riemannian mani-

fold (N, gN) to an almost Hermitian manifold (M, gM , J) with the semi-slant angle θ.

Then we obtain

(3.16) ϕ2F∗X = − cos2 θ · F∗X for X ∈ Γ(D2).

Remark 3.4. It is easy to check that the converse of Theorem 3.3 is also true.

Furthermore, we get

gM (ϕF∗X,ϕF∗Y ) = cos2 θ gM (F∗X,F∗Y ),(3.17)

gM (ωF∗X,ωF∗Y ) = sin2 θ gM (F∗X,F∗Y )(3.18)
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for X,Y ∈ Γ(D2), hence with θ ∈ [0, π/2), there is locally an orthonormal frame

{F∗e1, sec θϕF∗e1, . . . , F∗ek, sec θϕF∗ek} of F∗D2 for some {e1, . . . , ek} ⊂ Γ(D2).

Let F be a C∞-map from a Riemannian manifold (N, gN ) into a Riemannian

manifold (M, gM ). Then the adjoint map ∗(F∗)p of the differential (F∗)p, p ∈ N , is

given by

(3.19) gM ((F∗)pX,Z) = gN (X, ∗(F∗)pZ) for X ∈ TpN and Z ∈ TF (p)M.

Moreover, if the map F is a Riemannian map, then we easily have

(F∗)p
∗(F∗)pZ = Z for Z ∈ (rangeF∗)F (p)

and
∗(F∗)p(F∗)pX = X for X ∈ (ker(F∗)p)

⊥,

so the linear map
∗(F∗)p : (rangeF∗)F (p) 7→ (ker(F∗)p)

⊥

is an isomorphism.

Define Q := ∗(F∗)ϕ(F∗). Using Theorem 3.3, we get the following result:

Corollary 3.5. Let F be a semi-slant Riemannian map from a Riemannian mani-

fold (N, gN) to an almost Hermitian manifold (M, gM , J) with the semi-slant angle θ.

Then we obtain

(3.20) Q2X = − cos2 θ ·X for X ∈ Γ(D2).

Similarly to Lemma 3.2 of [23], we have the following lemma:

Lemma 3.6. Let F be a semi-slant Riemannian map from a Riemannian manifold

(N, gN ) to a Kähler manifold (M, gM , J) with the semi-slant angle θ. If the tensor

ω is parallel, then we get

(3.21) (∇F∗)(QX,QY ) = − cos2 θ · (∇F∗)(X,Y ) for X,Y ∈ Γ(D2).

P r o o f. Assume that the tensor ω is parallel.

Then by (3.15), we obtain

C(∇F∗)(X,Y ) = (∇F∗)(X,QY ) for X,Y ∈ Γ(D2).

1052



Interchanging the role of X and Y implies

C(∇F∗)(Y,X) = (∇F∗)(Y,QX).

Since the tensor ∇F∗ is symmetric, we have

(∇F∗)(X,QY ) = (∇F∗)(Y,QX),

so

(∇F∗)(QX,QY ) = (∇F∗)(X,Q2Y ) = − cos2 θ · (∇F∗)(X,Y ).

�

Theorem 3.7. Let F be a semi-slant Riemannian map from a Riemannian mani-

fold (N, gN ) to a Kähler manifold (M, gM , J) with the semi-slant angle θ ∈ [0, π/2).

If the tensor ω is parallel, then F is harmonic if and only if all the fibers F−1(y) are

minimal submanifolds of N for y ∈ M .

P r o o f. We know

TN = (kerF∗)⊕ (kerF∗)
⊥ = (kerF∗)⊕D1 ⊕D2.

Moreover, all the fibers F−1(y) are minimal submanifolds of N for y ∈ M if and only

if trace(∇F∗)|(kerF∗) = 0.

Since JF∗D1 = F∗D1, there is locally an orthonormal frame {F∗v1, JF∗v1, . . . ,

F∗vl, JF∗vl} of F∗D1, so {v1,Qv1, . . . , vl,Qvl} is locally an orthonormal frame of D1.

We can also choose locally an orthonormal frame {e1, sec θQe1, . . . , ek, sec θQek}
of D2.

It is easy to show that Q2vi = −vi for 1 6 i 6 l.

Since ω is parallel, by using (3.15) and the proof of Lemma 3.6, we get

trace(∇F∗)|D1
=

l∑

i=1

{(∇F∗)(vi, vi) + (∇F∗)(Qvi,Qvi)}

=
l∑

i=1

{(∇F∗)(vi, vi) + (∇F∗)(vi,Q2vi)}

=

l∑

i=1

{(∇F∗)(vi, vi)− (∇F∗)(vi, vi)} = 0.
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Furthermore, by using Corollary 3.5,

trace(∇F∗)|D2
=

k∑

j=1

{(∇F∗)(ej , ej) + (∇F∗)(sec θQej , sec θQej)}

=

k∑

j=1

{(∇F∗)(ej , ej) + sec2 θ(∇F∗)(Qej ,Qej)}

=

k∑

j=1

{(∇F∗)(ej , ej) + sec2 θ(∇F∗)(ej ,Q2ej)}

=

k∑

j=1

{(∇F∗)(ej , ej)− (∇F∗)(ej , ej)} = 0.

Therefore, the result follows. �

Remark 3.8. Comparing Theorem 3.7 with Theorem 3.2 of [23], we see that the

conditions for such maps to be harmonic are the same for slant Riemannian maps

and semi-slant Riemannian maps.

We study the conditions for such a map F to be totally geodesic.

Theorem 3.9. Let F be a semi-slant Riemannian map from a Riemannian mani-

fold (N, gN ) to a Kähler manifold (M, gM , J) with the semi-slant angle θ ∈ (0, π/2).

Then the map F is totally geodesic if and only if

(a) all the fibers F−1(y) are totally geodesic for y ∈ M ,

(b) the horizontal distribution (kerF∗)
⊥ is a totally geodesic foliation,

(c) gM (∇̂F
XF∗Y

′, BV ) + gM (Q∇F
XϕF∗Y,CV ) = 0 for X ∈ Γ((kerF∗)

⊥),

V ∈ Γ((rangeF∗)
⊥), and Y ∈ Γ(D1) with ϕF∗Y = F∗Y

′ and Y ′ ∈ Γ(D1),

(d) gM (SωF∗Y F∗X,BV ) = gM (∇F⊥
X ωF∗Y,CV )− gM (∇F⊥

X ωϕF∗Y, V )

for X,Y ∈ Γ(D2) and V ∈ Γ((rangeF∗)
⊥).

P r o o f. Given U1, U2 ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), we have

gM ((∇F∗)(U1, U2), F∗X) = −gM (F∗∇U1
U2, F∗X) = −gN(∇U1

U2, X),

so (∇F∗)(U1, U2) = 0 for U1, U2 ∈ Γ(kerF∗) if and only if (a).

For U ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥),

gM ((∇F∗)(X,U), F∗Y ) = −gM (F∗∇XU, F∗Y )

= −gN(∇XU, Y ) = gN(U,∇XY ).
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Hence, (∇F∗)(X,U) = 0 for U ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥) if and only if (b).

If X ∈ Γ((kerF∗)
⊥), Y ∈ Γ(D1), and V ∈ Γ((rangeF∗)

⊥), then by using

Lemma 2.1, we get

gM ((∇F∗)(X,Y ), V ) = gM (∇F
XF∗Y, V )

= gM (∇F
XϕF∗Y, JV )

= gM (∇̂F
XF∗Y

′, BV ) + gM (Q∇F
XϕF∗Y,CV )

for some Y ′ ∈ Γ(D1) with ϕF∗Y = F∗Y
′, so (∇F∗)(X,Y ) = 0 for X ∈ Γ((kerF∗)

⊥)

and Y ∈ Γ(D1) if and only if (c).

Given X,Y ∈ Γ(D2) and V ∈ Γ((rangeF∗)
⊥), we obtain

gM ((∇F∗)(X,Y ), V ) = gM (∇F
XF∗Y, V )

= −gM (∇F
XJ(ϕF∗Y + ωF∗Y ), V )

= cos2 θgM (∇F
XF∗Y, V )− gM (∇F

XωϕF∗Y, V )

+ gM (∇F
XωF∗Y,BV + CV ),

so with some elementary calculations, (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(D2) if and only

if (d).

Therefore, we have the result. �

4. Semi-slant Riemannian maps and PHWC maps

Let F be a map from a Riemannian manifold (M1, g1) to a Kähler manifold

(M2, g2, J), where g1 and g2 are Riemannian metrics on M1 and M2, respectively,

and J is the complex structure on M2. For any point p ∈ M1, we denote the adjoint

map of the tangent map F∗p : TpM1 −→ TF (p)M2 by
∗F∗p : TF (p)M2 −→ TpM1. If

rangeF∗p is J-invariant, then we can define an almost complex structure Ĵp on the

horizontal space (kerF∗p)
⊥ by

Ĵp = F−1
∗p ◦ JF (p) ◦ F∗p.

If the spaces rangeF∗p are J-invariant for all p, then the almost complex structure

on (kerF∗)
⊥ is defined by

Ĵ = F−1
∗ ◦ J ◦ F∗.

The map F is called pseudo-horizontally weakly conformal (PHWC) at p if and

only if rangeF∗p is J-invariant and g1|(kerF∗p)⊥ is Ĵp-Hermitian. The map F is
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called pseudo-horizontally weakly conformal if and only if it is pseudo-horizontally

weakly conformal at any point of M1. A pseudo-horizontally weakly conformal map

F from a Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J) is called

pseudo-horizontally homothetic if and only if Ĵ is parallel in horizontal directions,

i.e., ∇1
X Ĵ = 0 for X ∈ Γ((kerF∗)

⊥) (for more details, see [2], [3]).

Proposition 4.1. Let F be a semi-slant Riemannian map from a Riemannian

manifold (M1, g1) to an almost Hermitian manifold (M2, g2, J). Then F is a PHWC

map.

P r o o f. For X ∈ Γ((kerF∗)
⊥), we define J̃F∗(X) = JF∗(PX) + sec θϕF∗(QX).

Then it is easy to see that J̃ is a complex structure on (rangeF∗) and rangeF∗ is

invariant with respect to J̃ . We now define ĴX = ∗F∗◦J◦F∗(PX)+sec θ∗F∗ϕF∗(QX).

Then it follows that Ĵ is a complex structure on (kerF∗)
⊥, thus ((kerF∗)

⊥, Ĵ) is an

almost complex distribution. Considering ĝ = g1|(kerF∗)⊥ , by direct computation we

obtain

ĝ(ĴX, ĴY ) = ĝ(X,Y )

for X,Y ∈ Γ((kerF∗)
⊥). Thus ĝ is Ĵ-Hermitian and ((kerF∗)

⊥, ĝ, Ĵ) is an almost

Hermitian distribution. Therefore, F is a PHWC map. �

We now give necessary and sufficient conditions for a semi-slant Riemannian map

F from a Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J) to be

pseudo-horizontally homothetic. We denote ∗F∗JF∗, ∇
F

XJF∗(PY )− JF∗(PH∇1
XY )

and ∇F

XϕF∗(QY )− ϕF∗(QH∇1
XY ) by Q̃, (∇Xϕ1)F∗(PY ) and (∇Xϕ2)F∗(QY ), re-

spectively, where ∇1 denotes the Levi-Civita connection on M1.

Theorem 4.2. Let F be a semi-slant Riemannian map from a Riemannian mani-

fold (M1, g1) to a Kähler manifold (M2, g2, J). Then F is a pseudo-horizontally

homothetic map if and only if

(∇F∗)(X, Q̃(PY )) + sec θ(∇F∗)(X,Q(QX))

= (∇Xϕ1)F∗(PY ) + sec θ(∇Xϕ2)F∗(QY )

and

g2(F∗(PY ), J(∇F∗)(X,U)) = sec θg2(ϕF∗(QY ), (∇F∗)(X,U))

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

P r o o f. First of all, we have

(∇X Ĵ)Y = ∇1
X ĴY − ĴH∇1

XY
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for X,Y ∈ Γ((kerF∗)
⊥). Hence we obtain

(∇X Ĵ)Y = ∇1
X

∗F∗JF∗(PY ) + sec θ∗F∗ϕF∗(QY )

−∗F∗JF∗(PH∇1
XY )− sec θ∗F∗ϕF∗(QH∇1

XY ).

Then by direct computation we have

(∇X Ĵ)Y = ∇1
XQ̃(PY ) + sec θ∇1

XQ(QY )− Q̃(PH∇1
XY )− sec θQ(QH∇1

XY )

for X,Y ∈ Γ((kerF∗)
⊥). Thus, using (2.1) we get

F∗(∇X Ĵ)Y = −(∇F∗)(X, Q̃(PY ))− sec θ((∇F∗)(X,Q(QY ))

+∇F
XJF∗(PY )− JF∗(PH∇1

XY )

+ sec θ∇F
XϕF∗(QY )− sec θϕF∗(QH∇1

XY )).

On the other hand, since QY, Q̃Y ∈ Γ((kerF∗)
⊥), we have

g1((∇1
X Ĵ)Y, U) = − sec θg1(Q(QY )Y,∇1

XU)− g1(Q̃(PX),∇1
XU)

for U ∈ Γ(kerF∗). Then using the adjoint map
∗F ∗ and (2.1) we obtain

g1((∇1
X Ĵ)Y, U) = sec θg2(ϕF∗(QY ), (∇F∗)(X,U))− g2(F∗(PY ), J(∇F∗)(, X, U)).

This completes the proof. �

5. Examples

Note that given an Euclidean space R2n with coordinates (y1, y2, . . . , y2n), we can

canonically choose an almost complex structure J on R
2n as follows:

J
(
a1

∂

∂y1
+ a2

∂

∂y2
+ . . .+ a2n−1

∂

∂y2n−1
+ a2n

∂

∂y2n

)

= −a2
∂

∂y1
+ a1

∂

∂y2
+ . . .− a2n

∂

∂y2n−1
+ a2n−1

∂

∂y2n
,

where a1, . . . , a2n ∈ R. Throughout this section, we will use this notation.

Example 5.1. Let F be an invariant Riemannian map from a Riemannian mani-

fold (M, gM ) to an almost Hermitian manifold (N, gN , J) [25]. Then the map F is

a semi-slant Riemannian map with D1 = (kerF∗)
⊥.
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Example 5.2. Let F be an anti-invariant Riemannian map from a Riemannian

manifold (M, gM ) to an almost Hermitian manifold (N, gN , J) [25]. Then the map

F is a semi-slant Riemannian map with D2 = (kerF∗)
⊥ and the semi-slant angle

θ = π/2.

Example 5.3. Let F be a semi-invariant Riemannian map from a Riemannian

manifold (M, gM ) to an almost Hermitian manifold (N, gN , J) [24]. Then the map

F is a semi-slant Riemannian map with the semi-slant angle θ = π/2.

Example 5.4. Let F be a slant Riemannian map from a Riemannian manifold

(M, gM ) to an almost Hermitian manifold (N, gN , J) with the slant angle θ [23].

Then the map F is a semi-slant Riemannian map with D2 = (kerF∗)
⊥ and the

semi-slant angle θ.

Example 5.5. Let (M, gM ) be an m-dimensional Riemannian manifold and

(N, gN , J) a 2n-dimensional almost Hermitian manifold. Let F be a Riemannian

map from the Riemannian manifold (M, gM ) to the almost Hermitian manifold

(N, gN , J) with rankF = 2n − 1. Then the map F is a semi-slant Riemannian

map with F∗D2 = J((F∗[(kerF∗)
⊥])⊥) and the semi-slant angle θ = π/2.

Example 5.6. Define a map F : R
8 7→ R

6 by

F (x1, x2, . . . , x8) = (y1, y2, . . . , y6) =
(
x3,

x4 − x5√
6

,
x4 − x5√

3
, c, x2, x1

)
,

where c is constant. Then the map F is a semi-slant Riemannian map with

kerF∗ =
〈 ∂

∂x4
+

∂

∂x5
,

∂

∂x6
,

∂

∂x7
,

∂

∂x8

〉
,

D1 =
〈 ∂

∂x1
,

∂

∂x2

〉
, D2 =

〈 ∂

∂x3
,

∂

∂x4
− ∂

∂x5

〉
,

F∗D1 =
〈 ∂

∂y5
,

∂

∂y6

〉
, F∗D2 =

〈 ∂

∂y1
,

∂

∂y2
+
√
2

∂

∂y3

〉
,

and the semi-slant angle θ with cos θ = 1/
√
3.

Example 5.7. Define a map F : R
9 7→ R

6 by

F (x1, x2, . . . , x9) = (y1, y2, . . . , y6)

=
(
x1, x9, x3,

(x4 + x5) cosα√
2

,
(x4 + x5) sinα√

2
, β

)
,
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where α and β are constant with α ∈ (0, π/2). Then the map F is a semi-slant

Riemannian map with

kerF∗ =
〈 ∂

∂x2
,

∂

∂x4
− ∂

∂x5
,

∂

∂x6
,

∂

∂x7
,

∂

∂x8

〉
,

D1 =
〈 ∂

∂x1
,

∂

∂x9

〉
, D2 =

〈 ∂

∂x3
,

∂

∂x4
+

∂

∂x5

〉
,

F∗D1 =
〈 ∂

∂y1
,

∂

∂y2

〉
, F∗D2 =

〈 ∂

∂y3
,
√
2 cosα

∂

∂y4
+
√
2 sinα

∂

∂y5

〉
,

and the semi-slant angle θ = α.

Example 5.8. Define a map F : R
7 7→ R

6 by

F (x1, x2, . . . , x7) = (y1, y2, . . . , y6) = (x2 sinα, 0, x3, x5, x2 cosα, x7),

where α ∈ (0, π

2 ). Then the map F is a semi-slant Riemannian map with

kerF∗ =
〈 ∂

∂x1
,

∂

∂x4
,

∂

∂x6

〉
,

D1 =
〈 ∂

∂x3
,

∂

∂x5

〉
, D2 =

〈 ∂

∂x2
,

∂

∂x7

〉
,

F∗D1 =
〈 ∂

∂y3
,

∂

∂y4

〉
, F∗D2 =

〈
sinα

∂

∂y1
+ cosα

∂

∂y5
,

∂

∂y6

〉
,

and the semi-slant angle θ = α.

Example 5.9. Define a map F : R
6 7→ R

8 by

F (x1, x2, . . . , x6) = (y1, y2, . . . , y8) =
(
x1,

x2 + x3

2
,
x2 + x3

2
, 0, 0, 0, x5, x6

)
.

Then the map F is a semi-slant Riemannian map with

kerF∗ =
〈 ∂

∂x2
− ∂

∂x3
,

∂

∂x4

〉
,

D1 =
〈 ∂

∂x5
,

∂

∂x6

〉
, D2 =

〈 ∂

∂x1
,

∂

∂x2
+

∂

∂x3

〉
,

F∗D1 =
〈 ∂

∂y7
,

∂

∂y8

〉
, F∗D2 =

〈 ∂

∂y1
,

∂

∂y2
+

∂

∂y3

〉
,

and the semi-slant angle θ = π/4.
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