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On the metric reflection of a pseudometric space in ZF

Horst Herrlich, Kyriakos Keremedis

Abstract. We show:
(i) The countable axiom of choice CAC is equivalent to each one of the state-
ments:

(a) a pseudometric space is sequentially compact iff its metric reflection is
sequentially compact,

(b) a pseudometric space is complete iff its metric reflection is complete.
(ii) The countable multiple choice axiom CMC is equivalent to the statement:

(a) a pseudometric space is Weierstrass-compact iff its metric reflection is
Weierstrass-compact.
(iii) The axiom of choice AC is equivalent to each one of the statements:

(a) a pseudometric space is Alexandroff-Urysohn compact iff its metric reflec-
tion is Alexandroff-Urysohn compact,

(b) a pseudometric space X is Alexandroff-Urysohn compact iff its metric
reflection is ultrafilter compact.
(iv) We show that the statement “The preimage of an ultrafilter extends to an
ultrafilter” is not a theorem of ZFA.

Keywords: weak axioms of choice; pseudometric spaces; metric reflections; com-
plete metric and pseudometric spaces; limit point compact; Alexandroff-Urysohn
compact; ultrafilter compact; sequentially compact

Classification: 54E35, 54E45

1. Notation and terminology

Let X = (X, T ) be a topological space. As usual, we denote topological spaces
by fat letters and underlying sets by non-fat letters.

X is said to be compact iff every open cover U of X has a finite subcover V .

X is said to be countably compact iff every countable open cover U of X has a
finite subcover V .

X is said to be sequentially compact iff every sequence (xn)n∈N of points of X
has a convergent subsequence.

X is called Alexandroff-Urysohn compact iff every infinite subset A of X has a
complete accumulation point x (for every neighborhood V of x, |A ∩ V | = |A|).
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X is called limit point compact iff every infinite subset A of X has a limit

point x (for every neighborhood V of x, V ∩A\{x} 6= ∅).

X is called Weierstrass-compact iff every infinite subset A of X has an accu-

mulation point x (for every neighborhood V of x, V ∩A is infinite).

X is said to be ultrafilter compact iff every ultrafilter F of X converges to some
point x in X (for every neighborhood V of x, there exists F ∈ F with V ⊇ F ).

Let X be a non-empty set. A function ρ : X ×X → R is called pseudometric

in case ρ satisfies all the requirements of a metric except possibly the requirement
ρ(x, y) = 0 implies x = y. If (X, ρ) is a pseudometric space, then the metric
reflection (X∗, ρ∗) of (X, ρ) is the set X∗ of all equivalence classes in X of the
equivalence relation ∼ given by:

x ∼ y iff ρ(x, y) = 0

and ρ∗ : X∗ ×X∗ → R is given by

(1) ρ∗([x], [y]) = ρ(x, y),

where [x] denotes the equivalence class of the element x.

Let X = (X, d) be a pseudometric space, x ∈ X and ε > 0.

D(x, ε) = {y ∈ X : d(x, y) < ε}

denotes the open disc in X with center x and radius ε. If B ⊆ X , then δ(B) =
sup{d(x, y) : x, y ∈ B} is the diameter of B.

X is totally bounded iff for every real number ε > 0, there exists an ε-net, i.e.,
a finite subset {xi : i ≤ n} of X such that

⋃

{D(di, ε) : i ≤ n} = X .

X is Cantor complete iff
⋂

{Gn : n ∈ ω} 6= ∅ for every descending set {Gn :
n ∈ ω} of non-empty closed subsets of X with limn→∞ δ(Gn) = 0.

X is said to be sequentially bounded if each sequence of points of X has a
Cauchy-subsequence.

Let h : X→ X∗ be the mapping given by h(x) = [x]. Clearly, a set A in X is
closed (open) iff it is saturated (i.e., contains with any element a each element b
with a ∼ b) and h(A) is closed (open) in X∗. Also, in view of (1) we see that for
every ε > 0 and every y, x ∈ X ,

y ∈ D(x, ε) iff [y] ∈ D([x], ε),

i.e.,

(2) h(D(x, ε)) = D([x], ε).

Therefore, we have the following straightforward result:



On the metric reflection of a pseudometric space in ZF 79

Proposition 1. Let X be a pseudometric space. Then:

(i) X is compact (resp. countably compact) iff X∗ is compact (resp. count-
ably compact).

(ii) X is totally bounded iff X∗ is totally bounded.
(iii) X is Cantor complete iff X∗ is Cantor complete.

Below we list the choice principles we shall be dealing with in the sequel.

1. AC (Form 1, in [6]): Every family A = (Ai)i∈I of non-empty sets has a
choice function.

2. CAC (Form 8, in [6]): Every family A = (Ai)i∈N of non-empty sets has a
choice function. Equivalently, for every family A = (Ai)i∈N of non-empty
sets has a partial choice function. i.e., there exists an infinite subfamily
B of A with a choice function.

3. CACfin (Form 10, in [6]): Every family A = (Ai)i∈N of non-empty finite
sets has a choice function.

4. IDI (Form 9 in [6]): Every infinite set is Dedekind infinite (has a count-
ably infinite subset).

5. IWDI (Form 82 in [6]): Every infinite set is weakly Dedekind infinite (its
powerset has a countably infinite subset). Equivalently, for every infinite
set X there is a function from X onto ω, (Form 82 [A] in [6]).

6. CMC (Form 126 in [6]): For every family A = (Ai)i∈N of non-empty
sets there exists a family B = (Bi)i∈N of non-empty finite sets such that
for every i ∈ N, Bi ⊆ Ai. Equivalently, for every family A = (Ai)i∈N

of non-empty sets there exists an infinite subfamily C = (Ain
)n∈N and a

family B = (Bn)n∈N of non-empty finite sets such that for every n ∈ N,
Bn ⊆ Ain

.
7. KW (Kinna-Wagner selection principle, Form 15 in [6]): Every family
A = (Ai)i∈I of non-empty sets has a Kinna-Wagner selection, i.e., a
family B = (Bi)i∈I of non-empty sets such that for every i ∈ I, Bi ⊆ Ai

and if |Ai| > 1 then Bi 6= Ai.
8. BPI (Boolean Prime Ideal Theorem, Form 14 in [6]): Every Boolean

algebra has a prime ideal.
9. SPI (Weak Ultrafilter Principle, Form 63 in [6]): Every infinite set has

a non-trivial ultrafilter.
10. UF(ω) (Form 70 in [6]): There is a non-trivial ultrafilter on ω.
11. PUU : The preimage of an ultrafilter extends to an ultrafilter. Equiva-

lently, for every set X , for every partition P of X , if F is an ultrafilter of
P then the filterbase {

⋃

F : F ∈ F} of X extends to an ultrafilter.

2. Introduction and some preliminary results

The set theoretic setting in this paper is the Zermelo-Fraenkel set theory ZF

without the axiom of choice AC. In ZFC (= ZF and AC), there are several
equivalent notions of compactness for pseudometric, as well as, for metric spaces.
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See, e.g., [1] and [7]. The following theorem is by no means a complete list of
these equivalent forms.

Theorem 2 ([1], [7], [8] (ZFC)). Let X be a pseudometric space. Then the
following are equivalent:

(i) X is compact;
(ii) X is Weierstrass-compact;
(iii) X is sequentially compact;
(iv) X is Cantor complete and totally bounded;
(v) X is complete and totally bounded;
(vi) X is countably compact;
(vii) X is Alexandroff-Urysohn compact;
(viii) X is ultrafilter compact;
(ix) X is complete and sequentially bounded.

In the present project, we study those compactness forms which are shared in
ZF (resp. ZF + WAC, where WAC is some weak axiom of choice, ZFC) by
pseudometric spaces and their metric reflections.

Let A = {An : n ∈ N} be a disjoint family of sets such that for every n ∈ N,
1 < |An| < ℵ0. Define a pseudometric d of X =

⋃

{An : n ∈ N} by requiring:

(3) d(x, y) =

{

0 is x, y ∈ An for some n ∈ N

1 otherwise
.

It is easy to see that every non-empty subset A of X has trivially a limit point
and, no infinite subset of X has an accumulation point. In particular, X is limit
point compact but not Weierstrass-compact. Thus, in ZFC, limit point compact
pseudometric spaces need not be Weierstrass-compact. In addition, the metric
reflection X∗ of X being a discrete space is not limit point compact. So, the
statement:

(a) If a pseudometric space X is limit point compact then so
is X∗

is a false statement in ZFC. However, the statement:

(b) If a pseudometric space X is Weierstrass-compact then
X∗ is limit point compact,

as is shown in Theorem 6, is equivalent to the countable multiple choice ax-
iom CMC.

In Theorem 4 we show that for every pseudometric space X if its metric reflec-
tion X∗ is sequentially compact then X is sequentially compact. Moreover, the
converse holds iff the countable axiom of choice CAC holds true.

Likewise, in Theorem 5 we show that for every pseudometric space X if the
metric reflection X∗ is complete then X is complete and, in addition, the converse
holds iff CAC holds true.
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Finally, in Theorem 8 we show that AC is equivalent to each one of the state-
ments:

(c) A pseudometric space X is Alexandroff-Urysohn compact
iff X∗ is Alexandroff-Urysohn compact,

and

(d) A pseudometric space X is Alexandroff-Urysohn compact
iff X∗ is ultrafilter compact.

Theorem 3. CMC iff for every family A = (Ai)i∈I of disjoint non-empty sets
there exists an infinite subfamily B of A with a multiple choice function.

Proof: It suffices to show (→) as the other implication is straightforward. Fix
a disjoint family A = (Ai)i∈I of non-empty sets. For every n ∈ N, let Bn = [I]n

denote the set of all n-element subsets of I. Fix, by CMC, a multiple choice set
C = {Cn : n ∈ N} of the set {Bn : n ∈ N} and let for every n ∈ N, In =

⋃

Cn.
Clearly, In ∈ [I]<ω where [I]<ω denotes the set of all finite subsets of I. Without
loss of generality we may assume that for all n, m ∈ N, In ∩ Im = ∅. Put
E = {En : n ∈ N} where, for all n ∈ N, En =

⋃

{Ai : i ∈ In} and let, by
CMC again, H = {Hn : n ∈ N} be a multiple choice set of E . For every n ∈ N,

let I
′

n = {i ∈ In : Hn ∩ Ai 6= ∅}. Clearly, the subfamily F = (Ai)i∈I
′ where

I
′

=
⋃

{I
′

n : n ∈ N} is infinite and has a multiple choice set, finishing the proof of
the theorem. �

3. Main results

It is known, in the realm of pseudometric spaces, that total boundedness im-
plies sequential boundedness, and that both concepts are equivalent iff CAC

holds. See [1] Section 2. We show next that CAC is equivalent to each one of the
statements: “A pseudometric space X is sequentially compact iff X∗ is sequen-
tially compact” and “a pseudometric space X is sequentially bounded iff X∗ is
sequentially bounded”.

Theorem 4. The following statements are equivalent:

(i) CAC;
(ii) a pseudometric space X is sequentially compact iff X∗ is sequentially

compact;
(iii) a pseudometric space X is sequentially bounded iff X∗ is sequentially

bounded.

Proof: (i)→(ii) (→) Fix a sequence (cn)n∈N of points of X∗ and fix, by CAC,
xn ∈ cn for every n ∈ N. Since X is sequentially compact, it follows that some
subsequence (xnk

)k∈N of (xn)n∈N converges to some point x ∈ X. We claim that
the subsequence (cnk

)k∈N of (cn)n∈N converges to c = [x]. Indeed, fix ε > 0 and
let n0 ∈ N satisfy: ∀k ≥ n0, d(xnk

, x) < ε. Then,

∀k ≥ n0, d
∗(cnk

, c) = d∗([xnk
], [x]) = d(xnk

, x) < ε
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and (cnk
)k∈N converges to c as required.

(←) We show that this direction holds true in ZF. Fix a sequence (xn)n∈N of
points of X and let for every n ∈ N, cn = [xn] ∈ X∗. Since X∗ is sequentially
compact, it follows that (cn)n∈N has a limit point c = [x]. Let (cnk

)k∈N be a
subsequence of (cn)n∈N converging to c. Fix ε > 0 and let n0 ∈ N satisfy:
∀k ≥ n0, d

∗(cnk
, c) < ε. Then, ∀n ≥ n0, d(xnk

, x) = d∗(cnk
, c) < ε. Thus, the

subsequence (xnk
)k∈N of (xn)n∈N converges to x and X is limit point compact as

required.
(ii)→(i) Fix A = (An)n∈N a disjoint family of non-empty sets. Assume, aiming

for a contradiction, that A has no infinite subfamily with a choice set. Let d be
the pseudometric on X =

⋃

{An : n ∈ N} given by (3).
We claim that X is sequentially compact. To see this, fix (xn)n∈N a sequence

of points of X . Then for some n ∈ N,

En = {m ∈ N : xm ∈ An}

is infinite as otherwise a partial choice for the family A can be easily derived.
Let km denote the m-th element of En. Clearly, (xkm

)m∈N is a subsequence of
(xn)n∈N and for every x ∈ An, d(xkm

, x) = 0. Thus, (xkm
)m∈N converges to x

and X is sequentially compact as required. Therefore, by our hypothesis, X∗ is
sequentially compact. Since for every n ∈ N, An ∈ X∗ and for every n, m ∈ N

with n 6= m, d∗(An, Am) = 1, it follows that the sequence (An)n∈N of points of
X∗ has no convergent subsequence. Contradiction! Thus, A has a choice set and
CAC holds as required.

(i)→(iii) This is straightforward.

(iii)→(i) Fix A = (An)n∈N, d and X =
⋃

{An : n ∈ N} as in the proof of
(ii)→(i). We claim, assuming that A has no infinite subfamily with a choice
function, that X is sequentially compact. To see this, fix (xn)n∈N a sequence of
points of X . Clearly, the subsequence (xkm

)m∈N of (xn)n∈N given in the proof of
(ii)→(i) is Cauchy. Thus, X is sequentially bounded. Hence, by our hypothesis,
X∗ is sequentially bounded. Contradiction! (The sequence (An)n∈N of points of
X∗ has clearly no Cauchy subsequence). �

Theorem 5. The following statements are equivalent:

(i) CAC;
(ii) a pseudometric space X is complete iff X∗ is complete.

Proof: (i)→(ii) (→) Fix a Cauchy sequence (cn)n∈N of points of X∗ and fix, by
CAC, xn ∈ cn for every n ∈ N. Since, by (1), for all n, m ∈ N,

(4) d(xn, xm) = d∗(cn, cm)

it follows that (xn)n∈N is a Cauchy sequence of points of X. Since X is complete,
it follows that (xn)n∈N converges to some point x ∈ X. In view of (4) it follows
that the sequence (cn)n∈N converges to c = [x] and X∗ is complete as required.
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(←) We show that this direction holds true in ZF. Fix a Cauchy sequence
(xn)n∈N of points of X and let for every n ∈ N, cn = [xn] ∈ X∗. By (4), (cn)n∈N is
a Cauchy sequence of X∗. Since X∗ is complete, it follows that (cn)n∈N converges
to some point c = [x] of X∗. In view of (1) we see that (xn)n∈N converges to x.
Hence, X is complete as required.

(ii)→(i) Fix A = (An)n∈N and X as in the proof of (ii)→(i) of Theorem 4 and
let d : X ×X → R be given by the rule:

(5) d(x, y) =

{

0 is x, y ∈ An for some n ∈ N

1/n if x ∈ An, y ∈ Am and n < m
.

Assume, aiming for a contradiction, that A has no partial choice. We claim that
(X, d) is complete. Indeed, if (xn)n∈N is a Cauchy sequence of points of X then,
as in the proof of (ii)→(i), (xn)n∈N has a convergent subsequence (xkn

)n∈N say
to the point x ∈ X . Since, (xn)n∈N is a Cauchy sequence, it follows that (xn)n∈N

converges to x. Hence, (X, d) is complete as required.
We claim that (An)n∈N is a Cauchy sequence of X∗. Indeed, for every ε > 0 pick

n0 ∈ N such that 1/n0 < ε. Then, for every n, m ≥ n0, d∗(An, Am) ≤ 1/n0 < ε.
However, (An)n∈N converges to no point of X∗. Contradiction! Thus, A has
a choice set and CAC holds as required. �

Theorem 6. The following statements are equivalent:

(i) CMC;
(ii) a pseudometric space X is Weierstrass-compact iff X∗ is Weierstrass-

compact.

Proof: Assume that CMC holds and show that “a pseudometric space X is
Weierstrass-compact iff its metric reflection X∗ is limit point compact”.

(←) We show that this direction holds true in ZF. Fix an infinite subset A
of X . If for some x ∈ X , [x]∩A is infinite then x is clearly an accumulation point
of A. Otherwise, the set B = {[a] : a ∈ A} is an infinite subset of X∗. Hence,
by our hypothesis, B has a limit point b = [x] for some x ∈ X . Thus, for every
ε > 0, D(b, ε) ∩ B is an infinite subset of B. Since y ∈ D(x, ε) ⇐⇒ [y] ∈ D(b, ε)
we see that for every ε > 0, D(x, ε) ∩ A is an infinite subset of A. Thus, x is a
limit point of A and X is Weierstrass-compact.

(→) Fix an infinite subset A of X∗. Let, by Theorem 3, {h−1(ai) : i ∈ I} be an
infinite subfamily of {h−1(a) : a ∈ A} with a multiple choice set G = {Gi : i ∈ I}.
Clearly, G =

⋃

{Gi : i ∈ I} is an infinite subset of X . Hence, by our hypothesis G
has an accumulation point g, i.e., for every ε > 0, D(g, ε)∩G is an infinite subset
of G. Since, for every a ∈ A, G ∩ h−1(a) is a finite set, it follows that for every
ε > 0, D([g], ε)∩A is an infinite subset of A. Hence, [g] is an accumulation point
of A and X∗ is Weierstrass-compact as required.

We assume that for every pseudometric space (X, d), X is Weierstrass-compact
iff X∗ is Weierstrass-compact and show that CMC holds true.
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Assume on the contrary and let A = {Ai : i ∈ N} be a family of non-empty
sets having no infinite subfamily B = {Bin

: n ∈ N} with a multiple choice set.
Put X =

⋃

A and let d : X × X → R be the pseudometric given by (3). We
show that X is Weierstrass-compact. Fix K an infinite subset of X . If K ∩Ai is
infinite for some i ∈ N, then every member of Ai is an accumulation point of K.
So, we assume that for every i ∈ N, Ki = K ∩ Ai is a finite subset of Ai. Since
K is infinite, it follows that K = {Ki : i ∈ N}\{∅} is a multiple choice of an
infinite subfamily of A. Contradiction! Thus, X is Weierstrass-compact. Hence,
by our hypothesis, X∗ is Weierstrass-compact contradicting the fact that X∗ is
an infinite discrete space. Thus, CMC holds true as required. �

Proposition 7. The following statements are equivalent:

(i) AC;
(ii) a topological space is compact iff it is Alexandroff-Urysohn compact ([4]);
(iii) a topological space is ultrafilter compact iff it is Alexandroff-Urysohn

compact ([4]);
(iv) a pseudometric space is compact iff it is Alexandroff-Urysohn compact;
(v) a pseudometric space is ultrafilter compact iff it is Alexandroff-Urysohn

compact.

Proof: (i)↔(ii)↔(iii) These have been established in [4].
The implications (ii)→(iv) and (iii)→(v) are straightforward.
(iv)→(i) We mimic the proof of Theorem 3.22 from [4]. It suffices to show

that for any two non-empty disjoint sets A, B either |A| ≤ |B| or |B| ≤ |A|. Let
X = A ∪B and define a pseudometric d : X ×X → R by requiring:

d(x, y) =

{

1 if x ∈ A and y ∈ B or, x ∈ B and y ∈ A

0 otherwise
.

Clearly, X is a compact pseudometric space. Thus, by our hypothesis, X is
Alexandroff-Urysohn compact and consequently X has a complete accumulation
point x. If x ∈ A then A = D(x, 1) is a neighborhood of x and |A| = |A ∪ B|
meaning that |B| ≤ |A|. Similarly, if x ∈ B then (v)→(i) This can be proved as
in (iv)→(i). |A| ≤ |B|, finishing the proof of the proposition.

�

Theorem 8. The following statements are equivalent:

(i) AC;
(ii) a pseudometric space X is Alexandroff-Urysohn compact iff X∗ is

Alexandroff-Urysohn compact;
(iii) a pseudometric space X is Alexandroff-Urysohn compact iff X∗ is ultra-

filter compact.

Proof: (i)→(ii) (→) This follows at once from Proposition 7. If X is Alexandroff-
Urysohn compact then by Proposition 7, X is compact. Hence, by Proposition 1,
X∗ is compact. By Proposition 7 again, X∗ is Alexandroff-Urysohn compact.
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Similarly, if X∗ is Alexandroff-Urysohn compact then X is Alexandroff-Urysohn
compact.

(ii)→(i) This follows from the observation that in the proof of Proposition 7
the metric reflection X∗ of X is a two point discrete space which is trivially
Alexandroff-Urysohn compact.

(i)→(iii) (→) This follows at once from the proof of Proposition 7, the fact that
the pseudometric space X is clearly ultrafilter compact and the proof of (i)→(ii)
of the present theorem.

(iii)→(i) Note that in the proof of Proposition 7 the metric reflection X∗ of X

is a two point discrete space which is trivially ultrafilter compact. �

Clearly, the image of a filterbase under a function f : X → Y is a filterbase.
In contrast with the image of a filterbase, the preimage of a filterbase need not
be a filterbase. Indeed, if f is not onto then f−1(F ) might be empty for some
non-empty set A. Likewise, even in case where f is onto, the preimage of a filter
F need not be a filter.

Remark 9. We remark here that PUU is strictly weaker than BPI. Indeed, in
any ZF model without free ultrafilters, such as the Feferman/Blass Model, model
M15 in [6], PUU holds. Indeed, fix an onto function f : X → Y and let F be
an ultrafilter of Y . Clearly, F = {F ⊂ Y : f(x) ∈ F} for some x ∈ X . Then,
it is easy to see that F∗ = {A ⊂ X : x ∈ A} is the required ultrafilter of X
extending the filterbase W = {f−1(F ) : F ∈ F}. However, BPI fails in M15
because the filter of all cofinite subsets of ω does not extend to an ultrafilter (such
an ultrafilter is clearly a free ultrafilter of ω). The last observation also shows
thatM15 witnesses the fact that PUU does not imply UF(ω) in ZF.

Clearly, AC implies the statement:
(h) A pseudometric space X is ultrafilter compact iff X∗ is ultrafilter compact .
However, (h) does not imply AC. Indeed, in M15 every space is ultrafilter
compact, thus (h) holds but AC fails.

Next, we show that PUU implies (h).

Theorem 10. (i) For every pseudometric space X, if X∗ is ultrafilter com-
pact then so is X.

(ii) PUU implies “for every pseudometric space X, if X is ultrafilter compact
then so is X∗”.

(iii) UF(ω) and IWDI and “for every pseudometric space X, if X is ultrafilter
compact then so is X∗” together imply SPI.

(iv) The negation of PUU implies “there exists an infinite set X and a free
ultrafilter F on X” (Form 206 in [6]).

Proof: Fix X, a pseudometric space, and let h : X→ X∗ be the mapping given
by h(x) = [x].

(i) Fix an ultrafilter F of X. We show that F converges to some point y ∈ X .
For every A ∈ P(X) let A∗ = h(A) = {[a] : a ∈ A}. Clearly, F∗ = {F ∗ : F ∈ F}
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a filterbase of X∗. To see that F∗ is an ultrafilter of X∗, fix H ⊆ X∗, such that
for all F ∈ F , H ∩ F ∗ 6= ∅. Since H = (

⋃

H)∗ it follows that for all F ∈ F ,
(
⋃

H)∩F 6= ∅ (if (
⋃

H)∩F = ∅ for some F ∈ F , then (
⋃

H)∗∩F ∗ = ∅). Thus,
by the fact that F is an ultrafilter,

⋃

H ∈ F and consequently H ∈ F∗ and F∗

is an ultrafilter as required. By our hypothesis, it follows that for some [y] ∈ X∗,
D([y], ε) ∈ F∗ for every ε > 0. Hence, for every ε > 0,

⋃

D([y], ε) ∈ F . Since,
⋃

D([y], ε) = D(y, ε) it follows that for every ε > 0, D(y, ε) ∈ F and consequently
F converges to y as required.

(ii) Fix F an ultrafilter of X∗ and let H = {h−1(F )(=
⋃

F ) : F ∈ F}.
By PUU, there exists an ultrafilter G of X extending H. By the ultrafilter
compactness of X, G converges to some point x ∈ X. Thus, {D(x, ε) : ε >
0} ⊆ G. Hence, {D(x, ε) : ε > 0} ∪ H has the fip. Since F is an ultrafilter,
{D([x], ε) : ε > 0} ⊆ F meaning that F converges to [x]. Hence, X∗ is ultrafilter
compact finishing the proof of (ii).

(iii) Assume on the contrary that SPI fails and fix X an infinite set without
a free ultrafilter. Fix, by IWDI, an onto function f : X → ω and define a
pseudometric d on X by requiring:

d(x, y) =

{

0 if x, y ∈ f−1(n) for some n ∈ ω

1 otherwise
.

Clearly, X is ultrafilter compact. Hence, by our hypothesis X∗ is ultrafilter com-
pact. Without loss of generality we may identify X∗ with ω and the topology Td∗

with the discrete topology on ω. Fix, by UF(ω), a free ultrafilter F of ω and let
F converge to a point, say n, of ω. Then {n} ∈ F contradicting the fact that F
is free. Thus, SPI holds as required.

(iv) This, in view of Remark 9, is straightforward. �

It is easy to see that:

(A) UF(ω) + IDI → SPI

and,
(B) UF(ω) + IWDI → “for every infinite set X , ℘(X) has a free ultrafil-

ter”.

In [3] it has been shown in ZF that:

For every well-ordered cardinal number k, k has a free ultrafilter
iff ℘(k) has a free ultrafilter.

Hence, the statement: “For every infinite set X , ℘(X) has a free ultrafilter”
implies UF(ω). Combining the latter implication with (A) we get:

Proposition 11. The conjunction IDI and “for every infinite set X , ℘(X) has
a free ultrafilter” implies SPI.

Remark 12. A. Blass has shown in [2] that in the modelM15 in [6], UF(ω) fails
but there is a free ultrafilter on the set of equivalence classes of reals modulo finite
difference. Hence inM15, ℘(R) has a free ultrafilter but R has no free ultrafilter.
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Question 1. Can IDI be replaced by IWDI in (A)?

If the answer to Question 1 is in the negative, then the statement “if the
pseudometric space X is ultrafilter compact then so is X∗” is unprovable in ZF.

Clearly, the statement:

(e) “Cantor complete pseudometric spaces are complete”

is a theorem of ZF. The standard proof that Cantor complete pseudometric
spaces are complete goes through in ZF. In [7] it is shown that the statement:

(f) “Every complete metric space (X, d) is Cantor complete”

implies CACfin. Hence, the statement

(g) “every complete pseudometric space (X, d) is Cantor com-
plete”

also implies CACfin. We show next that (g) implies something stronger than
CACfin.

Theorem 13. The following statements are equivalent:

(i) CAC;
(ii) every pseudometric space X is complete iff it is Cantor complete.

Proof: (i)→(ii) The standard ZFC proof that a pseudometric space is Cantor
complete iff it is complete goes through if we only assume CAC.

(ii)→(i) Let A = (An)n∈N be a disjoint family of non-empty sets such that no
infinite subfamily of A has a choice function and consider the pseudometric d on
X =

⋃

{An : n ∈ N} given by (5). Clearly, X is complete. For every n ∈ N let

Gn =
⋃

{Am : m ≥ n}.

It can be readily verified that each Gn is a closed subset of X, limn→∞ δ(Gn) = 0
and

⋂

{Gn : n ∈ N} = ∅. Thus, X is not Cantor complete. Contradiction! Hence,
A has a choice function. �
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