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KYB ERNET IK A — VO LUME 5 1 ( 2 0 1 5 ) , NUMBER 1 , PAGES 2 0 – 3 5

TRACKING THROUGH SINGULARITIES
USING SLIDING MODE DIFFERENTIATORS

Bernardino Castillo–Toledo, Stefano Di Gennaro, Armando López–Cuevas

In this work, an alternative solution to the tracking problem for a SISO nonlinear dynamical
system exhibiting points of singularity is given. An inversion–based controller is synthesized
using the Fliess generalized observability canonical form associated to the system. This form
depends on the input and its derivatives. For this purpose, a robust exact differentiator is used
for estimating the control derivatives signals with the aim of defining a control law depending
on such control derivative estimates and on the system state variables. This control law is such
that, when applied to the system, bounded tracking error near the singularities is guaranteed.

Keywords: singularities, sliding mode differentiator, tracking

Classification: 93C10, 41A30

1. INTRODUCTION

As is well–known, the solution of the problem of tracking a given reference signal is
closely related to the invertibility properties of the input–output map of the system [5].
For linear systems, depending on the approach considered, a number of results have
been obtained [2]. On their basis, some extensions have been made in the nonlinear
setting [4, 24].

In general, the invertibility of a system is given in terms of certain regularity proper-
ties. In particular, for nonlinear SISO systems, this is given in terms of the existence of
a well defined relative degree in a neighborhood of a point x0 of interest [12]. However, if
the relative degree is not well defined in this point, viz. x0 is a point of singularity, a re-
alization of a (local) inverse of the system in a neighborhood of x0 for tracking purposes
is not directly implementable, and other approaches must be tried. Several physical sys-
tems present this characteristic, as for example that in [9] where a singularity appears
when trying to control the velocity of a sailboat. The authors deal partially with this
problem by changing the operation point and thus avoiding the singular points. To do
so, however a pre–compensator that adjusts the desired output to one that the con-
troller can manage needs to be introduced. In [1] an image–based approach to perform
visual control for differential–drive robots is performed. The system presents singulari-
ties which are treated as in [11]. In [18], for underactuated robots, singular points are
neglected, resulting in an inaccurate tracking.
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Several methods have been proposed to deal with this problem, such as those in [11,
14] for exact tracking through singularities, where the concepts of degree and rank of
singularity are introduced. In [7, 8], by extending some results of Krener [13] the prob-
lem is studied by showing that if an approximated system is found, then, under certain
conditions on the approximations and the zero dynamics of the system, the control
law calculated for the approximated system guarantees a bounded tracking error and
bounded internal variables when applied to the original system. Such an approximation
is obtained by neglecting the term that cause the singularity. In [3], an approximat-
ing system is obtained by an appropriate extension of the relative degree, based on the
generalized observability canonical form [6]. In [22] an approach to track a desired ref-
erence is proposed by switching the control law when the term involved with singularity
is within a neighborhood of the singular point. The approach proposed in this work is
basically a modification of the method proposed in [8], where the main difference con-
sists of changing the control law depending on how far the state is from the singularity.
In [10] the authors achieved tracking using switched controllers, which move the state
along integral curves at discrete times. In the method proposed in this work, less error
derivatives have to be considered to avoid the term with the singularity. As a result, a
direct control over the desired surface is not guaranteed.

In the cited works, the main feature is that the singularity–free approximated sys-
tem is obtained neglecting some terms involving the singularity terms. Obviously, by
doing this, it is possible that some important nonlinear dynamics are neglected in the
approximated system, and the closed loop behavior could be unsatisfactory. To over-
come this difficulty, in this work a different approximated system is proposed: instead of
neglecting these terms generating the singularity, they are estimated. It is shown that
under certain assumptions on the system, the application of this method results in good
tracking performance even in the presence of singular points. This is because, unlike
other schemes [3, 22], this approach does not neglect terms involving singularities. On
the contrary, this terms are taken into account in the control law. For, a robust slid-
ing mode differentiator is used to get the desired estimations [15, 16], showing that the
closed loop behaviour has a better performance. A further advantage of the proposed
approach is that it will ensure smooth and bounded control signals near the singular
points, since it is not necessary to switch control near these singular points.

The paper is organized as follows. In Section 2, the sliding mode differentiator, used in
the following of this work, is presented along with the coordinate transformation applied
to the system to obtain the Fliess Generalized Observability Canonical Form (GOCF).
In Section 3 the main results are presented, and it is shown that tracking through the
singular points can be achieved, even in the presence of bounded perturbations. In
Section 4, two examples are shown and discussed and a comparison with other methods
proposed in the literature is done. Finally, some concluding remarks are given.

2. A ROBUST SLIDING MODE DIFFERENTIATOR AND THE APPROXIMATED
SYSTEM

In this work, the robust sliding mode differentiator proposed in [15, 16, 20] is used
to obtain an estimate of the terms appearing in the system dynamics, determining the
singularities. This differentiator is based on the homogeneity principle, which ensures its
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finite–time convergence [17], and can be seen as a limit case of a more general finite–time
homogeneous observer [19]. To briefly introduce the robust sliding mode differentiator,
let f(t) be an unknown function on [0,∞), with the kth derivatives having a Lipschitz
constant L. The problem of high–order sliding–mode differentiator design is to find
real–time robust estimations of f(t), f (1)(t), . . . , f (k)(t). An answer to this problem has
been given by the following result.

Theorem 2.1. (Saif et al. [20]) Given an unknown function f(t) on [0,∞), with the
kth derivative having a Lipschitz constant L, the solution of the dynamic system

ż = g(z, f(t)) =



v0

v1
...

vk−1

vk

 =



z1 − λ0|z0 − f(t)|k/(k+1) sign(z0 − f(t))
z2 − λ1|z1 − v0|k−1/k sign(z1 − v0)

...

zk − λk−1|zk−1 − vk−2|1/2 sign(zk−1 − vk−2)
−λk sign(zk − vk−1)

 (1)

with z =
(
z0 z1 · · · zk

)T and λ1, . . . , λk > 0, is Lyapunov stable, namely there exist
δt0 , Tt0 > 0 such that any solution of (1) satisfying∣∣∣zi(t0)− f (i)(t0)

∣∣∣ ≤ δt0 , i = 0, . . . , k

at the initial time t0, satisfies

z0 = f(t)

zi = vi−1 = f (i)(t), i = 1, . . . , k

for any t ≥ t0 + Tt0 .

In the following we consider the class of nonlinear system affine in the input, described
by the equations

ẋ = f(x) + g(x)u
y = h(x)

(2)

where x ∈ Dx ⊂ Rn, u ∈ Du ⊂ R, y ∈ Dy ⊂ R are the state, input and output of the
system. In order to guarantee the existence of a regular control signal, we will introduce
the following instrumental assumption [7, 12], necessary for the existence of at least one
approximated system, the simplest being the linear one.

Assumption 1. The nonlinear system (2) is strong regular, i.e the linearization of the
system at an equilibrium x0 has a well defined relative degree.

Choosing a change of coordinate q =
(
q1 · · · qn

)T = P (x, u, . . . , u(r)) by defining

qi = y(i−1), i = 1, . . . , n
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system (2) is described by the so–called generalized observability canonical form

q̇1 = p1(x)
∣∣
x=P−1(q)

= q2

q̇2 = p2(x)
∣∣
x=P−1(q)

= q3

...

q̇r−1 = pr−1(x)
∣∣
x=P−1(q)

= qr

q̇r = pr(x, u)
∣∣
x=P−1(q)

= qr+1

q̇r+1 = pr+1(x, u, u̇)
∣∣
x=P−1(q)

= qr+2

...

q̇n = pn(x, u, . . . , u(n−r))
∣∣
x=P−1(q)

y = q1

(3)

where r is the smallest integer such that in the derivative of the output of (2) the input
appears. A trivial calculation shows that

∂pr

∂u
(x, u) =

∂pn

∂u(n−r)
(x, u, . . . , u(n−r)) = LgL

r−1
f h(x).

If LgL
(r−1)
f h(x) 6= 0 for all x in a neighborhood of the point of interest x0, then r is

the relative degree of the system, and coincides with the relative degree of its linearized
part. An inversion based control scheme can be used, such as the exact linearization or
output tracking [12], by means of a coordinate transformation of the form

pn(x, u, . . . , u(n−r)) = v. (4)

If x0 is a singular point, i. e. LgL
r−1
f h(x0) = 0, then equation (4) can not be applied

directly, since it would lead to unbounded input signals near the point x0.

3. TRACKING THROUGH SINGULARITIES VIA ROBUST DIFFERENTIATION

In this section the robust exact differentiator recalled in the previous section is used to
achieve tracking through singularities. The differentiator estimates the control signal
derivatives, and the actual controller takes as inputs these estimates, as is shown in
Figure 1.

To introduce the method, let us first define the minimum integer β ≥ 0 such that

∂pn

∂u(β)
(x, u, . . . , u(β), u(β+1), . . . , u(n−r)) 6= 0. (5)

We also consider the following assumption.

Assumption 2. Let us assume that (5) is valid in a neighborhood Iu corresponding to
the point of interest x0.
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Fig. 1. Schematic representation of the method.

Referring to the definition of β, equations (3) rewrite

q̇i= pi(P−1(q)) = qi+1, i = 1, . . . , r − 1

q̇j= pj(P−1(q), u, . . . , u(j−r)) = qj+1, j = r, . . . , r + β

q̇k= pk(P−1(q), u, . . . , u(k−r)) = qk+1, k = r + β + 1, . . . , n− 1

q̇n= pn(P−1(q), u, . . . , u(n−r))

y= q1.

Let us consider the output tracking error e1 = q1 − yref , with yref(t) ∈ Cn a reference
signal, and let us define

e = q − Yref(t) =


e1

e2
...
en

 , Yref(t) =


yref(t)
ẏref(t)

...
y
(n−1)
ref (t)


with ej = qj − y

(j−1)
ref (t). One works out

ėi= pi(P−1(e+ Yref))− y
(i)
ref =: ei+1, i = 1, . . . , r − 1

ėj= pj(P−1(e+ Yref), u, . . . , u(j−r))− y
(j)
ref =: ej+1, j = r, . . . , r + β

while for the successive derivatives

ėr+β+1 = er+β+2 + ψr+β+1(t, e, u, . . . , u(β), u(β+1), û(β+1))
...

ėn−1 = en + ψn−1(t, e, u, . . . , u(β), u(β+1), û(β+1), . . . , u(n−r−1), ̂u(n−r−1))

ėn = pn(P−1(e+ Yref), u, . . . , u(β), û(β+1), . . . , û(n−r))− y
(n)
ref

+ ψn(t, e, u, . . . , u(β), u(β+1), û(β+1), . . . , u(n−r), û(n−r))

(6)
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with ψr+β+1, . . . , ψn appropriate functions

ψr+β+1 = pr+β+1(P−1(e+ Yref), u, . . . , u(β), u(β+1))

− pr+β+1(P−1(e+ Yref), u, . . . , u(β), û(β+1))

ψr+β+2 = pr+β+1(P−1(e+ Yref), u, . . . , u(β), u(β+1), u(β+2))

− pr+β+1(P−1(e+ Yref), u, . . . , u(β), û(β+1), û(β+2))

...

ψn = pn−1(P−1(e+ Yref), u, . . . , u(β), u(β+1), . . . , u(n−r))

− pn−1(P−1(e+ Yref), u, . . . , u(β), û(β+1), . . . , û(n−r))
(7)

and

er+β+2 = pr+β+1(P−1(e+ Yref), u, . . . , u(β), û(β+1))− y
(r+β+1)
ref

er+β+3 = pr+β+2(P−1(e+ Yref), u, . . . , u(β), û(β+1), û(β+2))− y
(r+β+2)
ref

...

en = pn−1(P−1(e+ Yref), u, . . . , u(β), û(β+1), . . . , ̂u(n−r−1))− y
(n−1)
ref

where û(j) stands for estimate of the derivative of order j = β + 1, . . . , n − r − 1. It is
worth noticing that once some estimates of these derivatives û(j) are obtained by means
of a robust sliding mode differentiator of the type of Theorem 2.1, the functions ψi in (7)
will be zero in a finite time. With this idea in mind, using Assumption 2 and the implicit
function theorem, there exists a neighborhood Iw in [0,∞)×Rn×Rβ×R(n−r) such that
for each w = (t, e, γ, γ̂d) ∈ Iw the equation

pn(P−1(e+ Yref), u, . . . , u(β), û(β+1), . . . , û(n−r))− y
(n)
ref = v(e)

for v(e) an appropriate function defined later on, has a unique solution u(β) ∈ Iu given
by

u(β) = ϑ(t, e, u, . . . , u(β−1), û(β+1), . . . , û(n−r)) = ϑ(t, e, γ, γ̂d) (8)

for a certain function ϑ. In (8), we have denoted, for the sake of compactness,

γ =


u

u̇
...

u(β−1)

 , γd =


u(β+1)

u(β+2)

...
u(n−r)

 , γ̂d =


û(β+1)

û(β+2)

...
û(n−r)

 .

The function v(e) can be chosen as follows

v(e) = −
n∑

i=1

αi−1ei
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with p(λ) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0 a Hurwitz polynomial. With u(β) chosen

as in (8), the last equation of (6) becomes

ėn = −
n∑

i=1

αi−1ei + ψn(t, e, γ, γ̂d)

and the closed loop dynamics write

ė = Ae+ Ψ(t, e, γ, ϑ(e, γ, γ̂d), γd, γ̂d)

= Ae+ Ψ0(t, e, γ) + Ψ1(t, e, γ, γd, γ̂d)
(9)

with

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αn−1



Ψ(t, e, γ, γd, γ̂d) =



ψ1 = 0
...

ψr+β = 0
ψr+β+1(t, e, γ, ϑ(t, e, γ, γd), γd, γ̂d)

...
ψn−1(t, e, γ, ϑ(t, e, γ, γd), γd, γ̂d)
ψn(t, e, γ, ϑ(t, e, γ, γd), γd, γ̂d)



(10)

and with

Ψ0(e, γ) = Ψ(t, e, γ, ϑ(t, e, γ, γd), γd, γ̂d)
∣∣
γ̂d=γd

Ψ1(e, γ, γd, γ̂d) = Ψ(t, e, γ, ϑ(t, e, γ, γ̂d), γd, γ̂d)− Ψ0(t, e, γ, γ̂d).
(11)

It is worth noticing that Ψ1(e, γ, γd, γd) = 0. Making use of Theorem 2.1 [15], in what
follows we will work out an estimation of the γ̂d. For, we set

f(t) = u(β), z0 = û(β), z1 = û(β+1), . . . , zm = û(β+m) (12)

where m ≥ 1 in the order to obtain a sufficiently regular estimate of u(β), and where for
notation convenience we define

uk = u(k), k = 0, . . . , β − 1. (13)

We can now state the main result of the paper.
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Theorem 3.1. Assume that Assumptions 1 and 2 are verified. Consider the closed–loop
dynamic system

ė = Ae+ Ψ0(e, γ, z) + Ψ1(e, γ, γd, z)

u̇0 = u1

u̇1 = u2

...

u̇β−2 = uβ−1

u̇β−1 = ϑ(e, γ, z)

ż = g(z, u(β))

(14)

with A as in (10), Ψ0, Ψ1 as in (11), u0, . . . , uβ−1 as in (13), z =
(
z0 z1 · · · zk

)T as
in (12), g given by (1). Assume that the coefficients αi in A are chosen so that the
matrix

Ã =
(

A A12

A21 A22

)
with

A12 =
∂Ψ0(e, γ, z)

∂γ
|(0,0,0), A21 =


0 · · · 0
0 · · · 0
...

...
−α0 · · · −αn−1



A22 =



0 1 · · · 0 0

0 0
. . . 0 0

...
...

. . . . . .
...

0 0 · · · 0 1
∂α(0, γ, 0)

∂u0

∂α(0, γ, 0)
∂u1

· · · · · · ∂α(0, γ, 0)
∂uβ−1


is Hurwitz. Then the system

Ė = ÃE

ż = g(z, α(E, z))

with E = (e, γ)T , is asymptotically stable in the origin. Moreover, for a small positive
η, the solution of the perturbed system (14) guarantees that ‖e‖ ≤ η.

To prove this statement first we recall the following result.

Lemma 3.1. (Isidori [12]) Let us consider the system

Ė = ĀE + ψ(E, z) (15)
ż = ḡ(E, z). (16)
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If ψ(0, z) = 0 and ∂
∂zψ(0, 0) = 0 and ḡ(0, 0) is a stable equilibrium point of (16), and

the origin of Ė = ĀE is asymptotically stable, then the equilibrium point (0, 0) of
system (15) and (16) is asymptotically stable.

P r o o f o f T h e o r e m 3.1. The closed–loop error dynamics and the robust differen-
tiator can be written as the composite system

Ė = ÃE + Ψ̃1(E, z, γd)

ż = g(z, α(E, z))

with Ψ̃1(E, z, γd) = (0, Ψ1(E, z, γd))T . Let us consider first the case in which the per-
turbation term Ψ̃1 is zero. Since Ã is Hurwitz, and g(0, 0) = 0 is asymptotically stable
thanks to Theorem 2.1, by Lemma 3.1 one has that (E, z) = (0, 0) is an asymptotically
stable equilibrium point. Now, if the perturbation term is bounded, then by the total
stability Theorem [12], the output tracking error is bounded. �

4. ILLUSTRATIVE EXAMPLES

Example 1. Let us consider the well–known ball and beam system described by the
following equations

ẋ1 = x2

ẋ2 = x1x
2
4 − g sinx3

ẋ3 = x4

ẋ4 = u

y = x1

(17)

with g the gravity acceleration. Applying the proposed method we obtain

e1 = x1 − yref

e2 = x2 − ẏref

e3 = x1x
2
4 − g sinx3 − ÿref

e4 = x2x
2
4 + 2x1x4u− gx4 cosx3 − y

(3)
ref

where the error dynamics are given by

ė1 = e2

ė2 = e3

ė3 = e4

ė4 = x1x
4
4 + (4x2x4 − g cosx3)u+ 2x1u

2 + 2x1x4(u̇+ û(1) − û(1))− y
(4)
ref

= p4(t, e, u, û(1))− y
(4)
ref + ψ4(t, e, z)

with β = 0 and
ψ4(t, e, z) = 2x1x4(u̇− û(1))

∣∣ x1=e1+yref
x4=P−1(e+Yref )d

u(1)=z.
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The control law is obtained as

u = u(β) =
v(e)− x1x

4
4 − 2x2

1(û)
2 − 2x1x4û(1) + gx2

4 sinx3 + y
(4)
ref

4x2x4 − g cosx3

with

v(e) = −α0e1 − α1e2 − α2e3 − α3e4

and for

{x ∈ Dx ⊂ Rn||4x2x4 − g cosx3| > 0}
∣∣
x=P−1(e+Yref )

where p(λ) = λ4 + α3λ
3 + α2λ

2 + α1λ+ α0 is a Hurwitz polynomial. The differentiator
which gives an estimate of u̇ has the following form

ż0= v0, v0 = −λ1|z0 − u|1/2 sign(z0 − u) + z1

ż1= −λ0 sign(z1 − v0).
(18)

The simulations results are shown in Figures 2 – 4. Figure 2 shows a comparison of
the output and the reference signals. Figure 3 shows that the control signal is smooth
and bounded. For the sake of comparison, the output tracking errors given by the
approximated method proposed in [8, 22] (SAM) and the method proposed in this work
(RDAM) are shown in Figure 4. We may note that the method based on the robust
differentiator performs better, even if the differentiator parameters were not finely tuned.

0 20 40 60 80 100 120
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1
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Fig. 2. Output signal (dashed) and reference (solid) [m vs s].
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Fig. 3. Input signal in the RDAM method [Nm vs s].
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Fig. 4. Comparison of the errors resulting from the RDAM (solid)

and SAM (dashed) methods [m vs s].
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Example 2. Let us consider the same system presented in [10]

ẋ1 = x3
2 − x2

ẋ2 = x3

ẋ3 = u

y = x1.

(19)

Applying the method proposed in this work, it follows that

e1 = x1 − yref

e2 = x3
2 − x2 − ẏref

e3 = 2x3u− x3 − ÿref .

The error system is given by

ė1 = e2

ė2 = e3

ė3 = 2u2 − u+ 2x3(u̇+ û(1) − û(1))−
...
y ref

= p3(t, e, u, û(1))− y
(3)
ref + ψ3(t, e, z)

with β = 0 and
ψ4(t, e, z) = 2x3(u̇− û(1)).

The control is given by
u = v(e) + 2û2 − 2x3û(1) −

...
y ref

where v(e) = α0e1−α1e2−α2e3 and the differentiator taken as in (18). Figure 5 shows
the tracking results when yref = sin t for the method proposed here (upper subplot) and
the method presented in [10] (lower subplot) referred to as HM. A detail of the result
is shown in Figure 6, where it can be noted that the tracking in HM is accurate only at
discrete times due to the discrete nature of the controller. The tracking errors signals
for both methods are shown in Figure 7. A comparison between the two control laws
is shown in Figure 8. It can be noticed that the HM method gives a discontinuous and
high–amplitude control law, while the control given by the method proposed in this work
is smooth and of relative low amplitude.

CONCLUSIONS

A new method for tracking a reference signal through singularities has been presented.
This method is based on the use of a robust differentiator to estimate the derivatives
of the input signal. With respect to existing techniques, the proposed procedure avoids
neglecting nonlinear terms determining the singularity condition. Some simulations show
that this method gives better results than existing methods available in the literature.
This effectiveness of the proposed method is due to the estimation of derivatives of the
control involved in the singularity, instead of neglecting those terms or avoiding the
singularity region.
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Fig. 5. Output signal (dashed) and reference (solid) [m vs s]. Upper

subplot represent the tracking using the method proposed here

(RDAM), the lower subplot is the tracking with HM.
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Fig. 7. Error signals due to both methods. Upper plot correspond to

the RDAM method and lower plot to HM method.
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