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Abstract. The cubical dimension of a graph G is the smallest dimension of a hypercube
into which G is embeddable as a subgraph. The conjecture of Havel (1984) claims that the
cubical dimension of every balanced binary tree with 2n vertices, n > 1, is n. The 2-rooted
complete binary tree of depth n is obtained from two copies of the complete binary tree of
depth n by adding an edge linking their respective roots. In this paper, we determine the
cubical dimension of trees obtained by subdividing twice a 2-rooted complete binary tree
and prove that every such balanced tree satisfies the conjecture of Havel.
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1. Introduction

For a given graph G, V (G) and E(G) denote, respectively, the set of vertices and

the set of edges of G. The hypercube of dimension n, denoted Qn, is the graph whose

2n vertices are boolean vectors of length n, such that two vertices are adjacent if and

only if they differ in exactly one coordinate.

An embedding of the graphG in the hypercubeQn is a one-to-one mapping of V (G)

into V (Qn) that preserves adjacency of vertices. In the case when V (G) = V (Qn),

we say that the embedding is total. In a general way, the study of an embedding

of G into Qn turns to see if G is isomorphic to a subgraph of Qn.

This problem is well-known and treated in graph theory. Many efforts have been

made for finding conditions (necessary and/or sufficient) under which a graph G is

Part of this research has been done while the first author was visiting Bordeaux
University.
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a subgraph of Qn. In particular, the problem of embedding trees in the hypercube

has attracted much attention, since trees are widely used in many domains such as

computer science, operations research, or combinatorial optimization for instance.

A tree T is a connected graph without cycles. A binary tree is a tree in which

every vertex has at most two sons. We say that a tree T is balanced if, in the

bipartition of V (T ), both parts have the same cardinality. A tree T is cubical if, for

some integer n, there is an embedding of T into the hypercube Qn. If T is cubical

then the least positive integer n for which T can be embedded into the hypercube

Qn is called the cubical dimension of T , denoted by cd(T ). Firsov [6] showed that

all trees are cubical. Hence, for a tree T , the question we consider is to determine

the cubical dimension of T . Wagner and Corneil [14] showed that the problem of

deciding if a tree T is embeddable into the hypercube Qn is NP-complete. Binary

trees and their embeddings into hypercubes have been studied in [1]–[5], [7], [9], [11],

[13]. A longstanding conjecture of Havel claims the following:

Conjecture 1.1 (Havel [8]). Every balanced binary tree with 2n vertices, n > 1,

is a subgraph of Qn.

Several partial results have been obtained in support of this conjecture [3], [4],

[12]. In this paper, we introduce some new classes of balanced binary trees which

satisfy the conjecture of Havel.

The hypercube Qn is bipartite, balanced and n-regular; it has 2n vertices and

n2n−1 edges. A tree T is said to be Cn-valuated if we can label every edge of T with

an integer from the set {1, 2, . . . , n} in such a way that for every path P in T , there

exists an integer k ∈ {1, 2, . . . , n} such that an odd number of edges in P are labeled

by k. Havel and Morávek proved the following:

Theorem 1.2 (Havel and Morávek [10]). A tree T is embeddable in Qn if and

only if there exists a Cn-valuation of T .

Intuitively speaking, every edge with label k will be mapped to an edge of Qn in

the k-th dimension. The fact that for every path there exists an integer appearing an

odd number of times ensures that all vertices are mapped to distinct vertices in Qn.

The following result was proved by Havel:

Theorem 1.3 (Havel [8]). Every balanced binary tree of order 2n having two

vertices of degree 3 is embeddable into the hypercube Qn.

Havel and Liebl [9] and Nebeský [12] studied embeddings of the classes of binary

trees Dn,
ˆ̂Dn, D̂n and Ďn, defined, respectively, as follows:
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(1) The treeD1 is the complete bipartite graphK1,2 whose root is the unique vertex

of degree 2. For n > 2, Dn is the tree obtained from two disjoint copies T and

T ′ of Dn−1 and a new vertex v by adding an edge from v to the root of T and

another edge from v to the root of T ′. The new vertex v is the root of Dn.

The tree Dn is thus the complete binary tree of depth n, with 2
n+1 − 1 vertices.

Moreover, we have cd(D1) = 2 and, for n > 2, cd(Dn) = n+ 2, see [9].

(2) For n > 1, the 2-rooted complete binary tree ˆ̂Dn is obtained from two disjoint

copies of Dn by adding an edge linking the roots of these copies. This new edge

will be referred to as the axial edge of ˆ̂Dn. The tree
ˆ̂Dn has 2

n+2 − 2 vertices

and cd( ˆ̂Dn) = n+ 2, see [12].

(3) For n > 1, the tree D̂n is obtained from
ˆ̂Dn by inserting two new vertices of

degree 2 into the axial edge of ˆ̂Dn. The edge joining these two new vertices will

be referred to as the central edge of D̂n. The tree D̂n is balanced, has 2
n+2

vertices and cd(D̂n) = n+ 2, see [12].

(4) For n > 1, the tree Ďn is obtained from
ˆ̂Dn by inserting two new vertices of

degree 2 into some end-edge of ˆ̂Dn (that is an edge incident to a leaf of
ˆ̂Dn).

The tree Ďn has 2
n+2 vertices and cd(Ďn) = n+ 2, see [12].

Let T be a tree with root r. We define the level of an edge uv in T as

max{d(r, u), d(r, v)}, where d(x, y) denotes the distance from vertex x to vertex y

in T . The level of an edge uv of the 2-rooted complete binary tree ˆ̂Dn is defined

as 0 if the edge uv is the axial edge of ˆ̂Dn, or as the level of uv in the corresponding

copy of Dn otherwise. An edge uv is an ancestor of an edge xy if they both lie on

a path linking the root of the tree to some leaf and the level of uv is smaller than

the level of xy. Recall that subdividing an edge uv consists in replacing the edge uv

by two new edges ux and xv where x is a new vertex of degree 2.

In this paper, we will determine the cubical dimension of trees obtained by sub-

dividing twice the 2-rooted complete binary tree ˆ̂Dn. Such a tree has 2
n+2 vertices

and is of one of the following types:

⊲ Type (A): the tree Ak
n is obtained by subdividing twice an edge of level k, 0 6

k 6 n, in ˆ̂Dn, n > 1.

⊲ Type (B): the tree Bk
n is obtained by subdividing two distinct edges of the same

level k, 1 6 k 6 n, in ˆ̂Dn, not belonging to the same copy of Dn.

⊲ Type (C): the tree Ck
n is obtained by subdividing two distinct edges of the same

level k, 1 6 k 6 n, in ˆ̂Dn, both belonging to the same copy of Dn.

⊲ Type (D): the tree Dk,l
n is obtained by subdividing two distinct edges of distinct

levels k and l, 0 6 k < l 6 n, in ˆ̂Dn, not belonging to the same copy of Dn.
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⊲ Type (E): the tree Ek,l
n is obtained by subdividing two distinct edges of distinct

levels k and l, 1 6 k < l 6 n, in ˆ̂Dn, both belonging to the same copy of Dn, such

that none of these edges is the ancestor of the other.

⊲ Type (F): the tree F k,l
n is obtained by subdividing two distinct edges of distinct

levels k and l, 1 6 k < l 6 n, in ˆ̂Dn, both belonging to the same copy of Dn, such

that the edge of level k is the ancestor of the edge of level l.

The above-defined types of trees are illustrated in Figure 1, where vertices created

by edge subdivisions are drawn as squares.

D
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2
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Figure 1. Sample twice subdivided 2-rooted complete binary trees.

Our main result is the following:

Theorem 1.4. Let T be a tree obtained by subdividing twice the 2-rooted com-

plete binary tree ˆ̂Dn. Then we have:

⊲ cd(T ) = n+ 2 if T is of type (A) or (B),

⊲ cd(T ) = n+ 3 if T is of type (C), (D), (E) or (F).
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It is worth noting that such a tree is balanced if and only if it is of type (A) or (B).

Our result shows that trees of type (A) or (B) satisfy the conjecture of Havel. We

thus generalize the results of Nebeský who considered trees obtained by subdividing

twice either the axial edge or an end-edge of ˆ̂Dn (above-defined as D̂n and Ďn,

respectively).

2. Proof of the main result

The proof will follow from a series of lemmas, each considering one particular type

of tree.

Since every Cn-valuation of a tree T is also a Cn-valuation of any (connected)

subtree of T , we easily get the following:

Observation 2.1. If T1 is a subtree of T2, then cd(T1) 6 cd(T2).

The following result will be useful in proving structural decompositions of trees of

type (A) and (B). Let T1 and T2 be two trees, u1v1 an edge of T1, and u2x2y2v2 an

induced path of T2 (both x2 and y2 are vertices of degree 2). We define the ⋊⋉-gluing

of T1 and T2 along {u1v1, u2v2}, denoted T1 ⋊⋉u1v1,u2v2 T2, as the tree obtained

by subdividing twice the edge u1v1 of T1, creating the induced path u1x1y1v1, and

identifying the two edges x1y1 and x2y2 (see Figure 2). We then have:

x1

u1

T1

v1

u2 v2

T2

x2 y2

u2 v2

u1

x2 y2

T1 ⋊⋉u1v1,u2v2
T2

v1

y1

Figure 2. A sample ⋊⋉-gluing of two trees: T1 ⋊⋉u1v1,u2v2 T2.

Lemma 2.2. Let T1 and T2 be two trees, u1v1 an edge of T1, and u2x2y2v2 an

induced path of T2. If cd(T1) = cd(T2) = k, then cd(T1 ⋊⋉u1v1,u2v2 T2) 6 k + 1.

P r o o f. Since cd(T1) = cd(T2) = k, there exist a Ck-valuation γ1 of T1 and

a Ck-valuation γ2 of T2. Without loss of generality, we may assume that γ1(u1v1) =

γ2(x2y2). We can then construct a valuation γ of T = T1 ⋊⋉u1v1,u2v2 T2 by setting
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⊲ γ(u1x1) = γ(y1v1) = k + 1,

⊲ γ(z1t1) = γ1(z1t1) for every edge z1t1 from T1, and

⊲ γ(z2t2) = γ2(z2t2) for every edge z2t2 from T2.

To see that γ is indeed a Ck+1-valuation of T , let P be any path in T . If P

does not contain the label k + 1, then P is also a path in T1 or T2 and the required

property follows from the fact that both γ1 and γ2 are Ck-valuations. If the label

k + 1 appears only once in P then k + 1 appears an odd number of times and we

are done. Finally, if the label k + 1 appears twice in P then the path P ′ obtained

from P by contracting the two edges with label k+1 is a path in T1 and the required

property follows from the fact that γ1 is a Ck-valuation of T1. �

We now turn to the proof of our main result, considering each type of trees sepa-

rately.

Lemma 2.3. For every n and k, 0 6 k 6 n, n > 1, cd(Ak
n) = n+ 2.

P r o o f. Since the tree Ak
n has 2

n+2 vertices, it cannot be embedded in Qn+1

and, therefore, cd(Ak
n) > n+2. We now prove by induction on k that cd(Ak

n) = n+2

for every n > 1.

The result clearly holds for k = 0 since A0
n = D̂n and cd(D̂n) = n + 2 for every

n > 1, see [12].

Assume now that cd(Ak−1
n ) = n + 2 for every n > 1, and consider the tree Ak

n.

As depicted in Figure 3, it is not difficult to observe that, for every k > 1, Ak
n is the

⋊⋉-gluing of Ak−1

n−1 and D̂n−1 along the axial edge of A
k−1

n−1 and the “axial path” of

D̂n−1. Since cd(D̂n−1) = n+1 by [12] and cd(Ak−1

n−1) = n+1 by induction hypothesis,

we get cd(Ak
n) = n+ 2 by Lemma 2.2. �

u2

Dn−1Dn−1 Dn−1Dn−1

u1 v2u2

A1

n = A0

n−1
⋊⋉{u1v1,u2v2} D̂n−1

v1

Dn−1 Dn−1 Dn−1

v1

Ak
n = A

k−1

n−1
⋊⋉{u1v1,u2v2} D̂n−1

u1 v2

Figure 3. Structural decomposition of A1n and of A
k
n, k > 1.
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Lemma 2.4. For every n and k, 1 6 k 6 n, cd(Bk
n) = n+ 2.

P r o o f. The proof is quite similar to the proof of Lemma 2.3. Since the tree Bk
n

has 2n+2 vertices, it cannot be embedded in Qn+1 and, therefore, cd(B
k
n) > n + 2.

We now prove by induction on k that cd(Bk
n) = n+ 2 for every n > 1.

As depicted in Figure 4, B1
n is the ⋊⋉-gluing of D̂n−1 and itself along its central

edge and axial path. Since cd(D̂n−1) = n + 1 by [12] we get cd(B1
n) = n + 2 by

Lemma 2.2.

Assume now that cd(Bk−1
n ) = n + 2 for every n > 1, and consider the tree Bk

n.

As depicted in Figure 4, Bk
n is the ⋊⋉-gluing of Bk−1

n−1 and D̂n−1 along the axial

edge of Bk−1

n−1
and the axial path of D̂n−1. Since cd(D̂n−1) = n + 1 by [12] and

cd(Bk−1

n−1) = n+ 1 by induction hypothesis, we get cd(Bk
n) = n+ 2 by Lemma 2.2.

�

u2

Dn−1Dn−1Dn−1 Dn−1Dn−1 Dn−1

B
k
n = B

k−1

n−1
⋊⋉{u1v1,u2v2} D̂n−1

v1u1 v2u2

B
1

n = D̂n−1 ⋊⋉{u1v1,u2v2} D̂n−1

v1
u1 v2

Figure 4. Structural decomposition of B1n and of B
k
n, k > 1.

Lemma 2.5. For every n and k, 1 6 k 6 n, cd(Ck
n) = n+ 3.

P r o o f. Since the tree Ck
n has 2

n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(C
k
n) > n+ 3.

The fact that cd(Ck
n) = n+3 for every n and k, 1 6 k 6 n, then simply follows from

Observation 2.1 since Ck
n is a subtree of

ˆ̂Dn+1 (see Figure 5) and cd(
ˆ̂Dn+1) = n+ 3

by [12]. �

Dk−1Dk−1

Dn−kDn−k

Dn−k Dn−k

Dn−k Dn−k Dn−k Dn−kDn−kDn−k

Figure 5. Ck
n is a subtree of

ˆ̂
Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1 \ C

k
n).
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Lemma 2.6. For every n, k and l, 0 6 k < l 6 n, cd(Dk,l
n ) = n+ 3.

P r o o f. Since the tree Dk,l
n has 2n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(D
k,l
n ) > n+ 3.

The fact that cd(Dk,l
n ) = n + 3 for every n, k and l, 0 6 k < l 6 n, then follows

from Observation 2.1 since Dk,l
n is a subtree of ˆ̂Dn+1 (see Figure 6 for k = 0 and

Figure 7 for k > 0) and cd( ˆ̂Dn+1) = n+ 3 by [12]. �

Dn

Dl−1

Dn−l Dn−l Dn−l Dn−l

Dn−l

Dn

Figure 6. D0,ln is a subtree of ˆ̂Dn+1 (dashed lines depict elements of
ˆ̂
Dn+1 \D

0,l
n ).

Dk−1 Dl−1

Dn−l

Dn−k

Dn−k

Dn−l Dn−l Dn−l Dn−lDn−kDn−kDn−k

Figure 7. Dk,l
n is a subtree of ˆ̂Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1 \D

k,l
n ).

Lemma 2.7. For every n, k and l, 1 6 k < l 6 n, cd(Ek,l
n ) = n+ 3.

P r o o f. Since the tree Ek,l
n has 2n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(E
k,l
n ) > n+ 3.

The fact that cd(Ek,l
n ) = n+3 for every n, k and l, 1 6 k < l 6 n, then follows from

Observation 2.1 since Ek,l
n is a subtree of

ˆ̂Dn+1 (see Figure 8) and cd(
ˆ̂Dn+1) = n+3

by [12]. �
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Dk−1 Dl−1

Dn−k

Dn−k

Dn−l Dn−l Dn−l Dn−lDn−kDn−kDn−k

Dn−l

Dn

Figure 8. Ek,l
n is a subtree of ˆ̂Dn+1 (dashed lines depict elements of

ˆ̂
Dn+1 \E

k,l
n ).

Lemma 2.8. For every n, k and l, 1 6 k < l 6 n, cd(F k,l
n ) = n+ 3.

P r o o f. Since the tree F k,l
n has 2n+2 vertices and is not balanced, it cannot be

embedded in Qn+2 and, therefore, cd(F
k,l
n ) > n+ 3. We now prove that cd(F k,l

n ) =

n+ 3 by constructing a Cn+3-valuation of F
k,l
n .

Let ukvk and ulvl denote the two edges of
ˆ̂Dn that have been subdivided, with

levels k and l, respectively, and let xk and xl denote the corresponding two created

vertices of degree 2. Since cd( ˆ̂Dn) = n + 2, there exists a Cn+2-valuation of
ˆ̂Dn,

say γ0. We define the valuation γ of F k,l
n as follows:

⊲ γ(ukxk) = γ0(ukvk), γ(ulxl) = γ0(ulvl),

⊲ γ(xkvk) = γ(xlvl) = n+ 3,

⊲ γ(uv) = γ0(uv) for every edge uv /∈ {ukxk, xkvk, ulxl, xlvl}.

To see that γ is indeed a Cn+3-valuation of F
k,l
n , let P be any path in F

k,l
n . If P does

not contain the label n+ 3, then P has the same labeling as a path in ˆ̂Dn and the

required property follows from the fact that γ0 is a Cn+2-valuation. If the label n+3

appears only once in P then n+3 appears an odd number of times and we are done.

Finally, if the label n + 3 appears twice in P then the path P ′ obtained from P by

contracting the two edges with label n+3 is a path in ˆ̂Dn and the required property

follows from the fact that γ0 is a Cn+2-valuation of
ˆ̂Dn. �

The proof of Theorem 1.4 now clearly follows from Lemmas 2.3 through 2.8.

Acknowledgment. We would like to thank the anonymous referee whose com-

ments allowed us to significantly improve the presentation of this paper.
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