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On nowhere first-countable compact

spaces with countable π-weight

Jan van Mill

Abstract. The minimum weight of a nowhere first-countable compact space of
countable π-weight is shown to be κB, the least cardinal κ for which the real
line R can be covered by κ many nowhere dense sets.
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1. Introduction

All spaces under discussion are Tychonoff .
In [4], the author showed that there is a (naturally defined) compact space X

which is (topologically) homogeneous under MA+¬CH but not under CH. This
space has countable π-weight, character ω1 and weight c. It is an open problem
whether there can be a compact nowhere first-countable homogeneous space of
countable π-weight and weight less than c. This cannot be done by a straightfor-
ward modification of the method in [4] since from Juhász [2, Theorem 5] it follows
that under MA, every compact space of countable π-weight and weight less than
c is somewhere first-countable. Hence a homogeneous compactum of countable π-
weight and weight less than c is first-countable under MA ([4, Theorem 1.5]). Let
λ be the minimum weight of a nowhere first-countable compact space of countable
π-weight. Clearly, ω1 ≤ λ ≤ c. The aim of this note is to show that λ is equal
to κB, the least cardinal κ for which the real line R can be covered by κ many
nowhere dense sets. Hence there exists a nowhere first-countable compact space
of weight κB and countable π-weight. Whether such a space can be homogeneous
while κB < c remains an open problem.

2. Preliminaries

Our basic references are Miller [5], Juhász [1] and Kunen [3].
For every space X , define κB(X) to be the least cardinal κ such that X can be

covered by κ many nowhere dense (in X) subsets of X . In Miller [5, Lemma 1] it
is shown that for every crowded Polish space X we have κB(X) = κB.
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Let MAκ(countable) denote the statement that for any countable partial order
P and family F of dense subsets of P, if |F | < κ, then there exists a P-generic
filter G over F . It is well-known, see Miller [5, Lemma 2], that κB is the greatest
κ for which MAκ(countable) holds.

The proof of the following result is standard and is included for the sake of
completeness.

Lemma 2.1 (MAκ+(countable)). Let X be a crowded space of weight at most κ
and of countable π-weight. Assume that D is a nowhere dense subset of X . Then

there exist disjoint open sets U and V in X such that D ⊆ U ∩ V .

Proof: Let U be a countable π-base for X . Put

P = {〈p, q〉 : (p, q ∈ [U ]<ω)& (
⋃

p ∩
⋃

q = ∅)& (
⋃

p ∪
⋃

q ⊆ X \ D)}.

Order P in the natural way by 〈p0, q0〉 ≤ 〈p1, q1〉 iff
⋃

p1 ⊆
⋃

p0 and
⋃

q1 ⊆
⋃

q0.
Let V be an open base for X such that |V | ≤ κ. Let W = {V ∈ V : V ∩D 6= ∅}.
For every W ∈ W , put

W ∗ = {〈p, q〉 ∈ P : (
⋃

p ∩ W 6= ∅)& (
⋃

q ∩ W 6= ∅)}.

We claim that W ∗ is dense in P. To prove this, take an arbitrary 〈p, q〉 ∈ P.

By assumption, (
⋃

p ∪
⋃

q) ∩ D = ∅ and W ∩ D 6= ∅. Since X is crowded, there
exist U, V ∈ U such that

U ∪ V ⊆ W \ (D ∪ p ∪ q).

Hence p′ = p ∪ U and q′ = q ∪ V belong to P and, clearly, 〈p′, q′〉 ≤ 〈p, q〉. By
our assumptions, there is a filter F in P such that for every W ∈ W we have
W ∗ ∩ F 6= ∅. Put

U =
⋃

{p : (∃q ∈ [U ]<ω)(〈p, q〉 ∈ F )},

and

V =
⋃

{q : (∃p ∈ [U ]<ω)(〈p, q〉 ∈ F )},

respectively. Then U and V are clearly as required. �

It was shown in Miller [5, Theorem 1] that κB has uncountable cofinality.
(Interestingly, Shelah [6] showed that the measure analogue of this may fail.)

3. Proofs

Theorem 5 and Lemma 4 in Juhász [2] imply that if X is countably compact,
nowhere first-countable, and has a dense set of points of countable π-character,
then w(X) ≥ κB. For completeness sake, we include a simple proof of a weaker
result which suffices for our purposes.
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Lemma 3.1 (Juhász [2]). Let κ be a cardinal for which there exists a compact

nowhere first-countable space X with countable π-weight and weight κ. Then

κB ≤ κ.

Proof: Let B be an open base for X such that |B| = κ. Moreover, let U be a
countable π-base for X . For every B ∈ B, put

S(B) = B \
⋃

{U ∈ U : U ⊆ B}.

Since U is a π-base, it is clear that for every B ∈ B the set S(B) is a nowhere
dense closed subset of X .

We claim that
⋃

B∈B
S(B) = X . To this end, pick an arbitrary x ∈ X . The

collection V = {U ∈ U : x ∈ U} is countable. Since χ(x, X) > ω, there exists
B ∈ B which contains no U ∈ V . Hence for every U ∈ U which is contained in
B it follows that x /∈ U , i.e., x ∈ S(B).

There is an irreducible continuous surjection f : X → Y , where the weight of
Y is countable. Hence Y is covered by the collection of nowhere dense closed sets

{f(S(B)) : B ∈ B}.

Clearly Y is crowded since X is. From this we conclude that κB ≤ κ, as required.
�

If X is a compact space and A and B are closed subsets of X such that
A ∪ B = X , then X(A, B) denotes the topological sum ({0} × A) ∪ ({1} × B) of
A and B and πA,B : X(A, B) → X is defined by

πA,B(t) =

{

a (t = 〈0, a〉, a ∈ A),

b (t = 〈1, b〉, b ∈ B).

Observe that t ∈ A∩B if and only if |π−1
A,B({t})| ≥ 2 if and only if |π−1

A,B({t})| = 2.

Lemma 3.2. πA,B : X(A, B) → X is irreducible if and only if A \ B is dense in

A and B \ A is dense in B.

Proof: It will be convenient to denote {0} × A and {1} × B by A′ and B′,
respectively. Assume first that C ⊆ X(A, B) is a proper closed set such that
πA,B(C) = X . We may assume without loss of generality that U = A′ \ C is
nonempty. Put V = πA,B(U). Then V is a nonempty relatively open subset
of A. Moreover, if x ∈ V , then there exists 〈1, b〉 ∈ B′ such that B ∋ b =
πA,B(〈1, b〉) = x. As a consequence, V ⊆ B. There is an open subset W in X
such that W ∩A = V . Since V ⊆ B, obviously W ⊆ B. Hence A \B is not dense
in A.

For the converse implication, assume without loss of generality that A \ B is

not dense in A. Then ({0}×A \ B)∪ ({1}×B) is a proper closed subset of XA,B

which is mapped onto X by πA,B. �



240 van Mill J.

Lemma 3.3. There is a nowhere first-countable compact space of weight κB and

countable π-weight.

Proof: Let τ : κB → κB be a surjection every fiber of which has size κB. More-
over, let {Dα : α < κB} be a family of closed and nowhere dense subsets of
2ω covering 2ω. Our space will be the inverse limit XκB

of a continuous inverse
system {Xα, β ≤ α < κB, fα

β } such that X0 = 2ω and for every α < κB and
β ≤ α,

(1) Xα is a compact space of weight at most |α|·ω,
(2) fα

β : Xα → Xβ is a continuous, irreducible surjection,

(3) there are closed sets Aα and Bα in Xα such that
(a) Aα ∪ Bα = Xα,
(b) Aα ∩ Bα ⊇ (fα

0 )−1(Dτ(α)),
(c) Aα \ Bα and Bα \ Aα are dense in Aα respectively Bα,
(d) Xα+1 = Xα(Aα, Bα) and fα+1

α = πAα,Bα
.

The construction of this inverse sequence is a triviality by a repeated application
of Lemmas 2.1 and 3.2. The only thing left to verify is that XκB

has weight κB

and is nowhere first-countable.
Striving for a contradiction, assume that XκB

is first-countable at t. Since κB

has uncountable cofinality (see §2), there exists β < κB such that

(†) (fκB

β )−1({fκB

β (t)}) = {t}.

Let ξ < κB be such that fκB

0 (t) ∈ Dξ. Pick α > β so large that τ(α) = ξ. Then
clearly

|(fα+1
α )−1({fκB

α (t)})| = 2,

which contradicts (†).
That the weight of XκB

is at most κB follows by construction. And that it has
weight at least κB is a consequence of Lemma 3.1 and the fact that it is nowhere
first-countable. Observe that X0 has countable weight, and that XκB

admits
a continuous, irreducible map onto X0. Hence XκB

has countable π-weight. �

4. Questions

(1) Is there in ZFC a homogeneous nowhere first-countable compact space of
countable π-weight and weight κB?

(2) What are the cardinals of the form w(X), where X is a nowhere first-
countable compactum of countable π-weight?
(Let Π denote this set of cardinals. We showed that κB ∈ Π. Moreover,
c ∈ Π. To check this, let X be the absolute of the unit interval. Then
X has countable π-weight, is nowhere first-countable, and has weight c

(since it contains a copy of βω). We do not know whether there can be
a cardinal κ ∈ Π \ {κB, c}.)
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A natural question is whether there can be a κ in Π of countable cofinality. This
question may have a very simple answer. Indeed, assume that there is a sequence

κ0 < κ1 < · · · < κn < · · ·

in Π. For every n let Xn be a witness of the fact that κn ∈ Π. Then X =
∏

n<ω Xn

is a witness that κ = supn<ω κn ∈ Π.
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