
Applications of Mathematics

Siqin Yao; Jiong Sun; Anton Zettl
The Sturm-Liouville Friedrichs extension

Applications of Mathematics, Vol. 60 (2015), No. 3, 299–320

Persistent URL: http://dml.cz/dmlcz/144265

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144265
http://dml.cz


60 (2015) APPLICATIONS OF MATHEMATICS No. 3, 299–320

THE STURM-LIOUVILLE FRIEDRICHS EXTENSION

Siqin Yao, Jiong Sun, Hohhot, Anton Zettl, DeKalb

(Received December 12, 2013)

Abstract. The characterization of the domain of the Friedrichs extension as a restriction
of the maximal domain is well known. It depends on principal solutions. Here we establish
a characterization as an extension of the minimal domain. Our proof is different and closer
in spirit to the Friedrichs construction. It starts with the assumption that the minimal
operator is bounded below and does not directly use oscillation theory.
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1. Introduction

Given any symmetric bounded below operator S in a Hilbert space H, Friedrichs,

in a seminal paper [1] in 1933, constructed a self-adjoint extension SF of S in H

which has the same lower bound as S. This extension has come to be known as the

Friedrichs extension.

A Sturm-Liouville (S-L) equation

(1.1) My = w−1[(−py′)′ + qy] = λy on J = (a, b), −∞ 6 a < b 6 ∞,

with coefficients satisfying

(1.2)
1

p
, q, w ∈ Lloc(J,R), p > 0, w > 0, a.e. on J
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generates a symmetric densely defined minimal operator Smin in the Hilbert space

H = L2(J,w) with inner product (y, z) =
∫

J yzw whose adjoint is called the maximal

operator of (1.1) and is denoted by Smax = S∗
min. Here Lloc(J,R) denotes the real-

valued functions which are Lebesgue integrable on all compact subintervals of J,

D(S) denotes the domain of S.

In general Smin has an uncountable number of self-adjoint extensions S. These

satisfy

(1.3) Smin ⊂ S = S∗ ⊂ Smax.

Thus each operator S satisfying (1.3) can be considered as an extension of the mini-

mal operator Smin and, equivalently, as a restriction of the maximal operator Smax.

Clearly these operators S are distinguished from each other only by their domains.

These domains can be characterized in terms of two point boundary conditions spec-

ified at the two endpoints a, b of the interval J. For details of this characterization as

well as other basic results, definitions, notation, etc. used below, see the book [16].

To get the Friedrichs extension of Smin one must use the Friedrichs construction or

some equivalent version of it. This construction makes no explicit use of boundary

conditions. Thus the natural question arises: Of the, in general, uncountable number

of boundary conditions which one determines the Friedrichs extension?

Friedrichs himself considered this question in [2] in 1935 and showed that the

Friedrichs extension is determined by the Dirichlet boundary condition

(1.4) y(a) = 0 = y(b),

when p = 1 = w and q is continuous on a compact interval [a, b].

It is now known that the Dirichlet boundary condition (1.4) determines the

Friedrichs extension in the general regular case. This is the case when Lloc(J,R)

in (1.2) can be replaced by L1(J,R). If one endpoint of J is singular, then the

Dirichlet boundary condition (1.4) is not well defined because, in general, solutions

and maximal domain functions y do not have a finite limit at a singular endpoint.

(See Section 2 below for a definition of regular and singular endpoints.)

In 1992 Niessen and Zettl [11], building on the work of Rellich [12], Kalf [5],

Rosenberger [13], and others, characterized the Friedrichs extension SF for the gen-

eral equation (1.1), (1.2) in terms of singular boundary conditions determined by

principal solutions ua, ub at the endpoints:

(1.5) [y, ua](a) = 0 = [y, ub](b).

In (1.5) the Lagrange form [·, ·] is defined for all y, z ∈ Dmax by [y, z] = y(pz′) −
z(py′).
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This characterization and its proof (see [11] and Theorem 10.5.1 in [16]) is based

on the oscillation theory and regularization of singular problems. In the general

regular case (1.5) reduces to (1.4).

Note that, although this characterization is customarily described as an extension

of Smin, it is actually a restriction of Smax:

(1.6) D(SF ) = {y ∈ Dmax : [y, ua](a) = 0 = [y, ub](b)}.

In this paper we construct maximal domain functions Ua, Ub which give our char-

acterization of D(SF ) the following form:

(1.7) D(SF ) = Dmin ∔ span{Ua, Ub},

and thus it is an actual extension of the minimal operator Smin. (Of course the

characterizations (1.7) and (1.6) are equivalent, since the Friedrichs extension is

unique.) For both the characterizations there is no ua, Ua when a is in the limit-point

case and no ub, Ub when b is in the limit-point case. Thus both the characterizations

reduce to Smin = Smax and Smin is its own Friedrichs extension if it is bounded below

and both the endpoints are in the limit-point case.

Our proof is different from the proof in [11]. It has the following features:

⊲ It is based directly on the assumption that Smin is bounded below.

⊲ It makes no direct use of the oscillation or non-oscillation theory.

⊲ It is not based on regularization.

⊲ Since it does not depend on the oscillation theory we believe there is a better

chance of extending it to higher order problems, Hamiltonian systems, difference

equations, etc.

Although the oscillation and non-oscillation theory has a long history and volu-

minous literature with many known sufficient and necessary conditions it is still an

open problem in the sense that there is no known necessary and sufficient condition

which could be verified in each case. Higher order oscillation theory is much more

complicated and less developed than in the second order case.

In the higher order case the Friedrichs extension has been characterized for very

general regular problems in [10], [8] and for a large class of singular problems in [7].

Following this Introduction, in Section 2 we review a version of the Friedrichs

construction in abstract Hilbert space and introduce some notation. Applications of

our adaptation of this construction are given in Section 3 for the LC/LC case and

in Section 4 for LC(R)/LP case. In Section 5 we compare our characterization with

the one in [11] and make some comments.
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2. The Friedrichs extension

In this section we present the construction of the Friedrichs extension of a sym-

metric bounded below operator S in a Hilbert space (H, (., .)) as given in [15].

Definition 1. A symmetic operator S is bounded below if there is a real num-

ber c such that (Sf, f) > c(f, f) for all f ∈ D(S). The number c is called a lower

bound for S and the smallest such c is called the lower bound for S.

Let ν denote a lower bound of S. Define a semi-bounded sesquilinear form s and

the associated inner product 〈·, ·〉s on D(S) by

s(f, g) = (Sf, g) and 〈f, g〉s = (Sf, g) + (1 − ν)(f, g), f, g ∈ D(S);

then (D(S), 〈·, ·〉s) is a pre-Hilbert space.
Let ‖·‖s denote the norm induced by the inner product 〈·, ·〉s on H ; then

‖f‖2s = 〈f, f〉s = (Sf, f) + (1− ν)‖f‖2,

and ‖f‖s > ‖f‖ for all f ∈ D(S).

Let Hs be the ‖·‖s completion of D(S). Then Hs is a Hilbert space and we define

the sesquilinear form s̄ on Hs by

(2.1) s̄(f, g) = 〈f, g〉s − (1− ν)(f, g) for f, g ∈ Hs.

Then s̄(f, g) = s(f, g) for f, g ∈ D(S), and s̄ is the closure of s.

Lemma 1 ([15]). The norm ‖·‖s is compatible with the norm ‖·‖, i.e. if {fn} is
a ‖·‖s Cauchy sequence in D(S) and ‖fn‖ → 0, then we also have ‖fn‖s → 0.

P r o o f. See page 123 in [15] for a proof. �

R em a r k 1 ([15]). If Hs is the ‖·‖s-completion of D(S), then Hs may be viewed

as a subspace of H , if the embedding of Hs into H is defined as follows: Let {fn}
be a ‖·‖s-Cauchy sequence in D(S). Then {fn} is a Cauchy sequence in H . Let the

element lim fn from H correspond to the element [{fn}] of Hs. From Lemma 1, this

correspondence is injective and the embedding is continuous with norm 6 1.
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Lemma 2. For {fn} ⊆ Hs, f ∈ Hs, ‖fn − f‖s → 0 if and only if

‖fn − f‖ → 0 in H, and (S(fn − fm), fn − fm) → 0, as n,m → ∞.

P r o o f. From ‖f‖s > ‖f‖ for all f ∈ Hs and

‖fn − fm‖2s = (S(fn − fm), fn − fm) + (1− ν)‖fn − fm‖2,

the conclusion follows. �

From Lemma 2 and ([15], Theorem 5.38) we get the following theorem:

Theorem 1. Let Hs be the ‖·‖s completion of D(S). Then the Friedrichs exten-

sion SF of S is defined as follows:

(2.2) D(SF ) = Hs ∩D(S∗), SF y = S∗y, y ∈ D(SF ).

The operator SF is the only self-adjoint extension of S with the propertyD(SF )⊂Hs.

Furthermore, D(SF ) can be characterized as

D(SF ) = {y ∈ D(S∗) : ∃{yk} ⊆ D(S), s.t. lim
k→∞

s̄(y − yk, y − yk) = 0},

and

D(SF ) = {y ∈ D(S∗) : ∃{yk} ⊆ D(S), s.t. {yk} → y in H

and (S(yk − ym), yk − ym) → 0, as k,m → ∞}.

3. The LC/LC case

In this section we characterize the Friedrichs extension SF of the Sturm-Liouville

equation (1.1) for the case when each endpoint is in the limit-circle (LC) case.

This case essentially includes the cases when one or both endpoints are regular (R).

Throughout this section we assume that the minimal operator Smin is bounded below

with lower bound ν. For convenience we start with a number of well known lemmas

which are used below.

Lemma 3 ([11]). For any λ < ν every nontrivial real solution y of My = λy has

at most one zero in (a, b).
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Lemma 4 ([15]). A self-adjoint operator T is bounded below if and only if its

spectrum σ(T ) is bounded from below. The greatest lower bound of T is equal to

minσ(T ).

Lemma 5. Assume that the deficiency index of the minimal operator Smin of

(1.1) is d. For λ real denote by r(λ) the number of linearly independent solutions of

equation (1.1) which lie in L2((a, b), w). Then r(λ) 6 d and if r(λ) < d, then λ is

in the essential spectrum σe(S) for every self-adjoint extension S of the the minimal

operator Smin. (See [15] for the definition of σe(S).)

P r o o f. See [4]. �

Next we state the well known GKN characterization of the self-adjoint domains.

Although we only use this theorem in the second order, i.e. Sturm-Liouville case we

state the general theorem, since this does not involve any extra complications or

length.

Lemma 6 ([9], GKN Theorem). AssumeM is a symmetric differential expression

with real coefficients and Smin, Smax are its minimal and maximal operators with

domains Dmin and Dmax, respectively. Then the deficiency indices of Smin are equal

with a common value d, say. A linear submanifold D(S) of Dmax is the domain of

a self-adjoint extension S of Smin if and only if there exist functions w1, w2, . . . , wd

in Dmax satisfying the following conditions:

(1) w1, w2, . . . , wd are linearly independent modulo Dmin;

(2) [wi, wj ](b)− [wi, wj ](a) = 0, i, j = 1, . . . , d;

(3) D(S) = {y ∈ Dmax : [y, wj ](b)− [y, wj ](a) = 0, j = 1, . . . , d}.
Here [·, ·] denotes the Lagrange bracket associated with M .

The next lemma characterizes the maximal domain in terms of solutions for certain

real values of the parameter λ.

Lemma 7. Assume equation (1.1) is in the Limit-Circle case at both a and b.

Assume λ < ν in equation (1.1). Let a < c < b. The following statements hold.

(1) The initial conditions

u1(c) = 0, u
[1]
1 (c) = 1; u2(c) = 1, u

[1]
2 (c) = 0

determine two linearly independent solutions u1, u2 of equation (1.1) on (c, b)

which lie in L2((c, b), w), where u
[1]
i = (pu′

i), i = 1, 2.
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(2) The initial conditions

u3(c) = 0, u
[1]
3 (c) = 1; u4(c) = 1, u

[1]
4 (c) = 0,

determine two linearly independent solutions u3, u4 of equation (1.1) on (a, c)

which lie in L2((a, c), w), where u
[1]
i = (pu′

i), i = 3, 4.

(3) There exists cb ∈ (c, b) such that ui(x) 6= 0 for x ∈ Ib = [cb, b), i = 1, 2.

Furthermore, u1/u2 is an increasing function on Ib.

(4) There exists ca ∈ (a, c) such that ui(x) 6= 0 for x ∈ Ia = (a, ca], i = 3, 4.

Furthermore, u3/u4 is an increasing function on Ia.

(5) The solutions u1, u2, u3, u4 can be extended to (a, b) so that the extended func-

tions, also denoted by u1, u2, u3, u4, satisfy uj ∈ Dmax(a, b), j = 1, . . . , 4,

and (i) u1, u2 are identically zero in a right neighborhood of a, (ii) u3, u4 are

identically zero in a left neighborhood of b. Moreover,

Dmax = Dmin ∔ span{u1, u2, u3, u4}.

P r o o f. From Lemma 3 there exists a subinterval Ib = [cb, b) of (c, b) such that

ui(x) 6= 0 for x ∈ Ib, i = 1, 2. Furthermore, we have

(u1

u2

)′

(x) =
u
[1]
1 u2 − u1u

[1]
2

pu2
2

(x) =
1

pu2
2

for x ∈ Ib a.e.

Hence, u1/u2 is an increasing function on Ib, i.e., item (3) is proved. Similarly,

item (4) can be proved. From the Patching Lemma and Theorem 4.6 in [3] item (5)

follows. �

Definition 2. Let the notation and hypotheses of Lemma 7 hold. Then

lim
x→b

−u1(x)

u2(x)
= lb, lim

x→a
−u3(x)

u4(x)
= la, −∞ 6 lb, la 6 ∞.

If lb, la are finite numbers, we define

(3.1) ũb := u1 + lbu2, ũa := u3 + lau4.

If lb = −∞, then lim
x→b

−u2(x)/u1(x) = l̃, l̃ = 0, we define

ũb := u2 + l̃u1 = u2.

Similarly, if la = ∞, define
ũa := u4.

R em a r k 2. In fact ũb is the principal solution at the endpoint b and ũa is the

principal solution at the endpoint a, as in [11].

305



Here we consider the case when lb, la are finite numbers. The other cases can be

investigated similarly.

Lemma 8. Let bn → b, an → a as n → ∞. Define ũbn , ũan
as

ũbn = u1 + lbnu2, lbn = −u1(bn)

u2(bn)
,

ũan
= u3 + lan

u4, lan
= −u3(an)

u4(an)
.

Then it is obvious that lim
n→∞

ũbn = ũb, lim
n→∞

ũan
= ũa.

Let ̺ > 0 be large enough to satisfy 3/(2̺) < cb− ca. Extend ũb to (a, b) denoting

it as ub, so that ub ∈ Dmax as follows:

(3.2) ub :=











0, a 6 x < cb − 1/̺− ϕ,

g, cb − 1/̺− ϕ 6 x 6 cb,

ũb, cb < x 6 b,

where

(3.3) g = A[cos ̺π(x − cb + ϕ) + 1], − 1

2̺
6 ϕ 6

1

2̺

and

(3.4) g(cb) = ũb(cb), g′(cb) = ũ′

b(cb),

where A, ϕ are constants. Similarly, extend ũa to (a, b) denoting it as ua so that

ua ∈ Dmax as follows:

(3.5) ua :=























ũa, a 6 x < ca,

f, ca 6 x 6 ca +
1

̺
− ϕ,

0, ca +
1

̺
− ϕ < x 6 b,

where

(3.6) f = B[cos ̺π(x − ca + ϕ) + 1], − 1

2̺
6 ϕ 6

1

2̺
,

and

(3.7) f(ca) = ũa(ca), f ′

a(ca) = ũ′

a(ca),
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where B,ϕ are constants. Define {ubn} as follows:

(3.8) ubn :=























0, a 6 x < cb − 1/̺− ϕn,

gn, cb − 1/̺− ϕn 6 x 6 cb,

ũbn , cb < x 6 bn,

0, bn < x 6 b,

where

(3.9) gn = An[cos ̺π(x − cb + ϕn) + 1], − 1

2̺
6 ϕn 6

1

2̺
,

and

(3.10) gn(cb) = ũbn(cb), g′n(cb) = ũ′

bn(cb).

Define {uan
} as follows:

(3.11) uan
:=























0, a 6 x < an,

ũan
, an 6 x < ca,

fn, ca 6 x 6 ca + 1/̺− ϕn,

0, ca + 1/̺− ϕn < x 6 b,

where

(3.12) fn = Bn[cos ̺π(x− ca + ϕn) + 1], − 1

2̺
6 ϕn 6

1

2̺
,

and

(3.13) fn(ca) = ũan
(ca), f ′

n(ca) = ũ′

an
(ca).

Then the definitions of ub, ubn and ua, uan
are meaningful.

P r o o f. Consider ub defined as in (3.2)–(3.4).

For convenience let sin ̺πϕ = x, cos ̺πϕ =
√
1− x2 and ũb(cb) = α, ũ′

b(cb) = β.

Then from (3.4) obtain

A(
√

1− x2 + 1) = α, −̺πAx = β,

where A 6= 0, since α 6= 0.

If β = 0, then x = 0, i.e. ϕ = 0, and A = α/2.
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Assume β 6= 0, then

(3.14)

√
1− x2 + 1

−̺πx
=

α

β
,

and by solving equation (3.14) we get

(3.15) x =
−2αβ̺π

̺2π
2α2 + β2

;

obviously,
∣

∣−2αβ̺π/(̺2π
2α2 + β2)

∣

∣ 6 1, so the solution is well defined,

(3.16) A =
̺2π

2α2 + β2

2α̺2π
2

.

From sin ̺πϕ = x, −1/(2̺) 6 ϕ 6 1/(2̺),

(3.17) ϕ =
1

̺π

arc sin
( −2αβ̺π

̺2π
2α2 + β2

)

.

The above results show that for every ũb(d) 6= 0, ũ′

b(d) 6= 0, d ∈ [cb, b), there exist

exactly one A and ϕ such that

A =
̺2π

2(ũb(d))
2 + (ũ′

b(d))
2

2̺2π
2ũb(d)

,(3.18)

ϕ =
1

̺π

arc sin
( −2̺πũb(d)ũ

′

b(d)

̺2π
2(ũb(d))2 + (ũ′

b(d))
2

)

.(3.19)

So ub is well defined. Similarly, we can prove ubn , ua, uan
are well defined. �

Lemma 9. Let Hs be the ‖·‖s completion of Dmin and let ub, ubn and ua be

defined as in Definition 8. Then

(1) ub, ua ∈ Dmax are linearly independent modulo Dmin;

(2) [ua, ub](b) = [ua, ub](a) = 0;

(3) {ubn}, {uan
} ⊆ Hs.

P r o o f. Parts (1) and (2) are clear, and for a proof of part (3) see the proof of

Lemma 8 in [7]. �
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Lemma 10. (1) Let g, gn be defined as in (3.3)–(3.4) and (3.9)–(3.10). Then

An → A, ϕn → ϕ.

Consequently,

gn → g, g′n → g′,

and {gn}, {g′n} are uniformly bounded on [cb − 1/̺ − ϕn, cb] and −1/(2̺) 6 ϕn 6

1/(2̺).

(2) Similarly, for f, fn defined in (3.6)–(3.7) and (3.12)–(3.13), we have

Bn → B, ϕn → ϕ.

Consequently,

fn → f, f ′

n → f ′,

and {fn}, {f ′
n} are uniformly bounded on [ca,6 ca +1/̺−ϕn] and −1/(2̺) 6 ϕn 6

1/(2̺).

P r o o f. We prove item (1), item (2) can be proved similarly. Equations (3.18)–

(3.19) define functions F and G:

A = F (ũb(cb), ũ
′

b(cb)), ϕ = G(ũb(cb), ũ
′

b(cb)).

Similarly,

An = F (ũbn(cb), ũ
′

bn(cb)), ϕn = G(ũbn(cb), ũ
′

bn(cb)).

From (3.18) and (3.19), F and G are continuous functions. Hence

lim
n→∞

An = lim
n→∞

F (ũbn(cb), ũ
′

bn(cb))

= F
(

lim
n→∞

ũbn(cb), lim
n→∞

ũ′

bn(cb)
)

= F (ũb(cb), ũ
′

b(cb)) = A.

Similarly,

lim
n→∞

ϕn = G(ũb(cb), ũ
′

b(cb)) = ϕ.

Then from (3.3) and (3.9), we have

gn → g, g′n → g′.

Since the trigonometric functions {gn} and {g′n} are all bounded, and since A is

a fixed number determined by ũb(cb) and ũ′

b(cb), we conclude that {gn} and {g′n}
are uniformly bounded functions. �
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Theorem 2. Let the notation and hypotheses of Lemma 7 hold. Then the domain

of the Friedrichs extension of the minimal operator Smin generated by the differential

expression M on J = (a, b) is given by:

(3.20) D(SF ) = Dmin ∔ span{ua, ub}.

P r o o f. First we prove ubn → ub in H , i.e.

(3.21) ‖ub − ubn‖ → 0;

here we may assume that cb − 1/̺− ϕn < cb − 1/̺− ϕ. We have

‖ub − ubn‖2 =

∫ b

a

|ub − ubn |2w dx

=

∫ cb−1/̺−ϕ

cb−1/̺−ϕn

|gn|2w dx+

∫ cb

cb−1/̺−ϕ

|g − gn|2ω dx

+ (lb − lbn)
2

∫ bn

cb

|u2|2w dx+

∫ b

bn

|ub|2w dx.

By virtue of Lemma 10, gn → g, ϕn → ϕ, and {gn} are uniformly bounded functions.
And note lbn → lb and u2, ub ∈ Dmax. Then

lim
n→∞

‖ub − ubn‖ = 0.

Secondly, let us prove

(3.22) (Smax(ubn − ubm), ubn − ubm) → 0.

Assume cb − 1/̺− ϕm < cb − 1/̺− ϕn and bm < bn. Then

(Smax(ubn − ubm), ubn − ubm)

=

∫ cb−1/̺−ϕn

cb−1/̺−ϕm

Smax(gm)ḡmw dx

+

∫ cb

cb−1/̺−ϕn

Smax(gn − gm)(gn − gm)w dx

+ λ(lbn − lbm)2
∫ bm

cb

|u2|2w dx+ λ

∫ bn

bm

|ubn |2w dx.
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Since lbn → lb and u2, ubn ∈ Dmax, the last two integrals converge to zero. The first

two integrals are

∫ cb−1/̺−ϕn

cb−1/̺−ϕm

Smax(gm)ḡmw dx(3.23)

=

∫ cb−1/̺−ϕn

cb−1/̺−ϕm

(p|g′m|2 + q|gm|2) dx− [pg′mgm]
cb−1/̺−ϕn

cb−1/̺−ϕm
,

∫ cb

cb−1/̺−ϕn

Smax(gn − gm)(gn − gm)w dx(3.24)

=

∫ cb

cb−1/̺−ϕn

(p|g′n − g′m|2 + q|gn − gm|2) dx

− [p(g′n − g′m)(gn − gm)]cbcb−1/̺−ϕn
.

Also from Lemma 10, ϕn → ϕ, gn → g, g′n → g′, and {gn}, {g′n} are uniformly
bounded functions. Combining it with p−1, q ∈ Lloc(J,R) and the Hölder inequality,

we conclude that integrals (3.23), (3.24) both converge to zero. So

(Smax(ubn − ubm), ubn − ubm) → 0, n,m → ∞.

Combining (3.21) and (3.22), we obtain

(3.25) ‖ub − ubn‖s → 0.

Then from Theorem 1, ub ∈ D(SF ). Similarly, we can prove ua ∈ D(SF ). Hence,

Dmin ∔ span{ua, ub} ⊆ D(SF ).

Lemma 6 (GKN Theorem) and Lemma 9 yield that

D(T ) = {y ∈ Dmax | [y, ua]
b
a = 0, [y, ub]

b
a = 0}

is a domain of a self-adjoint extension T of the minimal operator Mmin.

It is clear that Dmin ∔ span{ua, ub} ⊆ D(T ). Now we prove

Dmin ∔ span{ua, ub} = D(T ).

From item (5) in Lemma 7 and the construction of ua, ub, we have

Dmax = Dmin ∔ span{u1, u2, u3, u4} = Dmin ∔ span{ub, u2, ua, u4}.
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For all f = f0 + c1ub + c2u2 + c3ua + c4u4 ∈ D(T ), f0 ∈ Dmin,

0 = [f, ub]
b
a = c2[u2, ub](b) = c2[u2, u1](b), and [u2, u1](b) 6= 0,

so we get c2 = 0; similarly, we get c4 = 0, hence,

f = f0 + c1ub + c3ua ∈ Dmin ∔ span{ua, ub},

i.e. D(T ) ⊆ Dmin ∔ span{ua, ub}. So Dmin ∔ span{ua, ub} = D(T ).

From the uniqueness of the Friedrichs extension shown in Theorem 1, the domain

of the Friedrichs extension is

D(SF ) = Dmin ∔ span{ua, ub}.

�

To make Theorem 2 more general and convenient to use, we give the following

theorem:

Theorem 3. Let the notation and hypotheses of Lemma 7, Theorem 2, and

Definition 2 hold. Then the domain of the Friedrichs extension of the minimal

operator Smin is

(3.26) D(SF ) = Dmin ∔ span{Ua, Ub},

where

(3.27) Ub :=











0, a 6 x < ca

gb, ca 6 x 6 cb,

ũb, cb < x 6 b,

Ua :=











ũa, a 6 x < ca

ga, ca 6 x 6 cb,

0, cb < x 6 b,

where gb, ga are smooth functions which connect ũb and 0, ũa and 0 so that Ub, Ua ∈
Dmax.

P r o o f. Since Ub, Ua defined above and ub, ua defined in (3.2), (3.5) satisfy

(3.28) Ub − ub = h0 ∈ Dmin, Ua − ua = e0 ∈ Dmin,

we have

Dmin ∔ span{Ua, Ub} = Dmin ∔ span{ua, ub} = D(SF ).

In fact, if f ∈ Dmin ∔ span{Ua, Ub}, we have

f = f0 + αUa + βUb,
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where f0 ∈ Dmin, and by (3.28),

f = (f0 + αe0 + βh0) + αua + βub ∈ Dmin ∔ span{ua, ub}.

We have Dmin ∔ span{Ua, Ub} ⊆ Dmin ∔ span{ua, ub}.
Similarly we have Dmin ∔ span{Ua, Ub} ⊇ Dmin ∔ span{ua, ub}. �

To compare our method of construction with those in [6] and [11] we consider the

following example:

E x am p l e 1. Let us consider the Friedrichs extension of the Legendre equation

(3.29) −(py′)′ = λy on J = (−1, 1), p(t) = 1− t2, −1 < t < 1.

This equation is singular at both −1 and 1 and the deficiency index of its minimal

operator is 2.

The equation

−(py′)′ = 0, −1 < t < 1,

has two linearly independent solutions z1, z2 on (−1, 0] and v1, v2 on [0, 1):

z1(t) = −1

2
ln

∣

∣

∣

1− t

1 + t

∣

∣

∣
, z2(t) = 1, −1 < t 6 0,

v1(t) = −1

2
ln

∣

∣

∣

1− t

1 + t

∣

∣

∣
, v2(t) = 1, 0 6 t < 1.

Then we have

ũa = z2 ≡ 1, ũb = v2 ≡ 1.

To define U1, U−1, let −1 < c−1 < 0 < c+1 < 1, and let

U1 :=











0, −1 < x < c−1,

gb, c−1 6 x 6 0,

1, 0 < x 6 1,

U−1 :=











1, −1 < x 6 0,

ga, 0 6 x 6 c+1,

0, c+1 < x < 1,

where gb, ga are smooth functions such that U−1, U1 lie in the maximal domain.

From Theorem 3, the domain of the Friedrichs extension of the Legendre equation

on J = (−1, 1) is

(3.30) D(SF ) = Dmin ∔ span{U−1, U1}.

This is equivalent to the well-known boundary condition determining the Legendre

Friedrichs extension [6]:

(py′)(−1) = 0 = (py′)(1).

313



In fact, let

(3.31) D(SF ) = {y ∈ Dmax : (py′)(−1) = 0 = (py′)(1)},

then on the one hand D(SF ) ⊆ D(SF ), and on the other hand D(SF ) ⊆ D(SF ), i.e.

we have D(SF) = D(SF ).

R em a r k 3. We comment on the well-known characterization of the Friedrichs

extension for the Legendre equation (3.31) and the characterization given by The-

orem 3. As mentioned in Introduction, although the Friedrichs operator SF is cus-

tomarily described as an extension of Smin it is actually a restriction of Smax, see

(3.31). In contrast, the characterization (3.30) of Theorem 3 is an actual extension

of the minimal operator. It is interesting to observe that—in the Legendre case—the

singular condition (3.31) ‘looks like’ a regular Neumann boundary condition but is

actually the singular analogue of the regular Dirichlet condition.

Although Theorems 2 and 3 are stated for the LC/LC case they also include the

case when one or both endpoints are regular. If both endpoints are regular the

assumption that Smin is bounded below is not needed, since this is always true in the

regular case (with p and w positive) considered here. Next we state the regular case

as a corollary. The cases R/LC and LC/R are obtained similarly to the corollaries

of Theorems 2 and 3 (but in these cases the assumption that Smin is bounded below

is required).

Corollary 1. Assume equation (1.1) is regular at both a and b. Then:

(1) The minimal operator Smin is symmetric and bounded below, therefore Smin

has a Friedrichs extension. Let ν denote its lower bound.

(2) The domain of the Friedrichs extension SF of Smin is

D(SF ) = Dmin ∔ span{ua, ub},

where ua ∈ Dmax, ua(a) = 0, u′
a(a) 6= 0, and ua is identically zero in a left

neighborhood of b; ub ∈ Dmax, ub(b) = 0, u′

b(b) 6= 0, and ub is identically zero

in a right neighborhood of a.

E x am p l e 2. Let us consider the Friedrichs extension of the Legendre equation

−(py′)′ = λy on J = [0, 1), p(t) = 1− t2, 0 6 t < 1.

It is regular at 0 and singular at 1, the deficiency index is 2.
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The equation

−(py′)′ = 0, 0 6 t < 1,

has two linearly independent solutions

u1(t) = −1

2
ln
∣

∣

∣

1− t

1 + t

∣

∣

∣
, u2(t) = 1,

satisfying

u1(0) = 0, u1(t) 6= 0 for every t ∈ (0, 1), u2 ≡ 1 6= 0,

u
[1]
1 ≡ 1; u

[1]
2 ≡ 0.

Since
(u1

u2

)′

=
[u2, u1]

pu2
2

=
1

1− t2
> 0,

u1/u2 is an increasing function on [0, 1). Furthermore we have

lim
t→1

−u1(t)

u2(t)
= ∞, lim

t→0
−u1(t)

u2(t)
= 0.

By Definition 1 we have

ũb = u2 ≡ 1, ũa = u1.

Define U0, U1 as in Theorem 3. Let 0 < c0 < c1 < 1,

U1 :=











0, 0 6 x < c0,

gb, c0 6 x 6 c1,

u2, c1 < x < 1,

U0 :=











u1, 0 6 x < c0,

ga, c0 6 x 6 c1,

0, c1 < x < 1,

where gb, ga are smooth functions.

The Friedrichs extension of the Legendre equation described by Theorem 3 is

(3.32) D(SF ) = Dmin ∔ span{U0, U1}.

It is easy to check, as in Example 1, that this is equivalent to the well-known

boundary condition [6]

(3.33) y(0) = 0 = (py′)(1).

R em a r k 4. As in Remark 3 we note that the known characterization (3.33) of

the Friedrichs ‘extension’ is actually a restriction of the maximal domain whereas

the characterization (3.32) given by Theorem 3 is a genuine extension of the minimal

domain.
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4. The LC (R)/LP case

At an LP endpoint no boundary condition is required or allowed to determine

a self-adjoint realization of (1.1) in L2(J,w). From the well-known GKN Theorem

the following observations follow: If both endpoints are LP, then the deficiency

index d is d = 0; if exactly one endpoint is LP then d = 1; if neither endpoint is LP

then d = 2. When d = 0 there is no boundary condition and D(SF ) = Dmin. When

d = 1, then D(SF ) is a one dimensional extension of Dmin and a one dimensional

restriction of Dmax.When d = 2, then D(SF ) is a two dimensional extension of Dmin

and a two dimensional restriction of Dmax.

Theorem 4. AssumeM is LC (or regular) at a and LP at b, the minimal operator

Mmin being bounded below with a lower bound µ. Then the domain of the Friedrichs

extension of Mmin is

D(SF ) = Dmin ∔ span{za} or D(SF ) = Dmin ∔ span{Za},

where za(Za) is a Limit-Circle solution at a, and za is constructed as in Definition 8;

and Za is constructed as in Theorem 3.

P r o o f. Let c ∈ (a, b), λ < ν. From the hypotheses that a is LC (R) and b is

LP, and Smin is bounded below with lower bound ν and from Lemma 5, Theorem 4.1

in [3], it follows that

(1) The deficiency index of (1.1) on (a, c) is d1 = 2, the deficiency index of (1.1) on

(c, b) is d2 = 1.

(2) The Friedrichs extension SF exists and has discrete spectrum with lower

bound ν.

(3) There exist d1 = 2 solutions of equation (1.1) on (a, c) which lie in L2((a, c), w),

denoted as z1, z2, determined by the initial conditions

z1(c) = 0, z
[1]
1 (c) = 1; z2(c) = 1, z

[1]
2 (c) = 0.

(4) There exists a d2 = 1 solution of equation (1.1) on (c, b) which lies in L2((c, b), w),

denoted as z3, determined by the initial conditions

z3(c) = 0, z
[1]
3 (c) = 1.

(5) There exist m1 = 2d1 − 2k = 2 Limit-Circle solutions at a, d1 −m1 = 0 Limit-

Point solutions at a.

(6) There exist m2 = 2d2 − 2k = 0 Limit-Circle solutions at b, d2 −m2 = 1 Limit-

Point solutions at b.

316



(7) The solutions z1, z2, z3 can be extended to (a, b) so that the extended functions,

denoted by z1, z2, z3, satisfy zj ∈ Dmax(a, b), j = 1, 2, 3, and z1, z2 are identically

zero in a left neighborhood of b, z3 is identically zero in a right neighborhood of

a, and

Dmax = Dmin ∔ span{z1, z2, z3}.

Define za as in Definition 8, Define Za as in Theorem 3. We know that only the

LC solutions contribute to the determination of the self-adjoint boundary conditions

[3], [14]. Since M has no LC solutions at b, there is no restricting condition at b.

Therefore,

D(SF ) = Dmin ∔ span{za} or D(SF ) = Dmin ∔ span{Za}.

�

5. Comments

Niessen and Zettl [11], building on the work of Friedrichs [1], [2], Rellich [12],

Kalf [5], Rosenberger [13], and others, characterized the Friedrichs extension in terms

of boundary conditions determined by the principal and nonprincipal solutions. In

this section we summarize these results and compare them with our results which are

obtained by a completely different method. Our method is based on the construction

of a Hilbert space Hs whose elements are the functions of the domain D(Smin) of the

minimal symmetric operator Smin. The method used in [11] is based on ‘regularizing’

singular S-L problems and then applying the regular results from [10]; it relies heavily

on the oscillatory properties of (1.1) in contrast to our approach which relies on the

construction of a Hilbert space whose elements are the domain of Smin. Of course, the

Friedrichs domain is unique so our characterization is equivalent to that of Niessen-

Zettl given in [11]. As we will see below the NZ approach is a ‘top down’ approach

while ours is a ‘bottom up’ approach. This can be seen from the perspective of

the well known von Neumann formula for the domain of the adjoint of a symmetric

operator A in an abstract Hilbert space H :

D(A∗) = D(A)∔Nλ ∔Nλ, Im(λ) 6= 0,

where Nλ and Nλ are the deficiency spaces. So A is self-adjoint if and only if both

the deficiency spaces are {0}. In our case we have

Dmax = Dmin ∔Nλ ∔Nλ, Im(λ) 6= 0.
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So to get self-adjointness one needs to empty both the deficiency spaces. The NZ

approach can be described as making Dmax smaller while our approach here can be

described as makingDmin bigger; in both cases until equality is achieved. The details

follow below.

First we list some well known facts in the next proposition for the convenience

of the reader. Recall that an endpoint of (1.1) is oscillatory if there is a nontrivial

solution which has an infinite number of zeros in any neighborhood of that endpoint;

an endpoint is nonoscillatory if it is not oscillatory. No interior point is oscillatory. At

a regular or LC endpoint the oscillation is independent of real λ. At an LP endpoint

the oscillation depends on λ. So we say that an LP endpoint is LPO if equation (1.1)

is oscillatory for every λ ∈ R.

Proposition 1. Let (1.1) and (1.2) hold. Then

(1) The equation (1.1) is oscillatory at one endpoint of J for some λ ∈ R if and

only if Smin is not bounded below.

(2) If an endpoint is LP then no boundary condition is required or allowed at that

endpoint in order to determine a self-adjoint extension of the minimal operator

Smin in the Hilbert space H = L2(J,w).

(3) Assume a is LC. Then equation (1.1) is oscillatory for some λ ∈ R if and only

if it is oscillatory for all λ ∈ R. The same result holds at b.

P r o o f. These are well known [16]. �

By combining a number of results from [11] and [10], the following theorem can

be obtained.

Theorem 5 (Niessen-Zettl). Let (1.1) and (1.2) hold and let [y, z] = y(pz′) −
z(py′) for y, z ∈ Dmax denote the Lagrange bracket. Assume there is a λa ∈ R such

that (1.1) is nonoscillatory for λ = λa and let ua be the principal solution at a;

assume there is a λb ∈ R such that (1.1) is nonoscillatory for λ = λb and let ub be

the principal solution at b. Recall that the principal solution is unique up to constant

real multiples. Then:

(1) If a and b are regular, then the Friedrichs extension SF exists and its domain

is given by

D(SF ) = {y ∈ Dmax : y(a) = 0 = y(b)}.

(2) If a is regular and b is LCNO, then the Friedrichs extension SF exists and its

domain is given by

D(SF ) = {y ∈ Dmax : y(a) = 0 = [y, ub](b)}.
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(3) If b is regular and a is LCNO, then the Friedrichs extension SF exists and its

domain is given by

D(SF ) = {y ∈ Dmax : [y, ua](a) = 0 = y(b)}.

(4) If each of a and b is LCNO, then the Friedrichs extension SF exists and its

domain is given by

D(SF ) = {y ∈ Dmax : [y, ua](a) = 0 = [y, ub](b)}.

(5) If a is regular and b is LP but not LPO, then the Friedrichs extension SF exists

and its domain is given by

D(SF ) = {y ∈ Dmax : y(a) = 0}.

(6) If b is regular and a is LP but not LPO, then the Friedrichs extension SF exists

and its domain is given by

D(SF ) = {y ∈ Dmax : y(b) = 0}.

(7) If both the endpoints are LP but not LPO, then the minimal operator is bounded

below, self-adjoint and has no proper self-adjoint extension. In this case

D(SF ) = Dmin.

(8) If b is LCNO and a is LP but not LPO, then the Friedrichs extension SF exists

and its domain is given by

D(SF ) = {y ∈ Dmax : [y, ub](b) = 0}.

(9) If a is LCNO and b is LP but not LPO, then the Friedrichs extension SF exists

and its domain is given by

D(SF ) = {y ∈ Dmax : [y, ua](a) = 0}.

R em a r k 5. In the NZ Theorem there is no explicit assumption about the regular,

LC or LP classification of the endpoints. In contrast, our approach here makes no

explicit mention of oscillation or nonoscillation.

A c k n ow l e d g em e n t s. We thank the referee for her/his careful reading of

the manuscript and for making a number of suggestions which have improved the

presentation of this paper.
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