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PARAMETER DEPENDENT COCYCLES
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Abstract. We consider parameter-dependent cocycles generated by nonautonomous dif-
ference equations. One of them is a discrete-time cardiac conduction model. For this system
with a control variable a cocycle formulation is presented. We state a theorem about upper
Hausdorff dimension estimates for cocycle attractors which includes some regulating func-
tion. We also consider the existence of invariant measures for cocycle systems using some
elements of Perron-Frobenius theory and discuss the bifurcation of parameter-dependent
measures.
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1. Introduction

In this paper we consider nonautonomous discrete-time systems depending on

a parameter. Such systems arise, for example, if we introduce a control into an au-

tonomous discrete-time system, in order to stabilize the given system. The resulting

control system can be analysed using the cocycle theory ([1], [7]). Thus the complete

system consists of a driving or base system (control variables) and a cocycle over this

base system (phase variables). We consider invariant sets and invariant measures,

which depend on the control variables.

The paper is organized as follows. In Section 2 we recall some definitions on

discrete-time cocycles and their nonautonomous invariant sets. In Section 3 we
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estimate from above the Hausdorff dimension of nonautonomous invariant sets. Our

main result in that section is a generalization of the known Douady-Oesterlé estimate

for Hausdorff dimension ([10]) to the case of discrete-time cocycles in Hilbert spaces

including a regulating or Lyapunov type function. In Section 5 and Section 6 we

show how to construct invariant parametrized measures for discrete-time cocycles

and give a definition of bifurcations of such measures.

2. Some facts on discrete-time cocycle theory

Let (Q, d) be a complete metric space.

A (discrete-time) base flow ({σk}k∈Z, (Q, d)) is defined by a mapping

σ(·)(·) : Z×Q → Q, (k, q) 7→ σk(q)

possessing the following properties:

1) σ0(·) = idQ;

2) σk+j(·) = σk(·) ◦ σj(·) for each k, j ∈ Z.

A (discrete-time) cocycle over the base flow ({σk}k∈Z, (Q, d)) is defined by the

pair ({ϕk(q, ·)}k∈Z+,q∈Q, (M,ρ)), where (M,ρ) is a metric space and the following

conditions are satisfied:

1) ϕk(q, ·) : M → M, ∀ k ∈ Z+, ∀ q ∈ Q;

2) ϕ0(q, ·) = idM , ∀ q ∈ Q;

3) ϕk+j(q, ·) = ϕk(σj(q), ϕj(q, ·)), ∀ k, j ∈ Z+, ∀ q ∈ Q.

Shortly we denote the cocycle over the base flow by (σ, ϕ). This definition and the

subsequent properties were introduced in [7]. If q ∈ Q 7→ Z(q) ⊂ M is a map, we

call Ẑ = {Z(q)}q∈Q a nonautonomous set. The nonautonomous set Ẑ = {Z(q)}q∈Q

is said to be invariant for the cocycle (σ, ϕ) if ϕk(q, Z(q)) = Z(σk(q)) for all k ∈ Z+

and q ∈ Q.

The nonautonomous set Ẑ = {Z(q)}q∈Q is called bounded (closed, compact) if for

any q ∈ Q the set Z(q) is bounded (closed, compact) in M . A bounded nonauto-

nomous set Ẑ = {Z(q)}q∈Q is said to be globally B-pullback attracting for (σ, ϕ) if for

any q ∈ Q and any bounded set B ⊂ M we have lim
k→∞

dist(ϕk(σ−k(q), B), Z(q)) = 0,

where dist is the Hausdorff semidistance in (M,ρ).

A nonautonomous set is called a global B-pullback attractor for the cocycle (σ, ϕ)

if it is compact, invariant and globally B-pullback attracting.

Denote by ρ̃ the metric on the product space W := Q ×M given by

ρ̃((q, u), (q′, u′)) :=
√
d2(q, q′) + ρ2(u, u′), (q, u), (q′, u′) ∈ W.
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Introduce the skew product system ({Sk}k∈Z+
, (W, ρ̃)) defined by

(q, u) ∈ W 7→ Sk(q, u) := (σk(q), ϕk(q, u)).

3. Hausdorff dimension estimates for invariant sets of cocycles

Suppose that H is a separable Hilbert space with the scalar product (·, ·) and the

associated norm ‖·‖, K ⊂ H is a compact set, L ∈ L(H) is a linear operator. Let us

introduce the singular values of L by

αn(L) = sup
M⊂H

dimM=n

inf
u∈M
‖u‖=1

‖Lu‖, n = 1, 2, . . .

Suppose that d > 0 is an arbitrary number. It can be represented as d = d0 + s,

where d0 ∈ N0 and s ∈ [0, 1]. Now we put

ωd(L) :=

{
α1(L) · α2(L) · . . . · αd0

(L) · αs
d0+1(L), for d > 0,

1, for d = 0

and call ωd(L) the singular value function of L of order d, see [4].

Suppose that (σ, ϕ) is a discrete-time cocycle, given for k ∈ Z+ by

σk : Q → Q, ϕk(·, ·) : Q×H → H

and let us introduce the following assumptions:

(A1) The nonautonomous set Ẑ = {Z(q)}q∈Q is invariant for the cocycle (σ, ϕ).

(A2) For each q ∈ Q and k ∈ N let ∂2ϕ
k(q, ·) : H → H be the Fréchet derivative

of ϕk(q, ·) with respect to the second argument u, which has the following

properties:

a) For each ε > 0 and k ∈ N the function

gε(k, q) := sup
u,v∈Z(q)

0<‖v−u‖6ε

‖ϕk(q, v)− ϕk(q, u)− ∂2ϕ
k(q, u)(v − u)‖

‖v − u‖

is bounded on Q and converges to zero as ε → 0.

b) For each k ∈ N

sup
q∈Q

sup
u∈Z(q)

‖∂2ϕ
k(q, u)‖op < ∞.
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Theorem 3.1. Suppose that the assumptions (A1) and (A2) are satisfied and

the following conditions hold:

1) There exists a compact set K̃ ⊂ H , such that

⋃

q∈Q

Z(q) ⊂ K̃.

2) There exists a continuous function with respect to the second variable

κ : Q×H → R+, a time j ∈ N and a number d > 0 such that

Z(q) ⊂ Z(σj(q)), q ∈ Q

and

(3.1) sup
(q,u)∈Q×K̃

κ(σj(q), ϕj(q, u))

κ(q, u)
ωd(∂2ϕ

j(q, u)) < 1.

Then dimH Z(q) 6 d, ∀ q ∈ Q.

Here dimH(·) denotes the Hausdorff dimension of a set.

Note that a finite-dimensional version of Theorem 3.1 (H = R
n) was shown in [10].

A stochastic version of the theorem (without a regulating function κ(·, ·)) was derived

in [5].

4. The cardiac conduction model

A cardiac conduction model is formulated in [11] as a two-dimensional piecewise

smooth map. The model predicts a variety of experimentally observed complex

rythms of nodal conduction. It is shown in this paper that for certain parameter

values alternans, in which there is an alternation in conduction time from beat to

beat, are associated with period-doubling bifurcation.

The model can be written as a discrete-time nonautonomous system in the follow-

ing form:

(4.1)





Ak+1 = Amin +Rk exp
(
−
Ak +Hk

τfat

)

+ γ exp
(
−
Hk

τfat

)
+ β(Ak) exp

(
−
Hk

τrec

)
,

Rk+1 = Rk exp
(
−
Ak +Hk

τfat

)
+ γ exp

(
−
Hk

τfat

)
, k = 0, 1, . . . ,

208



where β : R → R is the piecewise linear function

β(x) :=

{
201− 0.7x, for x < 130,

500− 3.0x, for x > 130.

We suppose that Amin, τrec, γ and τfat are positive constants. The variable Ak

represents the conduction time of the kth beat; Rk represents a drift in the nodal

conduction time; Hk represents the interval between the bundle of His activation

and the subsequent activation (the AV nodal recovery time).

It is assumed that

(4.2) Hk = α+ pk, k = 0, 1, 2, . . . ,

where α is a parameter and {pk}
∞
k=0 is viewed as a control variable. Let us write

system (4.1), (4.2) as

(4.3) uk+1 = f(pk, uk, α), k = 0, 1, 2, . . . ,

where u = (A,R) and f : R× R
2 × R → R

2 is the right-hand side of (4.1).

We assume that {pk}k∈Z ∈ l2(Z,R). Introduce the space

(4.4) Q := {pk+· ; k ∈ Z}

as the closure in the topology of l2(Z,R). Suppose that σk : Q → Q, k ∈ Z is the

shift operator on Q which is defined for q = {qj}j∈Z ∈ Q by

(4.5) σk(q) := {qk+j}j∈Z.

Along with system (4.3)–(4.5) we consider the family of parameter-dependent

control systems

(4.6) uk+1 = f(qk, uk, α), k = 0, 1, 2, . . . ,

where q = {qk}k∈Z ∈ Q.

Suppose that uk(q, 0, u0), k ∈ N0 is the solution of (4.6) for fixed α with

u0(q, 0, u0) = u0.

Let us define a cocycle with respect to the base flow (4.4), (4.5) by

(4.7) ϕk(q, u0) := uk(q, 0, u0), k ∈ Z+.
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5. Invariant measures for cocycles and

the Perron-Frobenius operator

Suppose that (σ, ϕ) is a cocycle over the base flow in the sense of Section 2. Assume

that in addition to the metric structure (Q, d) we have the structure of a measurable

space (Q,A, µ), where A is a σ-algebra over Q and µ is a probability measure on A.

It is also assumed that µ is invariant for the base flow {σk}k∈Z, i.e.,

µ(σ−k(A)) = µ(A), A ∈ A, k ∈ Z.

Suppose that B is the σ-algebra of Borel sets on M . An invariant measure ν for

the cocycle (σ, ϕ) is a probability measure on A⊗B which is invariant with respect

to the skew product semiflow {Sk}k∈Z+
, i.e.,

ν(S−k(C)) = ν(C), C ∈ A⊗B, k ∈ Z+,

and satisfies πQν = µ, where πQ : Q×M → Q denotes the projection on Q.We can

characterize such invariant measures by their disintegration property

ν(dq, du) = νq(du)µ(dq),

i.e., for any set C ∈ A⊗B we have

(5.1) ν(C) =

∫

Q

νq(C(q)) dµ(q).

Thus a probability measure ν on Q×M is {Sk}-invariant iff ν is of the form (5.1)

and ϕk(q, ·)νq = νσk(q) µ-a.s. for k ∈ Z.

For the determination of such invariant measures one can use the Perron-Frobenius

operator P , which is defined as

(5.2) Pνq(C(q)) := νq
(
ϕ−1(q, C(σ1(q)))

)
, q ∈ Q.

R em a r k 5.1. Instead of the Perron-Frobenius operator (5.2) one can use transfer

operators. Consider, for example, the map ϕ̂ : Î → Î, where Î =
⋃
k>0

({k} × Bk)

and B0 = I is the unit interval, {Bk} are subsets of I, ϕ̂(k, u) = (k + 1, ϕ(u)) is

a tower construction, where the smooth map ϕ : I → I admits an invariant measure µ

absolutely continuous with respect to the Lebesgue measure m ([2]).

210



Introduce a regulating function κ : Î → (0,∞) and the transfer operator ([2])

(5.3) L(ĝ)(k, y) :=
∑

ϕ̂(l,x)=(k,y)

κ(l, x)

κ(k, y)

ĝ(l, x)

|ϕ′(x)|

acting on the Banach space BV (Î) of functions ĝ : Î → R.

If ̺ is an eigenfunction of L associated with the eigenvalue 1 then µ̂ = ̺κ dx is

an invariant measure for ϕ̂. Suppose that ϕ̂ is invertible. Then (5.3) reduces with

q = k, u = x to

L(ĝ)(ϕ̂(q, u)) =
κ(q, u)

κ(ϕ̂(q, u))

ĝ(q, u)

|ϕ′(u)|
.

For the existence of an invariant measure we need

(5.4)
κ(ϕ̂(q, u))

κ(q, u)
|ϕ′(u)| = 1, (q, u) ∈ Q× I.

For d = 1 we have in (3.1) ω1(∂2ϕ
1(q, u)) = |det ∂2ϕ

1(q, u)|. Thus, if we con-

sider (3.1) as equality, this condition coincides with (5.4).

6. Parametrized cocycles and bifurcations

Suppose that (Λ, ρΛ) is a metric space of parameters. Assume that {(Qα, dα)}α∈Λ

is a family of complete metric spaces,

(6.1)
(
{σk

α}k∈Z

α∈Λ
, (Qα, dα)

)

is a parametrized base flow and

(6.2)
(
{ϕk

α(q, ·)}k∈Z+

q∈Q
α∈Λ

, (M,ρ)
)

is a parametrized cocycle over the base flow (6.1). Here (M,ρ) is a complete metric

space.

According to the parametrized cocycle (6.2) over the parametrized base flow (6.1),

which we shortly denote by (σα, ϕα), we introduce the parametrized skew product

semiflow

(6.3)
(
{Sk

α}k∈Z+

α∈Λ

, (Wα, ρ̃α)
)
,

defined for all α ∈ Λ by Wα := Qα×M , ρ̃α((q, u), (q
′, u′)) :=

√
d2α(q, q

′) + ρ2α(u, u
′),

(q, u), (q′, u′) ∈ Wα, and (q, u) ∈ Wα 7→ Sk
α(q, u) := (σk

α(q), ϕ
k
α(q, u)), k ∈ Z+.
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Let (Qα,Aα, µα) be a family of probability spaces depending on a parameter α ∈ Λ.

The maps {σk
α}k∈Z,α∈Λ are assumed to be measure preserving, i.e., σ

k
α(µα) = µα,

k ∈ Z, α ∈ Λ. Suppose that (M,B) is a measurable space and that the maps

ϕk
α(·) : Qα ×M → M are (Aα ⊗B,B) measurable for k ∈ Z+, α ∈ Λ.

Let {να}α∈Λ be a family of invariant maps for the parametrized skew product,

i.e., Sk
α(να) = να and πQα

να = να for k ∈ Z and α ∈ Λ.

A parameter value α0 is called a bifurcation point of the family of invariant mea-

sures {να}α∈Λ if this family is not structurally stable at α0, i.e., if in any neighbor-

hood of α0 there are parameter values α ∈ Λ such that {Sk
α0
} and {Sk

α} are not

topologically equivalent ([1], [9]).

E x am p l e 6.1. The Rényi map ϕα : [0, 1] → [0, 1], which can be viewed as a one-

dimensional model of cardiac arrhythmias ([6]), is given by ϕα(x) = αx mod 1 with

α > 1. This map generates a metric dynamical system ({ϕk
α},m), where m denotes

the Lebesgue measure on the unit interval. Let us consider the transfer operator Lα

given by Lα : L2(m) → L2(m), where Lαη := (d/dm)
∫
ϕ

−1
α (·)

η dm and d/dm is the

Radon-Nikodym derivative with respect to m. Spectral properties of this operator

family are investigated for test functions in rigged Hilbert spaces in [3]. Depending

on the choice of these rigged Hilbert spaces different parametrized invariant measures

are derived and bifurcations of such measures are considered in [3], [8].

The map under perturbation q is ϕα(q, u) = ϕα(u) + q. Thus we can consider the

associated skew product system S
(·)
α (·) : Qα× I → Qα× I. The spaces {Qα}α>1 can

be defined by Qα = l2(Z,R), where for q ∈ Qα we define ‖q‖
2
l2
α
(Z,R) :=

∑
k

|α−kqk|
2.
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