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On a class of nonlocal problem involving a critical
exponent

Anass Ourraoui

Abstract. In this work, by using the Mountain Pass Theorem, we give a re-
sult on the existence of solutions concerning a class of nonlocal p-Laplacian
Dirichlet problems with a critical nonlinearity and small perturbation.

1 Introduction
This paper deals with the following elliptic problem

−M
(∫

Ω

|∇u|p dx

)
∆pu = βh(x)|u|q−2u+ |u|p

∗−2u+ f(x) in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain with smooth boundary, p∗ = Np
N−p is the critical

Sobolev exponent, 1 < p < N , β is a positive parameter, and h ∈ L
p∗
p∗−q (Ω), f ∈

Lp
′
(Ω), with 1

p + 1
p′ = 1.

Where the functional M verifies,

M : (0,+∞)→ (0,+∞) is continuous and m0 = inf
s>0

M(s) > 0, (2)

The problem (1) is called nonlocal because of the presence of the term
M
(∫

Ω
|∇u|p dx

)
, so it is not any more a pointwise identity. This leads us to

some mathematical difficulties which makes the study of such a class of problem
particularly interesting.

It is well known that the critical exponent case is often difficult because of the
lack of compactness, so standard arguments cannot be carried out to handle the
problem (1). As far as we know, very few results have been obtained in elliptic
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problems involving critical exponent, for instance we just quote [1], [2], [4], [5],
[6], [7], [9], [11] and references therein. However, inspired by these interesting
works, especially by [4], within which we will borrow some ideas, our goal will
be to generalize some corresponding results partially and extend them to the case
p 6= 2 with an existence of a perturbation f. We have to mention that [5] could
be considered as the first work dealing with multivalued elliptic problem and the
presence of which involves critical growth in an Orlicz-Sobolev space, where the
nonlinearity can be discontinuous.

From now on, we make the following assumption:

M̂(t) ≥M(t)t for t > 0 , with M̂(t) =

∫ t

0

M(s) ds. (3)

Accordingly, we can report our main result,

Theorem 1. Under the hypotheses (2), (3) and q ∈ (p, p∗), there exists β∗ > 0,
such that the problem (1) has at least a nontrivial solutions for all β ≥ β∗, provided
f is small enough in the norm ‖·‖∗ of (W 1,p

0 (Ω))∗.

Throughout this paper, we consider the C1-functional energy

φ(u) =
1

p
M̂

(∫
Ω

|∇u|p dx

)
− β

q

∫
Ω

h(x)|u|q dx− 1

p∗

∫
Ω

|u|p
∗

dx−
∫

Ω

f(x)udx.

Note that

φ′(u) · v = M(‖u‖p)
∫

Ω

|∇u|p−2∇u∇v dx− β
∫

Ω

h(x)|u|q−2uv dx

−
∫

Ω

|u|p
∗−2uv dx−

∫
Ω

f(x)v dx,

for all v ∈W 1,p
0 (Ω). Where,

W 1,p
0 (Ω) =

{
u ∈ Lp(Ω) :

∫
Ω

|∇u|p dx <∞, u/∂Ω = 0
}
.

By a version of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz
[10], [12], without Palais-Smale condition, there exists a sequence (un)n ⊂W 1,p

0 (Ω)
such that

φ(un)→ cβ and φ′(un)→ 0,

where

cβ = inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)) > 0

with

Γ =
{
γ ∈ C

(
[0, 1],W 1,p

0 (Ω)
)

: γ(0) = 0, φ
(
γ(1)

)
< 0
}
.
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We recall that u ∈W 1,p
0 (Ω) is a weak solution of the problem (1) if it verifies

M(‖u‖p)
∫

Ω

|∇u|p−2∇u∇v dx−
∫

Ω

βh(x)|u|q−2uv dx

−
∫

Ω

|u|p
∗−2uv dx−

∫
Ω

f(x)v dx = 0,

for all v ∈W 1,p
0 (Ω).

So the critical points of φ are solutions of the problem (1).

2 Auxiliary results
Let Ls(Ω) be the Lebesgue space equipped with the norm |u|s =

(∫
Ω
|u|s dx

) 1
s ,

1 ≤ s <∞ and let W 1,p
0 (Ω) be the usual Sobolev space with respect to the norm

‖u‖ =

(∫
Ω

|∇u|p dx

) 1
p

.

Now we can define the best Sobolev constant

S = inf
u∈W 1,p(Ω)\{0}

∫
Ω
|∇u|pdx

(
∫

Ω
|u|p∗dx)

p
p∗
.

In the sequel, we are to compare the minimax level cβ with a suitable number
which involves the constant S.

Lemma 1. There exist σ > 0, ρ > 0 and e ∈W 1,p
0 (Ω) with ‖e‖ > ρ such that

(i) inf‖u‖=ρ φ(u) ≥ σ > 0;

(ii) φ(e) < 0.

Proof. (i) From the Hölder’s inequality and the compact embedding theorem, we
have

φ(u) ≥ m0

p

∫
Ω

|∇u|p dx− β

q
|h|θ

∫
Ω

|u|q dx− 1

p∗

∫
Ω

|u|p
∗

dx−
∫

Ω

f(x)udx

≥ C0‖u‖p −
C1β

q
|h|θ‖u‖q −

1

p∗S
p∗
p

‖u‖p
∗
− |f |p′ |u|p

≥ C0‖u‖p −
C1β

q
|h|θ‖u‖q − C2‖u‖p

∗
− C3‖f‖∗‖u‖, (4)

with θ = p∗

[p∗−q] and C0, C1, C2, C3 > 0. Since q ∈ (p, p∗) then for ‖u‖ = ρ > 0

small enough, we may find σ > 0 such that

inf
‖u‖=ρ

φ(u) ≥ σ > 0

where ‖f‖∗ be small.
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(ii) Fix v ∈ C∞0 (Ω \ {0}) with v ≥ 0 in Ω and ‖v‖ = 1.

φ(tv) ≤ A|t|p − β|t|θ
∫

Ω

h(x)vθ dx+ C − |t|
p∗

p∗

∫
Ω

h(x)vp
∗

dx− |t|
∫

Ω

f(x)v dx,

with A and C are two positive constants, it follows that

φ(tv)→ −∞ as |t| → ∞. �

Lemma 2. lim
β→+∞

cβ = 0.

Proof. Let v the function given by the previous lemma 1, then there is tβ > 0 such
that φ(tβv) = max

t≥0
φ(tv), thereafter,

M(‖tβv‖p)tpβ‖v‖
p = βtqβ

∫
Ω

h(x)|v|q dx+ tp
∗

β

∫
Ω

|v|p
∗

dx+ t2β

∫
Ω

f(x)v2 dx, (5)

it follows from (3) that there is c > 0, such that

M̂(s) ≤ c|s| for all s > s0 > 0 .

Hence

ctpβ‖v‖
p ≥ βtqβ

∫
Ω

h(x)|v|q dx+ tp
∗

β

∫
Ω

|v|p
∗

dx+ t2β

∫
Ω

f(x)v2 dx

and then tβ is bounded, so there exists a sequence βn → +∞ and t∗ ≥ 0 with
tβn → t∗ as n→ +∞ and thus

M(‖tβnv‖p)t
p
βn
‖v‖p < C, ∀n ∈ N,

with C is a positive constant, which yields

βnt
q
∗

∫
Ω

h(x)|v|q dx+ tp
∗

∗

∫
Ω

|v|p
∗

dx ≤ C, ∀n ∈ N.

Hence, we claim that t∗ = 0, otherwise, t∗ > 0 and then the last inequality becomes

βnt
q
∗

∫
Ω

h(x)|v|q dx+ tp
∗

∗

∫
Ω

|v|p
∗

dx→ +∞

as n→ +∞, which is absurd, so t∗ = 0.
Taking γ0(t) = te, with γ0 ∈ Γ, then we get

0 < cβ ≤ max
t∈[0,1]

φ(γ0(t)) ≤ 1

p
M̂(tpβ).

Since M̂(tpβ)→ 0 then limβ→∞ cβ = 0. �
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As consequence of the above lemma, there exists β∗ > 0 such that for every
β ≥ β∗,

cβ <

(
1− p

p∗

)
(m0S)

N
p .

Lemma 3. Let (un)n ⊂ W 1,p
0 (Ω), with φ(un) → cβ , and φ′(un) → 0. Then (un)n

is bounded in W 1,p
0 (Ω).

Proof. Assume that φ(un)→ cβ , and φ′(un)→ 0, then we have

pcβ + o(1) + o(1)‖un‖ = pφ(un)− (φ′(un) · un)

≥ C4β

(
1− p

q

)
|h|θ‖un‖q + C5

(
1− p

p∗

)
‖un‖p

∗

+ (p− 1)

∫
Ω

f(x)un dx,

where θ = p∗

p∗−q , C4, C5 > 0, we infer that (un)n is bounded in W 1,p
0 (Ω). �

3 Proof of the main result
Proof. (Theorem 1) As it was previously mentioned, we are to apply a version of
the Mountain Pass theorem without Palais-Smale condition to obtain a sequence
(un)n ⊂W 1,p

0 (Ω) such that φ(un)→ cβ and φ′(un)→ 0.

Because (un)n is a bounded sequence in W 1,p
0 (Ω), passing to a subsequence, so

we may find γ > 0 with
‖un‖ → γ,

it follows from the continuity of M that

M(‖un‖p)→M(γp).

On the other side, we know that un ⇀ u in W 1,p
0 (Ω), then

un → u in Lr(Ω), for 1 < r < p∗

and
un(x)→ u(x) a.e. x ∈ Ω.

By the Lebesgue Dominated Theorem,∫
Ω

h(x)|un|q dx→
∫

Ω

h(x)|u|q dx.

Further,
|∇un|p ⇀ |∇u|p + µ weak∗-sense of measure,

|un|p
∗
⇀ |u|p

∗
+ ν weak∗-sense of measure.

Afterwards, as a consequence of the concentration compactness principle due
to Lion [8], there is an index set I, which is an at most countable set such that

ν =
∑
i∈I

νiδi, µ ≥
∑
i∈I

µiδi
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and
Sν

p/p∗

i ≤ µi,

for any i ∈ I with (µi)i, (νi)i ⊂ [0,∞), δi is the Dirac mass and (µi)i, (νi)i are
nonatomic positive measures. We claim that I = ∅, otherwise, we have I 6= ∅ and
fix i ∈ I. Taking ψ ∈ C∞0 (Ω, [0, 1]) such that ψ ≡ 1 if |x| < 1 and ψ ≡ 0 when
|x| > 2 with |∇ψ|∞ ≤ 2. Putting ψρ(x) = ψ

(
x−xi
ρ

)
for ρ > 0, noting that (ψρun)

is bounded thus φ′(un) · (ψρun)→ 0, that is

M

(∫
Ω

|∇un|p
)∫

Ω

|∇un |p−2 ∇un · ∇ψρun dx

= −M
(∫

Ω

|∇un|p
)∫

Ω

|∇un |p ψρ∇un dx+

∫
Ω

|un|p
∗−2un · ψρun dx

+ β

∫
Ω

h(x)|un|q−2unψρun dx+

∫
Ω

f(x)ψρun +On(1).

As it is known that B2ρ(xi) is the support of the functional ψρ and by applying
Hölder inequality then we get∣∣∣∫

Ω

|∇un|p−2∇un.∇ψρun dx
∣∣∣ ≤ ∫

B2ρ(xi)

|∇un|p−1 |un∇ψρ|dx

≤
(∫

B2ρ(xi)

|∇un|p
) 1
p′
(∫

B2ρ(xi)

|un∇ψρ|p dx
) 1
p

≤ C
(∫

B2ρ(xi)

|un∇ψρ|p dx
) 1
p

.

By the Dominated convergence Theorem we entail that∫
B2ρ(xi)

|un∇ψρ|p dx→ 0

when n→∞ and ρ→ 0.
Hence,

lim
ρ→0

[
lim
n

∫
Ω

un|∇un|p−2∇un.∇ψρ
]

= 0.

On the other hand, we recall that M(‖un‖p) converges to M(γp), so we reach

lim
ρ→0

[
lim
n
M(‖un‖p)

∫
Ω

un|∇un|p−2∇un.∇ψρ
]

= 0.

Similarly,

lim
ρ→0

lim
n

[∫
Ω

h(x)|un|q−2unψρun

]
= 0,

lim
ρ→0

lim
n

[∫
Ω

f(x)ψρun

]
= 0
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and thus ∫
Ω

M(γp)ψρ dµ+Oρ(1) ≤
∫

Ω

ψρ dν.

Tending ρ to zero we conclude that

νi ≥M(γP )µi ≥ m0µi,

from the definition of ν and µ we have

νi ≥ (m0S)
N
p .

It does not make sense, indeed, let i ∈ I such that

νi ≥ (m0S)
N
p .

Since (un)n is a (PS)cβ for the functional φ, then

pcβ = pφ(un) = pφ(un)− φ′(un) · un +On(1)

≥
(

1− p

p∗

)∫
Ω

ψρ|un|p
∗

dx+On(1),

tending n→ +∞, therefore

pcβ ≥
(

1− p

p∗

)∑
i∈I

ψρ(xi)νi =

(
1− p

p∗

)∑
i∈I

νi ≥
(

1− p

p∗

)
(m0S)

N
p ,

which cannot occur (because limβ→∞ cβ = 0), thereafter I is empty and thereby
un → u in Lp

∗
(Ω).

On the other hand,

M (‖un‖p)
∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u) dx

= φ′(un). (un − u) + β

∫
Ω

h(x)|un|q−2un(un − u) dx+

∫
Ω

f(x)(un − u) dx

+

∫
Ω

|un|p
∗−2un(un − u) dx−M (‖un‖p)

∫
Ω

|∇u|p−2∇u (∇un −∇u) dx.

In view of un ⇀ u, a standard argument (similar to those found in [3]) shows
that

∇un(x)→ ∇u(x) for a.e. x ∈ Ω,

and
un(x)→ u(x) for a.e. x ∈ Ω,

then

M (‖un‖p)
∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u) dx→ 0.
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Using the following inequalities ∀x, y ∈ RN

|x− y|γ ≤ 2γ(|x|γ−2x− |y|γ−2y) · (x− y) if γ ≥ 2,

|x− y|2 ≤ 1

γ − 1
(|x|+ |y|)2−γ(|x|γ−2x− |y|γ−2y) · (x− y) if 1 < γ < 2,

where x · y is the inner product in RN , we get

c m0

∫
Ω

|∇un−∇u|p dx ≤M (‖un‖p)
∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u) dx.

Consequently,
‖un − u‖ → 0,

which will imply that
un → u in W 1,p

0 (Ω).

Thus
φ(u) = cβ , φ′(u) = 0

and we get the solution u1, it is a mountain pass type. �
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