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Abstract

G. Szász, J. Szendrei, K. Iseki and J. Nieminen have made an exten-
sive study of derivations and translations on lattices. In this paper, the
concepts of meet-translations and derivations have been studied in trel-
lises (also called weakly associative lattices or WA-lattices) and several
results in lattices are extended to trellises. The main theorem of this pa-
per, namely, that every derivatrion of a trellis is a meet-translation, is
proved without using associativity and it generalizes a well-known result
of G. Szász.
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1 Introduction

Any reflexive and antisymmetric binary relation � on a set L is called a pseudo-
order on L and 〈L;�〉 is called a pseudo-ordered set or a psoset. Two elements
x and y are comparable if x� y or y � x. For a subset B of L, the notions of a
lower bound, an upper bound, the greatest lower bound (g.l.b. or meet denoted
by
∧
B), the least upper bound (l.u.b. or join denoted by

∨
B) are defined

analogously to the corresponding notions in a partially ordered set or a poset.
By a trellis we mean a psoset, any two of whose elements have a g.l.b. and

a l.u.b. Similarly to lattices, trellises can be defined as algebras 〈L;∨,∧〉 where
∨,∧ and � are related as in lattices: a trellis is an algebra 〈L;∨,∧〉 where the
binary operations ∨ and ∧ satisfy the following properties:
*Corresponding author
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(i) a ∨ b = b ∨ a and a ∧ b = b ∧ a,
(ii) a ∨ (b ∧ a) = a = a ∧ (b ∨ a),
(iii) a ∨ ((a ∧ b) ∨ (a ∧ c)) = a = a ∧ ((a ∨ b) ∧ (a ∨ c)).
The notion of a psoset and a trellis are due to E. Fried [1] and H. L. Skala

[9]. In [7], it is shown that any psoset can be regarded as a digraph (possibly
infinite). A tournament is a psoset in which every two elements are comparable.
For the undefined notations and terminology, [7] and [9] may be referred.
A subtrellis S of a trellis L is a nonempty subset of L such that a, b ∈ S

implies that a∧b, a∨b belong to S, where ∧ and ∨ are considered in L. An ideal
I of a trellis L is a subtrellis of L such that i ∈ I and a ∈ L imply that a∧ i ∈ I,
or equivalently, i ∈ I, a ∈ L and a � i imply that a ∈ I. H. L. Skala in [9] has
included the empty set also as an ideal of a trellis. If B is a nonempty subset
of a trellis L, then the ideal generated by B is defined to be the intersection of
all ideals of L containing B and is denoted by (B]. The ideal generated by a
single element a is called the principal ideal generated by a and is denoted by
(a]. The dual notions are defined similarly. The set of all ideals of a trellis L
forms a lattice with respect to set inclusion and it is denoted by I(L). In fact,
for I, J ∈ I(L), I ∧ J = I ∩ J and I ∨ J = (I ∪ J ].

2 Meet-translations and derivations on trellises

Definition 2.1 A mapping λ of a trellis L into itself is called a

(i) meet-translation if λ(x ∧ y) = λ(x) ∧ y for all x, y ∈ L;

(ii) join-translation if λ(x ∨ y) = λ(x) ∨ y for all x, y ∈ L.

Examples

(1) The identity mapping of any trellis is both a join-translation and a meet-
translation.

(2) If a trellis L with least element 0 has at least two elements, then the
mapping w defined by w(x) = 0 for every x ∈ L is a meet-translation that
is not a join-translation.

The following lemma and the two propositions generalize the corresponding
results in lattices [10] to trellises.

Lemma 2.2 Let λ be a meet-translation on a trellis L. Then for all x, y ∈ L,

(i) x� y implies λ(x)� λ(y);

(ii) λ(x)� x;

(iii) λ(λ(x)) = λ(x), i.e. λ is idempotent;

(iv) λ(x ∧ y) = λ(x) ∧ λ(y), i.e. λ is a meet-endomorphism;
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(v) the fixed elements of λ (x is said to be a fixed element of λ if λ(x) = x)
form an ideal of L which will be called the fixed ideal of λ, denoted by
Fixλ; also Fixλ = λ(L).

Proof Follows easily.

Proposition 2.3 Any two meet-translations of a trellis are permutable (two
mappings f and g are said to be permutable if f ◦ g = g ◦ f where ◦ is the
composition of mappings).

Proof Follows easily because f(g(x)) = f(x∧ g(x)) = f(x)∧ g(x) for any two
meet-translations f , g. �

Remark 2.4 The set of all meet-translations on a trellis L forms a commutative
monoid with respect to composition of mappings.

Proposition 2.5 If λ1 and λ2 are any two distinct meet-translations of a trellis
L, then Fixλ1 	= Fixλ2.

Proof If Fixλ1 = Fixλ2, then {x ∈ L | λ1(x) = x} = {x ∈ L | λ2(x) = x}.
This implies λ1(x) = λ1(λ2(x)) = λ2(λ1(x)) = λ2(x), a contradiction to the
hypothesis that λ1 	= λ2. Therefore Fixλ1 	= Fixλ2. �

Proposition 2.6 If A is an ideal of a trellis L and λ : L → L is a meet-
translation, then λ(A) is an ideal of A and hence an ideal of L.

Proof By (ii) of Lemma 2.2, λ(A) ⊆ A. Hence λ�A : A → A is also a meet-
translation. We easily observe that λ(A) = {a ∈ A | a = λ(a)}. This shows that
λ(A) is the set of all fixed elements of A under the meet-translation λ�A : A→ A.
Applying (v) of Lemma 2.2 to λ�A : A → A we conclude that λ(A) is an ideal
of A. Hence an ideal of L. �

Remark 2.7 By (iv) of Lemma 2.2, every meet-translation on a trellis is a
meet-endomorphism. G. Szász [10] has proved that every meet-translation of a
lattice L is a join-endomorphism if and only if L is distributive.

Remark 2.7 suggests the following open problem.

Problem Characterize those trellises in which every meet-translation is a join-
endomorphism.

As every distributive trellis is a lattice [9], it is natural to consider the in-
equality (2.1) which is valid in tournaments. The following proposition answers
the problem partially.

Proposition 2.8 If a trellis L satisfies the inequality

x ∧ (y ∨ z)� (x ∧ y) ∨ (x ∧ z), (2.1)

then every meet-translation is a join-endomorphism.
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Proof Let L be a trellis satisfying the property (2.1) and λ be a meet-
translation on L. For any x, y ∈ L,

λ(x) ∨ λ(y) = λ((x ∨ y) ∧ x) ∨ λ((x ∨ y) ∧ y)
= (λ(x ∨ y) ∧ x) ∨ (λ(x ∨ y) ∧ y)
� λ(x ∨ y) ∧ (x ∨ y) by (2.1)

= λ(x ∨ y).

Since x, y � x ∨ y, we have λ(x), λ(y)� λ(x ∨ y). Then λ(x) ∨ λ(y)� λ(x ∨ y).
Therefore λ(x ∨ y) = λ(x) ∨ λ(y). �

Remark 2.9 The converse of the above proposition is not true. For, the trellis
L of Figure 1 has only three meet-translations λ0, λ1 and I which are respectively
defined by

λ0(x) = 0 for every x ∈ L,

λ1(x) =

{
0 for x ∈ {0, a, b},
d for x ∈ {c, d, 1},

I(x) = x for every x ∈ L.

Each of these meet-translations is a join-endomorphism, but the trellis does not
satisfy (2.1) because c ∧ (a ∨ d) = c � d = (c ∧ a) ∨ (c ∧ d).

Fig. 1

Definition 2.10 A mapping β of a trellis L into itself is called a derivation of
L if it satisfies the following conditions for all x, y ∈ L:

(i) β(x ∨ y) = β(x) ∨ β(y);
(ii) β(x ∧ y) = (β(x) ∧ y) ∨ (β(y) ∧ x).

The mappings given in Examples (1) and (2) are also derivations.

Lemma 2.11 If β is a derivation on a trellis L, then for all elements x, y ∈ L:

(i) x� y implies β(x)� β(y);
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(ii) β(x)� x;

(iii) β(β(x)) = β(x);

(iv) x� y implies β(x) = x ∧ β(y).
Proof (i) to (iii) follow easily. (iv): Let x � y. Then β(x) � β(y) by (i) and
β(x) � x by (ii). Therefore β(x) � x ∧ β(y). Also

β(x) = β(x ∧ y) = (β(x) ∧ y) ∨ (β(y) ∧ x) � x ∧ β(y).
Hence β(x) = x ∧ β(y). �

Following is the main theorem of this paper generalizing a well-known result
that “Every derivatrion of a lattice is a meet-translation” due to G. Szász [10].
The proofs are not similar as ∧ and ∨ are not associative in trellises, the theorem
is proved without using associativity.

Theorem 2.12 Every derivation of a trellis L is a meet-translation on L.

Proof Let β be a derivation of a trellis L. Then by (ii) of Definition 2.10

β(u ∧ v) � β(u) ∧ v (2.2)

for all u, v ∈ L. Taking x = β(u) ∧ v and y = β(u) in (iv) of Lemma 2.11, we
have

β(β(u) ∧ v) = (β(u) ∧ v) ∧ β(β(u))
= (β(u) ∧ v) ∧ β(u) by (iii) of Lemma 2.11

= β(u) ∧ v.
Thus

β(β(u) ∧ v) = β(u) ∧ v (2.3)

which gives us (β(u) ∧ v) ∨ (β(u) ∧ β(v)) = β(u) ∧ v implying
β(u) ∧ v � β(u) ∧ β(v). (2.4)

Since β(u) ∧ v � v, by (i) of Lemma 2.11, β(β(u) ∧ v) � β(v). Then, by (2.3),
β(u) ∧ v � β(v). Also β(u) ∧ v � β(u). Therefore

β(u) ∧ v � β(u) ∧ β(v). (2.5)

From (2.4) and (2.5), β(u) ∧ v = β(u) ∧ β(v). Thus
β(u) ∧ v = β(u) ∧ β(v)� β(u ∧ v) (2.6)

since u∧ v� u, v implies β(u∧ v)� β(u), β(v) which in turn implies β(u∧ v)�
β(u) ∧ β(v). From (2.2) and (2.6), β(u ∧ v) = β(u) ∧ v for all u, v ∈ L, so that
β is a meet-translation. �

By G. Szász [10], Corollary 3, every derivation on a lattice L is of the form
β(x) = x∧ c for some c ∈ L if and only if L has greatest element. This corollary
holds in trellises by Lemma 2.11 (iv).
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Remark 2.13 The converse of Theorem 2.12 is not true. For, in the lattice
of Figure 2, the mapping λ : L → L defined by λ(0) = 0 = λ(z), λ(x) = x,
λ(y) = y and λ(1) = y is a meet-translation. It is not a join-endomorphism
because λ(x ∨ z) 	= λ(x) ∨ λ(z).

Fig. 2

The following theorem can be easily proved.

Theorem 2.14 A meet-translation λ of a trellis L is a derivation on L if and
only if λ is a join-endomorphism.

Remark 2.15 Every meet-translation of a trellis L satisfying the inequality
(2.1) is a derivation on L.

Remark 2.16 The set of all derivations on a trellis L forms a commutative
monoid with respect to composition of mappings.

3 On the set of all meet-translations on a trellis

G. Szász and J. Szendrei [11] have proved that the set of all meet-translations
on a lattice L forms a meet-semilattice. The next theorem generalizes this result
to a trellis L.
Let Φ(L) be the set of all meet-translations on a trellis L. The binary relation

≤ on Φ(L) defined by, for λ1, λ2 ∈ Φ(L), λ1 ≤ λ2 if and only if λ1(x) � λ2(x)
for every x ∈ L, is a partial order on Φ(L). Reflexivity and antisymmetry
of ≤ follow easily. If λ1, λ2, λ3 ∈ Φ(L) are such that λ1 ≤ λ2 and λ2 ≤ λ3,
then λ1(x) = λ1(x) ∧ λ2(x) = λ1(λ2(x)) and λ2(x) = λ2(x) ∧ λ3(x), whence
λ1(x)∧ λ3(x) = λ1(λ2(x))∧ λ3(x) = λ1(λ2(x)∧ λ3(x)) = λ1(λ2(x)) = λ1(x) for
any x ∈ L, thus λ1 ≤ λ3.
The identity mapping I is the greatest element of the poset 〈Φ(L);≤〉. If

the trellis L has the least element 0, then the mapping λ0 : L → L defined by
λ0(x) = 0 for every x ∈ L is the least element of 〈Φ(L);≤〉.
Let L be a trellis and f : Φ(L) → I(L) be the mapping defined by f(λ) =

Fixλ for λ ∈ Φ(L). Then f is one-to-one by Proposition 2.5. However f need
not be onto. For, in the trellis of Figure 3, there are only two meet-translations,
namely, the identity mapping I and the mapping λ0 defined by λ0(x) = 0 for
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every x ∈ L. Now, Fix I = L and Fixλ0 = {0}. Therefore, for the ideals {0, a}
and {0, a, b} belonging to I(L) there are no pre-images in Φ(L).

Fig. 3

The fact that f is isotone is trivial, as λ1 ≤ λ2 obviously implies Fixλ1 ⊆
Fixλ2.

Theorem 3.1 Let Φ(L) be the set of all meet-translations on a trellis L. Then
〈Φ(L);≤〉 is a meet-semilattice.
Proof In the poset 〈Φ(L);≤〉, clearly λ1 ◦λ2 ∈ Φ(L) whenever λ1, λ2 ∈ Φ(L).
Also λ1 ◦ λ2 is the g.l.b. of λ1, λ2 since (λ1 ◦ λ2)(x) = λ1(x) ∧ λ2(x). Thus
〈Φ(L);≤〉 is a meet-semilattice. �

It is known that if L is a distributive lattice, then Φ(L) forms a lattice [6].
The following problem naturally arises and remains open:

Problem Characterize trellises L for which Φ(L) forms a lattice.

Proposition 3.2 If a trellis L is a cycle, then L has exactly one meet-translation
(derivation) and it is the identity mapping.

Proof Let the trellis L be a cycle. Let Φ(L) be the set of all meet-translations
on L. Define a mapping f : Φ(L) → I(L) by f(λ) = Fixλ for every λ ∈ Φ(L).
f is a one-to-one mapping by Proposition 2.5. The identity mapping is a meet-
translation of L. If λ1 	= I is any meet-translation, then Fixλ1 	= Fix I = L
in I(L), which is not possible as L is the only ideal of L. Thus the identity
mapping is the only meet-translation. �

Remark 3.3 The converse of the above proposition is not true. For, in the
trellis of Figure 4, the identity mapping is the only meet-translation, but the
trellis is not a cycle.

Fig. 4
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