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Abstract. A type of adaptive finite element method is presented for semilinear elliptic
problems based on multilevel correction scheme. The main idea of the method is to trans-
form the semilinear elliptic equation into a sequence of linearized boundary value problems
on the adaptive partitions and some semilinear elliptic problems on very low dimensional
finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the
same efficiency as the adaptive method for the associated boundary value problem. The
convergence and optimal complexity of the new scheme can be derived theoretically and
demonstrated numerically.
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1. Introduction

The purpose of this paper is to propose a multilevel correction type of adaptive

finite element (AFEM) method for semilinear elliptic equations. Furthermore, we

also give the corresponding convergence and optimality analysis in a general setting

for the nonlinear term. The concept of adaptive finite element method was proposed

by Babuška and his collaborators in [2], [3], [4], [5], which led to much work about

the a posteriori error estimates, mesh refinement, convergence and optimal complex-

ity and so on. For linear partial differential equations, especially, for the Possion
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equation and its variants, the theory is well-developed. For instance, Dörfler [9] in-

troduced Dörfler’s marking and proved strict energy error reduction for the Laplace

problem provided the initial mesh is fine enough. Morin, Nochetto, and Siebert [15],

[16] proved that there is no strict energy error reduction in general by introducing the

concept of data oscillation and interior node property. Mekchay and Nochetto [14]

proved a similar result for general second order elliptic operators by introducing the

new concept of total error, that is, the sum of energy error and oscillations. For more

results, please refer to the papers [2], [3], [4], [5], [7], [17] and the papers cited therein.

Besides for the linear boundary value problem, AFEM is also an efficient method

for nonlinear elliptic equations (see, e.g., [10], [11]) and eigenvalue problems (see, e.g.,

[12], [19]). In this paper, a new adaptive scheme is designed for the semilinear elliptic

problem based on the multilevel correction method (see [13]). With the new proposed

method, solving semilinear elliptic problem will not be much more difficult than the

solution of the corresponding boundary value problem. And we adopt the techniques

in [10], [13] to prove the convergence and optimal complexity for this AFEM.

An outline of this paper goes as follows. In Section 2, we introduce some basic

notation, the finite element method for the semilinear elliptic equation and some

settings in this paper. In Section 3, we construct the multilevel correction adaptive

algorithm and the corresponding convergence and complexity analysis are given in

Section 4 and Section 5, respectively. In Section 6, some numerical results are pre-

sented to verify the theoretical results. Finally, some concluding remarks are given

in the last section.

2. Discretization by finite element method

In this paper, the letter C (with or without subscripts) is used to denote a constant

which may be different at different places. For convenience, the symbols x1 . y1,

x2 & y2 and x3 ≈ y3 mean that x1 6 C1y1, x2 > c2y2 and c3x3 6 y3 6 C3x3.

Let Ω ⊂ R
d (d = 2, 3) denote a bounded domain with Lipschitz boundary ∂Ω. We

use the standard notation for Sobolev spaces W s,p(Ω) and their associated norms

‖·‖s,p,Ω and seminorms |·|s,p,Ω (see, e.g, [1]). For p = 2, we denote Hs(Ω) =W s,2(Ω)

and H1
0 (Ω) = {v ∈ H1(Ω): v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of traces. For

simplicity, we use ‖·‖s,Ω to denote ‖·‖s,2,Ω and V to denote H1
0 (Ω) in the rest of the

paper.

Here, we consider the following type of semilinear elliptic equation:

(2.1)

{
−∇ · (A∇u) + b(x, u) = f in Ω,

u = 0 on ∂Ω,
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where A = (ai,j)d×d is a symmetric positive definite matrix with ai,j ∈ W 1,∞ (i, j =

1, 2, . . . , d), b(x, u) is a nonlinear function corresponding to the second variable.

In this paper, we assume the nonlinear term has the property such that (2.1) has

a unique solution u ∈ H1
0 (Ω). The weak form of the semilinear problem (2.1) can be

described as: Find u ∈ V such that

(2.2) a(u, v) + (b(·, u), v) = (f, v) ∀ v ∈ V,

where

(2.3) a(u, v) = (A∇u,∇v).

Obviously, a(u, v) is bounded and coercive on V , i.e.,

(2.4) a(u, v) 6 Ca‖u‖1,Ω‖v‖1,Ω and ca‖u‖21,Ω 6 a(u, u) ∀u, v ∈ V.

So ‖w‖a,Ω =
√
a(w,w) satisfies ‖w‖a,Ω ≈ ‖w‖1,Ω.

Now, we introduce the finite element method for semilinear elliptic problem (2.2).

First we generate a shape regular decomposition of the computing domain Ω ⊂
R

d (d = 2, 3) into triangles for d = 2, or tetrahedrons or hexahedrons for d = 3

(cf. [6], [8]). The mesh diameter h describes the maximum diameter of all cells

T ∈ Th. Based on the mesh Th, we construct the finite element space Vh ⊂ V .

The standard finite element scheme for semilinear equation (2.2) is: Find ūh ∈ Vh

such that

(2.5) a(ūh, vh) + (b(·, ūh), vh) = (f, vh) ∀ vh ∈ Vh.

In this paper, we denote

(2.6) δh(u) = inf
χ∈Vh

‖u− χ‖a,Ω.

In order to design and analyze the multilevel correction type of AFEM, we introduce

the following assumptions.

Assumption A. The nonlinear term b(x, ·) has the estimates

(2.7) (b(·, v)− b(·, w), ψ) 6 Cb‖v − w‖0,Ω‖ψ‖a,Ω ∀ v, w, ψ ∈ V

and

(2.8) ‖b(·, v)− b(·, w)‖0,Ω 6 Cb‖v − w‖a,Ω ∀ v, w, ψ ∈ V.

For generality, we only state the following assumptions about the error estimate

for the discrete equation (2.5):
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Assumption B. The discrete equation (2.5) has a unique solution ūh and the

following error estimates hold:

‖u− ūh‖a,Ω . δh(u),(2.9)

‖u− ūh‖0,Ω . ηa(Vh)‖u− ūh‖a,Ω,(2.10)

where ηa(Vh) depends on the finite dimensional space Vh and has the following prop-

erty:

(2.11) lim
h→0

ηa(Vh) = 0, ηa(Ṽh) 6 ηa(Vh) if Vh ⊂ Ṽh ⊂ V.

3. Adaptive finite element method based on multilevel correction

In this section, we propose the multilevel correction AFEM for (2.2). Given an

initial triangulation, the AFEM runs along the following loop:

Solve→ Estimate→ Mark→ Refine

In order to analyze the AFEM for semilinear elliptic equation, we first recall some

basic conclusions of the AFEM for linear elliptic equation (see [7]).

3.1. AFEM for linear elliptic equation. In this subsection, we recall AFEM

for an elliptic boundary value problem with homogeneous Dirichlet boundary condi-

tions

(3.1)

{
Lu := −∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω.

The weak form of (3.1) can be described as: Find u ∈ V such that

(3.2) a(u, v) = (f, v) ∀ v ∈ V.

And the corresponding finite element approximation of (3.2) is: Find uh ∈ Vh such

that

(3.3) a(uh, vh) = (f, vh) ∀ vh ∈ Vh.

Now we review the residual type a posteriori error estimator for the solution of (3.3).

Let T := {Tk}k∈N+
denote the sequence of all conforming meshes by refining the
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initial mesh T1 and let Vhk
denote the corresponding finite element space defined on

the mesh Tk ∈ T. In this paper, we use Ek to denote the set of interior faces (edges
or sides) of Tk. For any v ∈ Vhk

, we define the element residual R̃T (v) and jump

residual J̃e(v) by

R̃T (v) := f − Lv = f +∇ · (A∇v) in T ∈ Tk,(3.4)

J̃e(v) := −A∇v+ · ν+ −A∇v− · ν− := [A∇v]e · νe on e ∈ Ek,(3.5)

where e is the common side of elements T+ and T− with the unit outward normals

ν+ and ν−, respectively, and νe = ν−. Let ωe be the union of elements which share

the side e, and ωT the union of elements sharing a side with T . For T ∈ Tk, we
define the local error estimator η̃2k(v, T ) by

(3.6) η̃2k(v, T ) := h2T ‖R̃T (v)‖20,T +
∑

e∈Ek,e⊂∂T

he‖J̃e(v)‖20,e

and the oscillation õsc
2
k(v, T ) by

(3.7) õsc2k(v, T ) := h2T ‖R̃T (v) − PT R̃T (v)‖20,T +
∑

e∈Ek,e⊂∂T

he‖J̃e(v)− PeJ̃e(v)‖20,e,

where PT and Pe are the L
2-projection operators to polynomials of some degree on

T and e, respectively.

Given a subset ω ⊂ Ω, we define the error estimate η̃2k(v, ω) and the oscillation

õsc
2
k(v, ω) by

(3.8) η̃2k(v, ω) =
∑

T∈Tk,T⊂ω

η̃2k(v, T ) and õsc
2
k(v, ω) =

∑

T∈Tk,T⊂ω

õsc
2
k(v, T ).

The procedure Refine used in the adaptive algorithm is Dörfler’s marking strategy

which is introduced in [9]:

Algorithm 3.1. Marking Strategy E0:

Given a parameter θ ∈ (0, 1).

(1) Construct a minimal subset Mk of Tk by selecting some elements in Tk such
that ∑

T∈Mk

η̃2k(uk, T ) > θη̃2k(uk,Ω).

(2) Mark all the elements inMk.

We now recall some well-known results of the AFEM for linear elliptic equation.
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Lemma 3.1 ([7], Lemma 2.2, Global upper and lower bounds). Let u ∈ H1
0 (Ω)

be the solution of (3.2) and uk ∈ Vhk
the corresponding finite element solution. Then

there exist constants C̃1, C̃2 and C̃3 > 0 depending only on the shape regularity Ca

and ca such that

‖u− uk‖a,Ω 6 C̃1η̃k(uk, Tk),(3.9)

C̃2η̃
2
k(uk, Tk) 6 ‖u− uk‖2a,Ω + C̃3õsc

2
k(uk, Tk).(3.10)

Lemma 3.2 ([7], Proposition 3.3, Local perturbation). Let T ∈ T. For all T ∈ T
and any pair of discrete functions v, w ∈ V (T ) we have

(3.11) osc(v, T ) 6 osc(w, T ) + CL‖v − w‖1,wT ,

where CL is a constant depending on the coefficient A and the mesh regularity.

Lemma 3.3 ([7], Theorem 4.1). Let {uk}k∈N0
be the sequence of finite element

solutions corresponding to the sequence of nested finite element spaces {Vhk
}k∈N0

produced by the AFEM. Then there exist constants γ̃ > 0 and ξ ∈ (0, 1) depending

only on the shape regularity of the meshes and the marking parameter θ, such that

any two consecutive iterates satisfy the inequality

(3.12) ‖u− uk+1‖2a,Ω + γ̃η̃2k+1(uk+1, Tk+1) 6 ξ2(‖u− uk‖2a,Ω + γ̃η̃2k(uk, Tk)),

where the constant γ̃ has the form

(3.13) γ̃ =
1

(1 + δ−1
1 )C2

L

.

Let us define RTk→Tk+1
:= Tk \ (Tk ∩Tk+1) to be the set of refined elements in Tk.

ThusMk ⊂ RTk→Tk+1
.

Lemma 3.4 ([7], Lemma 5.9, Optimal marking). Let uk ∈ Vhk
and uk+1 ∈ Vhk+1

be the finite element solutions of (3.2) over a conforming mesh Tk and its refinement
Tk+1 with marking element setMk. Suppose that they satisfy the decrease inequality

‖u− uk+1‖2a,Ω + γ̃∗õsc
2
k+1(uk+1, Tk+1) 6 ξ2∗(‖u− uk‖2a,Ω + γ̃∗õsc

2
k(uk, Tk))

with constants γ̃∗ > 0 and ξ2∗ ∈ (0, 12 ). Then the set R := RTk→Tk+1
satisfies the

inequality

η̃2k(uk,R) > θ̃η̃2k(uk, Tk),
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where

θ̃ =
C̃2(1− 2ξ2∗)

C̃0

(
C̃2

1 + (1 + 2C2
LC̃

2
1 )γ̃∗

) with C̃0 = max
{
1,
C̃3

γ̃∗

}
.

3.2. Multilevel correction adaptive algorithm for semilinear elliptic

equation. In this subsection, we present a type of multilevel correction adaptive

method for the semilinear elliptic equation which is the key contribution of this

paper.

Similarly to the element residual R̃T (v) and the jump residual J̃e(v) for (3.3), we

define the element residual RT (v) and the jump residual Je(v) for (2.5) as follows:

RT (v) := f − b(·, v)− Lv in T ∈ Tk,(3.14)

Je(v) := −A∇v+ · ν+ −A∇v− · ν− := [A∇v]e · νe on e ∈ Ek.(3.15)

For any T ∈ Tk, we define the local error indicator η2k(v, T ) by

(3.16) η2k(v, T ) := h2T ‖RT (v)‖20,T +
∑

e∈Ek,e⊂∂T

he‖Je(v)‖20,e

and the oscillation osc2k(v, T ) by

(3.17) osc2k(v, T ) := h2T ‖RT (v)− PTRT (v)‖20,T +
∑

e∈Ek,e⊂∂T

he‖Je(v)−PeJe(v)‖20,e.

Given a subset ω ⊂ Ω, we define the error estimate η2k(v, ω) and the oscillation

osc2k(v, ω) by

(3.18) η2k(v, ω) =
∑

T∈Tk,T⊂ω

η2k(v, T ) and osc2k(v, ω) =
∑

T∈Tk,T⊂ω

osc2k(v, T ).

Similarly to Marking Strategy E0 defined in Algorithm 3.1, we also define Marking

Strategy E for (2.5) to enforce the error reduction as follows:

Algorithm 3.2. Marking Strategy E

Given a parameter θ ∈ (0, 1).

(1) Construct a minimal subsetMk from Tk by selecting some elements in Tk such
that ∑

T∈Mk

η2k(uk, T ) > θη2k(uk,Ω).

(2) Mark all the elements inMk.
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Then we propose the following multilevel correction adaptive method which is

based on Marking Strategy E in Algorithm 3.2 and the multilevel correction idea in

[13], [19]. As in the multilevel correction method for eigenvalue problems [13], [19],

we do not solve the semilinear problem directly in the refined mesh which is different

from the normal AFEM for semilinear problem. In the new AFEM, solving the

semilinear problem in the refined mesh is replaced by solving a linear elliptic problem

in the refined mesh and a semilinear problem in a very low dimensional space.

Algorithm 3.3. Multilevel Correction Adaptive Algorithm

(1) Generate a coarse triangulation TH for the computing domain Ω. Based on the
mesh TH , build a linear finite element space VH . Pick up an initial mesh T1
which is produced by refining TH several times in the uniform way (refine all the
elements). Then build the initial finite element space Vh1

on the triangulation T1
and solve the following semilinear elliptic equation: Find u1 ∈ Vh1

such that

(3.19) a(u1, v1) + (b(·, u1), v1) = (f, v1) ∀ v1 ∈ Vh1
.

(2) Set k = 1.

(3) Compute the local error indicators ηk(uk, T ).

(4) Construct the submesh Mk ⊂ Tk by Marking Strategy E defined in Al-
gorithm 3.2 with parameter θ and refine Tk to generate a new conforming
mesh Tk+1.

(5) Solve the linearized equation: Find ûk+1 ∈ Vhk+1
such that

(3.20) a(ûk+1, vk+1) = (f − b(·, uk), vk+1) ∀ vk+1 ∈ Vhk+1
.

(6) Define a finite element space VH,hk+1
:= VH⊕span{ûk+1} and solve the following

semilinear elliptic equation: Find uk+1 ∈ VH,hk+1
such that

(3.21) a(uk+1, vH,k+1) + (b(·, uk+1), vH,k+1) = (f, vH,k+1) ∀ vH,k+1 ∈ VH,hk+1
.

(7) Let k := k + 1 and go to Step (3).

Since the large-scale semilinear problem is replaced by the linear elliptic prob-

lem (3.20) in the refined mesh (which can be solved by many fast solvers) and a low-

dimensional semilinear problem (3.21), the overfull computational efficiency can be

improved.
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4. Convergence of adaptive finite element method

In this section, we give the convergence analysis of Algorithm 3.3 for the semilinear

elliptic problem (2.2) based on the existing conclusions in Section 3.1 for the linear

elliptic problem (3.1).

4.1. The relationship between semilinear and linear elliptic equations.

In order to analyze the convergence and complexity of Algorithm 3.3, we establish

the relationship between the solutions of linear and semilinear elliptic equations.

Let wk ∈ V be the exact solution of the following problem: Find wk ∈ V such

that

(4.1) a(wk, v) = (f − b(·, uk), v) ∀ v ∈ V.

Define the Galerkin-projection operator Πk : V → Vhk
by

(4.2) a(w −Πkw, v) = 0 ∀ v ∈ Vhk
.

For any w ∈ V , we apparently have the inequality

(4.3) ‖Πkw‖a,Ω 6 ‖w‖a,Ω.

From the fifth step of Algorithm 3.3 and (4.1), we have

(4.4) ûk = Πkwk−1.

For the finite element solution uk of (2.2) and the solution wk of linear elliptic

equation (4.1), we obtain the following relationships.

Lemma 4.1. Let wk be the solution of (4.1), uk the solution of (2.2) obtained by

Algorithm 3.3 and let Assumptions A and B hold. We have the estimates

‖u− uk‖a,Ω = ‖wk −Πkwk‖a,Ω(4.5)

+O(ηa(VH))(‖u − uk‖a,Ω + ‖u− uk−1‖a,Ω),
‖u− uk‖a,Ω = ‖wk−1 −Πkwk−1‖a,Ω(4.6)

+O(ηa(VH))(‖u − uk‖a,Ω + ‖u− uk−1‖a,Ω).

P r o o f. First, u− uk can be decomposed as follows

(4.7) u− uk = u− wk + wk −Πkwk +Πkwk −Πkwk−1 +Πkwk−1 − uk.
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Combining (2.2), (2.7), (2.10), and (4.1) leads to

(4.8) ‖u− wk‖2a,Ω = a(u− wk, u− wk) = (b(·, u)− b(·, uk), u − wk)

. ‖u− uk‖0,Ω‖u− wk‖a,Ω . ηa(VH)‖u− uk‖a,Ω‖u− wk‖a,Ω.

Using (4.3) and (4.8), we have the estimates

(4.9) ‖Πkwk −Πkwk−1‖a,Ω 6 ‖wk − wk−1‖a,Ω . ‖u− wk‖a,Ω + ‖u− wk−1‖a,Ω
. ηa(VH)(‖u− uk‖a,Ω + ‖u− uk−1‖a,Ω).

Since Πkwk−1 − uk ∈ VH,hk
and Πkwk−1 = ûk, the following inequality holds:

(4.10) ‖ûk − uk‖2a,Ω = a(ûk − uk, ûk − uk) = (b(·, uk−1)− b(·, uk), ûk − uk)

. ‖uk−1 − uk‖0,Ω‖ûk − uk‖a,Ω.

That is

(4.11) ‖Πkwk−1−uk‖a,Ω . ‖uk−1−uk‖0,Ω . ηa(VH)(‖u−uk−1‖a,Ω+‖u−uk‖a,Ω).

Combining (4.7) with (4.8)–(4.11) leads to the desired result (4.5).

In order to prove the second identity, we decompose u− uk to

u− uk = u− wk−1 + wk−1 −Πkwk−1 +Πkwk−1 − uk.

Due to the estimates (4.8), (4.11) in the first part, (4.6) can be proved similarly. �

For the approximate solution uk of (2.2) and the solution wk of the linear elliptic

equation (4.1), we establish the following relationships for the a posteriori error

estimators defined in (3.8) and (3.18).

Lemma 4.2. Let wk be the solution of (4.1) and uk the solution of (2.2) obtained

by Algorithm 3.3. The a posteriori error indicators defined in (3.18) and (3.8),

respectively, satisfy the following relations:

ηk(uk, Tk) = η̃k(Πkwk−1, Tk)(4.12)

+O(ηa(VH))(‖u− uk‖a,Ω + ‖u− uk−1‖a,Ω),
ηk(uk, Tk) = η̃k(Πkwk, Tk)(4.13)

+O(ηa(VH))(‖u− uk‖a,Ω + ‖u− uk−1‖a,Ω).
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P r o o f. From the definitions of ηk(uk, T ) and η̃k(uk, T ) in (3.18) and (3.8), we

have

(4.14) ηk(uk, T )− η̃k(Πkwk−1, T )

=

(
h2T ‖f − b(·, uk)− Luk‖20,T +

∑

e∈Eh,e⊂∂T

he‖[A∇uk]e · νe‖20,e
)1/2

−
(
h2T ‖f − b(·, uk−1)− Lûk‖20,T +

∑

e∈Eh,e⊂∂T

he‖[A∇ûk]e · νe‖20,e
)1/2

6

{
(hT ‖f − b(·, uk)− Luk‖0,T − hT ‖f − b(·, uk−1)− Lûk‖0,T )2

+ he
∑

e∈Eh,e⊂∂T

(‖[A∇uk]e · νe‖0,e − ‖[A∇ûk]e · νe‖0,e)2
}1/2

6

{
(hT ‖b(·, uk)− b(·, uk−1)− Luk + Lûk‖0,T )2

+ he
∑

e∈Eh,e⊂∂T

(‖[A∇uk]e · νe − [A∇ûk]e · νe‖0,e)2
}1/2

.

It is obvious that the inverse estimate implies

‖Luk‖0,T . h−1
T ‖∇uk‖0,T ∀T ∈ Th.

Then the following inequalities hold:

(4.15)
∑

T∈Th

h2T ‖Luk‖20,T .
∑

T∈Tk

‖uk‖2a,T . ‖uk‖2a,Ω.

From the inverse estimate and the trace inequality

‖v‖0,∂T . h
−1/2
T ‖v‖0,T + h

s−1/2
T ‖v‖s,T ∀ s > 1/2, v ∈ Hs(T ), T ∈ Tk,

we have

(4.16) he‖[A∇vk]e · νe‖20,e . ‖∇vk‖20,T . ‖vk‖2a,T ∀ vk ∈ Vhk
.

Combining (4.14)–(4.16) with (4.10) yields

(4.17) ηk(uk, T )− η̃k(Πkwk−1, T ) . hT ‖b(·, uk)− b(·, uk−1)‖0,T + ‖uk − ûk‖a,T .
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From Assumption A, B and (4.17), we derive

ηk(uk, Tk)− η̃k(Πkwk−1, Tk) =
( ∑

T∈Tk

η2k(uk, T )

)1/2

−
( ∑

T∈Tk

η̃2k(Πkwk−1, T )

)1/2

.

( ∑

T∈Tk

(ηk(uk, T )− η̃k(Πkwk−1, T ))
2

)1/2

. ηa(VH)‖b(·, uk)− b(·, uk−1)‖0,Ω + ηa(VH)‖uk − uk−1‖a,Ω

. ηa(VH)(‖u− uk‖a,Ω + ‖u− uk−1‖a,Ω).

This is the desired conclusion (4.12). The result (4.13) can be derived similarly and

we complete the proof. �

Lemma 4.3. Let wk and uk be the solutions of (4.1) the latter obtained by

Algorithm 3.3. Then the oscillations defined in (3.8) and (3.18) have the estimates

osck(uk, Tk) = õsck(Πkwk−1, Tk) +O(ηa(VH))(‖u − uk‖a,Ω + ‖u− uk−1‖a,Ω),(4.18)

osck(uk, Tk) = õsck(Πkwk, Tk) + O(ηa(VH))(‖u− uk‖a,Ω + ‖u− uk−1‖a,Ω).(4.19)

P r o o f. By a procedure similar to that in Lemma 4.2 and the definition of

oscillation, we can derive the desired results. �

4.2. Convergence of multilevel correction adaptive algorithm. In this sub-

section, we give the convergence analysis of Algorithm 3.3 for the semilinear elliptic

equation.

First, based on Lemma 3.1 and Lemmas 4.1–4.3, we analyze the reliability and

efficiency of the a posteriori error estimator defined in (3.18).

Theorem 4.1. Let ηa(VH) be small enough. Then for the finite element solution

uk of (2.2), there exist mesh independent constants C1, C2 and C3 such that

(4.20) ‖u− uk‖a,Ω 6 C1ηk(uk, Tk) +O(ηa(VH))‖u− uk−1‖a,Ω

and

(4.21) C2η
2
k(uk, Tk) 6 ‖u− uk‖2a,Ω + C3 osck(uk, Tk) +O(η2a(VH))‖u− uk−1‖2a,Ω,

where

C1 =
C̃1

1− C′ηa(VH)
, C2 =

C̃2

4 + Cη2a(VH)
, C3 =

4C̃3

4 + Cη2a(VH)

with the constants C′ and C only depending on the mesh regularity and C̃1, C̃2, C̃3.
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P r o o f. Since wk−1 is the exact solution of the equation

a(wk−1, v) = (f − b(·, uk−1), v) ∀ v ∈ V,

from Lemma 3.1 we obtain

‖wk−1 −Πkwk−1‖a,Ω 6 C̃1η̃k(Πkwk−1, Tk)

and

C̃2η̃
2
k(Πkwk−1, Tk) 6 ‖wk−1 −Πkwk−1‖2a,Ω + C̃3õsc

2
k(Πkwk−1, Tk).

Then from Lemmas 4.1–4.3 we can get the desired results. �

Now we are in the position to present the error reduction of Algorithm 3.3.

Theorem 4.2. Let θ ∈ (0, 1) and {uk}k∈N0
be the sequence of finite element solu-

tions of (2.2) corresponding to the sequence of nested finite element space {Vhk
}k∈N0

produced by Algorithm 3.3. Assume that ηa(VH) is sufficiently small. Then there

exist constants γ > 0 and θ1 ∈ (0, 1) depending only on the shape regularity of

meshes and the marking parameter θ used by Algorithm 3.3, such that

(4.22) ‖u− uk‖2a,Ω + γη2k(uk, Tk) 6 θ21(‖u− uk−1‖2a,Ω + γη2k−1(uk−1, Tk−1))

+ θ0η
2
a(VH)‖u− uk−2‖2a,Ω,

where θ0 is a constant independent of the mesh size.

P r o o f. From Lemma 3.3 and the definition of wk−1 in (4.1), we have the

contraction property

(4.23) ‖wk−1 −Πkwk−1‖2a,Ω + γ̃η̃2k(Πkwk−1, Tk)
6 ξ2(‖wk−1 −Πk−1wk−1‖2a,Ω + γ̃η̃2k−1(Πk−1wk−1, Tk−1))

+ C̃η2a(VH)(‖u− uk−1‖2a,Ω + ‖u− uk−2‖2a,Ω).

By Lemmas 4.1 and 4.2, there exists a constant C > 0 such that

(4.24) ‖u− uk‖2a,Ω + γ̃η2k(uk, Tk)
6 (1 + δ1)‖wk−1 −Πkwk−1‖2a,Ω + (1 + δ1)γ̃η̃

2
k(Πkwk−1, Tk)

+ Cδ−1
1 η2a(VH)(‖u− uk‖2a,Ω + ‖u− uk−1‖2a,Ω)

6 (1 + δ1)ξ
2(‖wk−1 −Πk−1wk−1‖2a,Ω + γ̃η̃2k−1(Πk−1wk−1, Tk−1))

+ Cδ−1
1 η2a(VH)(‖u− uk‖2a,Ω + ‖u− uk−1‖2a,Ω + ‖u− uk−2‖2a,Ω),

where the Young inequality is used and δ1 ∈ (0, 1).
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Using a similar argument on the right-hand side term of (4.24), we have

(4.25) ‖u− uk‖2a,Ω + γ̃η2k(uk, Tk)
6 (1 + δ1)(1 + δ2)ξ

2(‖u− uk−1‖2a,Ω + γ̃η2k−1(uk−1, Tk−1))

+ C∗η2a(VH)(‖u− uk‖2a,Ω + ‖u− uk−1‖2a,Ω + ‖u− uk−2‖2a,Ω),

where δ2 ∈ (0, 1) satisfies (1 + δ2)(1 + δ1)ξ
2 < 1 and C∗ depends on C in (4.24).

From (4.25), we have

(1 − C∗η2a(VH))‖u− uk‖2a,Ω + γ̃η2k(uk, Tk)
6 ((1 + δ2)(1 + δ1)ξ

2 + C∗η2a(VH))‖u− uk−1‖2a,Ω
+ (1 + δ2)(1 + δ1)ξ

2γ̃η2k−1(uk−1, Tk−1) + C∗η2a(VH)‖u− uk−2‖2a,Ω.

Denote

γ =
γ̃

1− C∗η2a(VH)
, θ21 =

(1 + δ2)(1 + δ1)ξ
2 + C∗η2a(VH)

1− C∗η2a(VH)
,(4.26)

θ0 =
C∗

1− C∗η2a(VH)
.

Since
(1 + δ2)(1 + δ1)ξ

2γ̃

(1 + δ2)(1 + δ1)ξ2 + C∗η2a(VH)
< γ̃ < γ,

we obtain the desired conclusion (4.22) and θ1 ∈ (0, 1) when ηa(VH) is sufficiently

small. Then we complete the proof. �

Theorem 4.3. Let u and uk be the exact solution and the corresponding approx-

imation by Algorithm 3.3, respectively. When ηa(VH) is small enough, there exist

constants β > 0 and α ∈ (0, 1), depending on the shape regularity of meshes and

the parameter θ, such that any two consecutive iterates k and k − 1 have the error

contraction properties

(4.27) d2hk
6 θ21d

2
hk−1

+ θ0η
2
a(VH)‖u− uk−2‖2a,Ω

and

(4.28) d2hk
+ β2η2a(VH)d2hk−1

6 α2(d2hk−1
+ β2η2a(VH)d2hk−2

),

where d2hk
= ‖u− uk‖2a,Ω + γη2k(uk, Tk).
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P r o o f. It is obvious that the inequality (4.27) can be derived from Theorem 4.2

directly. We choose α and β such that

α2 − β2η2a(VH) = θ21, α2β2 = θ0.

The above two equations lead to

α2 =
θ21 +

√
θ41 + 4θ0η2a(VH)

2
and β2 =

2θ0

θ21 +
√
θ41 + 4θ0η2a(VH)

.

Then we have α < 1 provided ηa(VH) is small enough and θ1 < 1. It means the

desired result (4.28) is obtained with the chosen α and β. �

5. Complexity analysis

Due to the complexity analysis results for the linear boundary value problem,

we are able to analyze the complexity of Algorithm 3.3 for the semilinear elliptic

problem.

In this section, we assume that ηa(VH) is small enough such that

(5.1) ηa(VH)‖u− uk−2‖2a,Ω 6 ‖u− uk−1‖2a,Ω.

Then from Theorem 4.2, we have the following error reduction property: for Algo-

rithm 3.3

(5.2) ‖u− uk‖2a,Ω + γη2k(uk, Tk) 6 θ̃21(‖u− uk−1‖2a,Ω + γη2k−1(uk−1, Tk−1))

with θ̃21 = θ21 + θ0ηa(VH) < 1.

As in the normal analysis of AFEM for the linear boundary value problem, we

shall study the complexity in a class of functions defined by

As
γ := {v ∈ H1

0 (Ω): |v|s,γ <∞},

where γ > 0 is a constant and

|v|s,γ = sup
ε>0

ε inf{Tk⊂T1 : inf(‖v−vk‖2
a,Ω+(γ+1) osc2k(vk,Tk))1/26ε}(#Tk −#T1)s

and Tk ⊂ T1 means Tk is a refinement of T1. It is seen from the definition that, for
all γ > 0, As

γ = As
1, and we denote As as As

1, |v|s as |v|s,γ for simplicity. Hence,
the symbol As is the class of functions that can be approximated within a given

tolerance ε by continuous piecewise polynomial functions over a partition Tk with
the number of degrees of freedom #Tk −#T1 . ε−1/s|v|1/ss .

In our analysis, we also need the following two results (see, e.g., [7], [17], [18]).
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Lemma 5.1 (Complexity of refinements). For k > 0, let {Tk}k>1 be any sequence

of refinements of T1, where Tk+1 is generated from Tk by Dörfler’s Marking Strategy
with a subsetMk ⊂ Tk. Then

(5.3) #Tk −#T1 6 C0

k−1∑

j=1

#Mj ∀ k > 1.

Here and hereafter in this paper, we use #T to denote the number of elements in
the mesh T .
For the smallest common refinement of Ts, Tt, that is T := Ts ⊕ Tt, we have the

following property.

Lemma 5.2 (Overlay of mesh). For Ts, Tt ⊂ T1, the overlay T := Ts ⊕ Tt is
conforming and satisfies

(5.4) #T 6 #Ts +#Tt −#T1.

In order to give the proof of the optimal complexity of Algorithm 3.3 for solving

the semilinear elliptic problem, we should give some preparations.

Using the assumption (5.1) and the procedure similar to that in the proof of

Theorem 4.2 when (4.12) is replaced by (4.18), we have

Lemma 5.3. Let uk−1 and uk be finite element solutions of (2.2) over a con-

forming mesh Tk−1 and its refinement Tk with marked setMk−1. Suppose that they

satisfy the estimate

(5.5) ‖u− uk‖2a,Ω + γ∗ osc
2
k(uk, Tk) 6 ξ2∗(‖u− uk−1‖2a,Ω + γ∗ osc

2
k−1(uk−1, Tk−1)),

where γ∗ and ξ∗ are some positive constants. Then for problem (4.1), we have

(5.6) ‖wk−1 −Πkwk−1‖2a,Ω + γ∗õsc
2
k(Πkwk−1, Tk)

6 ξ̃2∗(‖wk−1 −Πk−1wk−1‖2a,Ω + γ∗õsc
2
k−1(Πk−1wk−1, Tk−1))

with

ξ̃2∗ = (1 + δ2)
(1 + δ1)ξ

2
∗ + C∗δ−1

1 η2a(VH)(1 + ξ2∗)

1− Cδ−1
1 ηa(VH)(1 + ηa(VH))

,

where the constants C and C∗ depend on δ1, δ2 ∈ (0, 1) as in the proof of Theo-

rem 4.2.
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Theorem 5.1. Let uk−1 and uk be as in Lemma 5.3. Suppose that they have the

decrease property

‖u− uk‖2a,Ω + γ∗ osc
2
k(uk, Tk) 6 ξ2∗(‖u− uk−1‖2a,Ω + γ∗ osc

2
k−1(uk−1, Tk−1))

with constants γ∗ > 0 and ξ2∗ ∈ (0, 1/2). When ηa(VH) is sufficiently small, the set

R := RTk−1→Tk
satisfies the inequality

η2k−1(uk−1,R) > β̂η2k−1(uk−1, Tk−1)

with

β̂ =
C̃2(1− 2ξ̃2∗)

4C0(C̃2
1 + (1 + 2C2

LC̃
2
1 )γ∗)

and C0 = max
(
1,
C̃3

γ∗

)
,

where ξ̃∗ is defined in Lemma 5.3 with δ1 and δ2 being chosen such that ξ̃
2
∗ ∈ (0, 1/2).

P r o o f. The result is a direct consequence of Lemmas 3.4, 4.2, and 5.3. �

Lemma 5.4 (Cardinality of Mk). Let u ∈ As be the solution of (2.2), Tk the
conforming partition obtained from T1, and let θ satisfy

θ ∈
(
0,

C2γ

C3(C2
1 + (1 + 2C2

LC
2
1 )γ)

)
.

Then the following estimate is valid:

(5.7) #Mk 6 C(‖u− uk‖2a,Ω + γ osc2k(uk, Tk))−1/(2s)|u|1/ss ,

where the constant C depends on the discrepancy between θ and

C2γ

C3(C2
1 + (1 + 2C2

LC
2
1 )γ)

.

P r o o f. We choose β, β1 ∈ (0, 1) such that β1 ∈ (0, β) and

θ <
C2γ

C3(C2
1 + (1 + 2C2

LC
2
1 )γ)

(1− β2).

Set

ε =
1√
2
β1(‖u− uk‖2a,Ω + γ osc2k(uk, Tk))1/2.

Let δ1, δ2 ∈ (0, 1) be constants such that

(5.8) (1 + δ1)(1 + δ2)β
2
1 6 1.
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And let Tε be a refinement of T1 with minimum degrees of freedom satisfying

‖u− uε‖2a,Ω + (γ + 1) oscε(uε, Tε)2 6 ε2,

where uε denotes the solution over the mesh Tε. By the definition of As, we can get

#Tε −#T1 .
( 1√

2
β1

)−1/s

(‖u− uk‖2a,Ω + γ osck(uk, Tk)2)−1/(2s)|u|1/ss .

Let T∗ be the smallest common refinement of Tk and Tε. For wε defined in (4.1),

from Lemma 3.2 and Young’s inequality we have

õsc
2
∗(Π∗wε, T∗) 6 2õsc

2
ε(Πεwε, Tε) + 2C2

L‖Πεwε −Π∗wε‖2a,Ω.

Due to the orthogonality

‖wε −Π∗wε‖2a,Ω = ‖wε −Πεwε‖2a,Ω − ‖Π∗wε −Πεwε‖2a,Ω,

we arrive at

‖wε −Π∗wε‖2a,Ω +
1

2C2
L

õsc
2
∗(Π∗wε, T∗) 6 ‖wε −Πεwε‖2a,Ω +

1

C2
L

õsc
2
ε(Πεwε, Tε).

From the definition of γ̃ in (3.13), γ̃ := 1/((1 + δ−1
1 )C2

L), we have γ̃ 6 1/(2C2
L).

Then we derive that

(5.9) ‖wε −Π∗wε‖2a,Ω + γ̃õsc
2
∗(Π∗wε, T∗)

6 ‖wε −Π∗wε‖2a,Ω +
1

2C2
L

õsc
2
∗(Π∗wε, T∗)

6 ‖wε −Πεwε‖2a,Ω +
1

C2
L

õsc2ε(Πεwε, Tε)

6 ‖wε −Πεwε‖2a,Ω + (γ̃ + σ)õsc
2
ε(Πεwε, Tε)

with σ = 1/C2
L − γ̃ ∈ (0, 1). Applying an argument similar to that in the proof of

Theorem 4.2, when Lemma 4.2 is replaced by Lemma 4.3, we obtain

‖u− u∗‖2a,Ω + γ osc∗(u∗, T∗) 6 β2
0(‖u− uε‖2a,Ω + (γ + 1) oscε(uε, Tε)),

where

(5.10) β2
0 =

(1 + δ1)(1 + δ2) + C5δ
−1
1 η2a(VH)

1− C5δ
−1
1 η2a(VH)

with C5 being the constant which depends on CL.
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Then we arrive at

‖u− u∗‖2a,Ω + γ osc2∗(u∗) 6 ξ
2
(‖u− uk‖2a,Ω + γ osc2k(uk, Tk))

with ξ
2
= 1

2β
2
0β

2
1 . If ηa(VH) is small enough, we have ξ

2 ∈ (0, 12 ). Thus by Theo-

rem 5.1, we have ∑

T∈M(T∗)

η2k(uk, T ) > θ
∑

T∈Tk

η2k(uk, Tk),

where

θ =
C̃2(1 − 2ξ̃2)

4C0(C̃2
1 + (1 + 2C2

LC̃
2
1 )γ)

, C0 = max
( C̃3

γ
, 1
)

and

ξ̃2 = (1 + δ2)
(1 + δ1)ξ

2
+ C∗δ−1

1 η2a(VH)(1 + ξ
2
)

1− Cηa(H)(1 + ηa(VH))
.

It follows from the definition of γ (see (4.26)) and γ̃ (see (3.13)) that γ < 1 when

ηa(VH) is small enough. On the other hand, we have C̃3 > 1 and hence C0 = C̃3/γ.

Since ηa(VH) ≪ 1, we obtain that ξ̃2 ∈ (0, 12β
2). And using Theorem 4.1, we have

θ =
C̃2(1− 2ξ̃2)

4C0(C̃2
1 + (1 + 2C2

LC̃
2
1 )γ)

>
C̃2

(4C̃3/γ)(C̃2
1 + (1 + 2C2

LC̃
2
1 )γ)

(1− β2)

>
C̃2

4C̃3

(
C̃2

1/γ + 1 + 2C2
LC̃

2
1

) (1− β2)

=
4C2(4 + Cη2a(VH))γ(1− β2)

4C3(4 + Cη2a(VH)){C2
1 (1− C′ηa(VH))2 + (1 + 2C2

LC
2
1 (1 − C′ηa(VH))2)γ}

>
C2γ

C3(C2
1 + (1 + 2C2

LC
2
1 )γ)

(1− β2) > θ.

Thus

#Mk 6 #R 6 #T∗ −#Tk 6 #Tε −#T1

6
( 1√

2
β1

)−1/s

(‖u− uk‖2a,Ω + γ osc2k(uk, Tk))−1/(2s)|u|1/ss .

Then we derive the desired estimate (5.7) with an explicit dependence on the dis-

crepancy between θ and
C2γ

C3(C2
1 + (1 + 2C2

LC
2
1 )γ)

.

�

As a consequence, we obtain the optimal complexity as follows.
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Theorem 5.2. Let u ∈ As be the solution of (2.2) and {uk}k∈N+
be a sequence

of finite element solutions produced by Algorithm 3.3. Under the assumption (5.1),

the k-th approximate solution satisfies the optimal bound

(5.11) ‖u− uk‖2a,Ω + γ osc2k(uk, Tk) . (#Tk −#T1)−2s|u|2s,

where the hidden constant depends on the exact solution u and the discrepancy

between θ and
C2γ

C3(C2
1 + (1 + 2C2

LC
2
1 )γ)

.

P r o o f. From Lemmas 5.1 and 5.4 we obtain

(5.12) #Tk −#T1 .

k−1∑

j=1

#Mj .

k−1∑

j=1

(‖u− uj‖2a,Ω + γ osc2j (uj, Tj))−1/(2s)|u|1/ss .

And from the efficiency of the a posteriori estimator, we have

(5.13) ‖u− uj‖2a,Ω + γη2j (uj, Tj) 6 C(‖u− uj‖2a,Ω + γ osc2j(uj , Tj)).

Combining (5.12) and (5.13) leads to

#Tk −#T1 .

k−1∑

j=1

(‖u− uj‖2a,Ω + γη2j (uj , Tj))−1/(2s)|u|1/ss .

By the contraction property (5.2)

‖u− uk‖2a,Ω + γη2k(uk, Tk) 6 θ̃
2(k−j)
1 (‖u− uj‖2a,Ω + γη2j (uj , Tj)),

we have

#Tk −#T1 . (‖u− uk‖2a,Ω + γη2k(uk, Tk))−1/(2s)|u|1/ss

k−1∑

j=1

θ̃
(k−j)/s
1

. (‖u− uk‖2a,Ω + γη2k(uk, Tk))−1/(2s)|u|1/ss .

Since osck(uk, Tk) 6 ηk(uk, Tk), we arrive at the desired result (5.11). �

R em a r k 5.1. Step (5) of Algorithm 3.3 means we use the fixed-point iteration

for the nonlinear elliptic equation. Of course, for strong nonlinear equations, we can

use the Newton iteration to design the corresponding multilevel correction adaptive

algorithm.
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6. Numerical results

In this section, two numerical experiments are presented to verify the theoretical

analysis and efficiency of Algorithm 3.3.

Figure 1. The initial triangulation and the one after adaptive iterations for Example 6.1.

103 104 104 106 107
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slope = −1/3

Figure 2. Errors by adaptive finite element method of Algorithm 3.3 for Example 6.1.

E x am p l e 6.1. We consider the semilinear elliptic problem

(6.1)

{
−∆u+ u3 = f in Ω,

u = 0 on ∂Ω,
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where Ω = (0, 1)3. We choose the right-hand side term f such that the exact solution

is given by

(6.2) u =
sin(πx) sin(πy)

(x2 + y2)1/2
.

We give the numerical results for the approximate solutions by Algorithm 3.3

with the parameter θ = 0.4. In order to show the efficiency more clearly, we compare

the results with those obtained by the direct AFEM. Figure 1 shows the initial

triangulation and the one after 20 adaptive iterations. It is shown in Figure 2 that

the approximate solutions by Algorithm 3.3 have the optimal convergence rate which

coincides with the theoretical results.

E x am p l e 6.2. In the second example, we solve the semilinear elliptic problem

(6.3)

{
−∆u+ u3/2 = 1 in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)× (0, 2)× (0, 2) \ (0, 1)× [1, 2)× [1, 2). Due to the reentrant corner

of Ω, the exact solution with singularities is expected. Since the exact solution is

not known, we choose an adequately accurate approximate solution on a fine enough

mesh as the exact one.

Figure 3. The initial triangulation and the one after adaptive iterations for Example 6.2.

Algorithm 3.3 is applied to this example with parameter θ = 0.4. Figure 3 shows

the initial mesh and the one after 18 adaptive iterations. In order to show the effi-

ciency of Algorithm 3.3 more clearly, we also compare the results with those obtained
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Figure 4. Errors by adaptive finite element method of Algorithm 3.3 for Example 6.2.

by the direct AFEM. Figure 4 gives the corresponding numerical results for the first

22 adaptive iterations which show the optimal convergence rate of Algorithm 3.3.

7. Concluding remarks

In this paper, we propose a type of multilevel correction type of AFEM for semi-

linear elliptic equations. Unlike the classical AFEM for semilinear equations, the

proposed method transforms the semilinear equation solving to a series of linear

elliptic equation solving and some semilinear elliptic solutions in a very low dimen-

sional space. The high efficiency of linear elliptic equation solving can improve the

overall efficiency of the AFEM for semilinear elliptic equations. The corresponding

analysis of the convergence and optimal complexity has also been given.
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