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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 4 , P AGES 6 9 9 – 7 1 1

ON ALMOST EQUITABLE UNINORMS

Gang Li, Hua-Wen Liu, János Fodor

Uninorms, as binary operations on the unit interval, have been widely applied in information
aggregation. The class of almost equitable uninorms appears when the contradictory informa-
tion is aggregated. It is proved that among various uninorms of which either underlying t-norm
or t-conorm is continuous, only the representable uninorms belong to the class of almost equi-
table uninorms. As a byproduct, a characterization for the class of representable uninorms is
obtained.

Keywords: uninorm, representable uninorm, aggregation functions, negation, contradic-
tory information

Classification: 06F05, 03E72, 03B52

1. INTRODUCTION

Uninorms constitute an important and broad class of aggregation functions in informa-
tion aggregation. Since their introduction in 1996 by Yager and Rybalov [30], they have
attracted a significant and varied amount of research activity, ranging from theoretical
study and practical applications. The first deep study by Fodor et al. revealed the
structure of uninorms in [12]. Later on it has been justified that uninorms are useful in
many fields like expert systems [4, 32], fuzzy logic [14], fuzzy mathematical morphology
[5], bipolar aggregation [31]. On the other hand, the theoretical study of uninorms has
been even more extensive [1, 7 – 10, 13, 15 – 18, 20, 25 – 29].

Several classes of uninorms are nowadays available. So the question of how to choose
the most suitable uninorm for each particular application arises. Several criteria may
help in making this choice, such as satisfaction of some specific properties or the fitting
of prototypical data. Another criterion is the behavior of the uninorm when receiving
contradictory information: should it be tolerant, intolerant, or equitable? Some works
[21 – 24] along this line have been carried out. Especially, the class of almost equitable
uninorms was introduced in [24]. This paper is devoted to study of this class of uninorms.
Sections 2 provides some preliminary concepts and results about uninorms. Section 3
includes the main results of this paper.
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2. PRELIMINARIES

In this section we summarize some of the essential results about t-norms, t-conorms and
uninorms.

Definition 2.1. (Klement et al. [19]) A t-norm is a commutative, associative, increas-
ing function T : [0, 1]2 → [0, 1] such that T (1, x) = x for all x ∈ [0, 1].

A t-norm T satisfies T (x, y) ≤ min(x, y) for all x, y ∈ [0, 1]. If a continuous t-norm
T satisfies T (x, x) < x for all x ∈]0, 1[, then it is called a continuous Archimedean t-
norm. As it is well-known, each continuous Archimedean t-norm T can be represented
by means of a continuous additive generator [19], i. e., a strictly decreasing continuous
function t : [0, 1]→ [0,∞] with t(1) = 0 such that

T (x, y) = t(−1)(t(x) + t(y)),

where t(−1) : [0,∞]→ [0, 1] is the pseudo-inverse of t, and is given by

t(−1)(u) = t−1(min(u, t(0))).

Moreover, if T is continuous, Archimedean and for all x ∈]0, 1], 0 < y < z < 1 implies
T (x, y) < T (x, z), then T is called strict. If T is continuous, Archimedean and for all
x ∈]0, 1[, there exists y ∈]0, 1[ such that T (x, y) = 0, then T is called nilpotent. A
nilpotent t-norm T has additive generator t such that t(0) < +∞. This implies that T
is strictly increasing on that part of the unit square where it is positive. We will use
this fact in some proofs later on.

Each continuous t-norm can be represented as an ordinal sum of continuous Archimedean
t-norms, i. e., there exists a uniquely determined index set K which is finite or countably
infinite, and a family of uniquely determined continuous Archimedean t-norms Tk, k ∈ K
such that T = (〈ak, bk, Tk〉)k∈K , where 〈ak, bk, Tk〉 is called summand and Tk is called
the corresponding t-norm in summand 〈ak, bk, Tk〉 [19].

Definition 2.2. (Klement et al. [19]) A t-conorm is a commutative, associative, in-
creasing function S : [0, 1]2 → [0, 1] such that S(0, x) = x for all x ∈ [0, 1].

A t-conorm S satisfies S(x, y) ≥ max(x, y) for all x, y ∈ [0, 1]. If a continuous t-
conorm S satisfies S(x, x) > x for all x ∈]0, 1[, then it is called a continuous Archimedean
t-conorm. Moreover, if S is continuous, Archimedean and for all x ∈ [0, 1[, 0 < y < z < 1
implies S(x, y) < S(x, z), then S is called strict. If S is continuous, Archimedean and
for all x ∈]0, 1[, there exists y ∈]0, 1[ such that S(x, y) = 1, then S is called nilpotent.

More information concerning t-norms and t-conorms can be found in [19].

Definition 2.3. (Fodor et al. [12], Yager and Rybalov [30]) A uninorm is a two-place
function: U : [0, 1]2 → [0, 1] which is associative, commutative, increasing and there
exists some element e ∈ [0, 1], called neutral element, such that U(e, x) = x for all
x ∈ [0, 1].
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We summarize some fundamental results from [12].
It is clear that the uninorm U becomes a t-norm when e = 1 and a t-conorm when

e = 0. For any uninorm we have U(0, 1) ∈ {0, 1}. Throughout this paper, we ex-
clusively consider uninorms with a neutral element e strictly between 0 and 1. With
any uninorm U with neutral element e ∈]0, 1[, we can associate two binary operations
TU , SU : [0, 1]2 → [0, 1] defined by

TU (x, y) =
1
e
· U(ex, ey)

and

SU (x, y) =
1

1− e
(U(e+ (1− e)x, e+ (1− e)y)− e).

It is easy to see that TU is a t-norm and that SU is a t-conorm. In other words, on
[0, e]2 any uninorm U is determined by the t-norm TU , and on [e, 1]2 any uninorm U is
determined by the t-conorm SU ; TU is called the underlying t-norm, and SU is called
the underlying t-conorm. Let us denote the remaining part of the unit square by E, i. e.,
E = [0, 1]2\([0, e]2 ∪ [e, 1]2). On the set E, any uninorm U is bounded by the minimum
and maximum of its arguments, i. e., for any (x, y) ∈ E it holds that

min(x, y) ≤ U(x, y) ≤ max(x, y). (1)

Now, we recall the characterizations of several classes of uninorms.

Theorem 2.4. (Fodor et al. [12]) Suppose that U is a uninorm with neutral element
e ∈]0, 1[ and both functions x 7→ U(x, 1) and x 7→ U(x, 0) (x ∈ [0, 1]) are continuous
except perhaps at the point x = e. Then U is given by one of the following forms.

(i) If U(0, 1) = 0, then

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

min(x, y) otherwise.
(2)

(ii) If U(0, 1) = 1, then

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

max(x, y) otherwise.
(3)

Denote Umin the class of uninorms having the form (2) and Umax the class of uninorms
with the form (3).

Proposition 2.5. (Fodor et al. [12]) Consider e ∈]0, 1[ and strictly increasing contin-
uous function h : [0, 1] → [−∞,+∞] with h(0) = −∞, h(e) = 0 and h(1) = +∞. The
binary operator U defined by

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)} and either U(0, 1) = U(1, 0) = 0 or U(0, 1) =
U(1, 0) = 1, is a uninorm which is continuous in [0, 1]2\{(0, 1), (1, 0)}.
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Uninorms defined in Proposition 2.5 are called representable uninorms, function h is
called an additive generator of U .

Remark 2.6. For a representable uninorm U , both the underlying t-norm TU and un-
derlying t-conorm SU are strict.

Uninorms continuous in ]0, 1[2 form another class of uninorms that contains the class
of representable uninorms. They were characterized in [17, 28] as follows.

Theorem 2.7. Suppose that U is a uninorm continuous in ]0, 1[2 with neutral element
e ∈]0, 1[. Then, one of the following cases is satisfied:

(i) There exist u ∈ [0, e[, λ ∈ [0, u], two continuous t-norms T1, T2 and a representable
uninorm R such that U can be represented as

U(x, y) =



λT1(xλ ,
y
λ ) if x, y ∈ [0, λ],

λ+ (u− λ)T2(x−λu−λ ,
y−λ
u−λ ) if x, y ∈ [λ, u],

u+ (1− u)R(x−u1−u ,
y−u
1−u ) if x, y ∈]u, 1[,

1 if min(x, y) ∈]λ, 1], max(x, y) = 1,
min(x, y) or 1 if (x, y) ∈ {(λ, 1), (1, λ)},
min(x, y) otherwise.

(4)

(ii) There exist γ ∈]e, 1], δ ∈ [γ, 1], two continuous t-conorms S1, S2 and a representable
uninorm R such that U can be represented as

U(x, y) =



γR(xγ ,
y
γ ) if x, y ∈]0, γ],

γ + (δ − γ)S1(x−γδ−γ ,
y−γ
δ−γ ) if x, y ∈ [γ, δ],

δ + (1− δ)S2(x−δ1−δ ,
y−δ
1−δ ) if x, y ∈ [δ, 1],

0 if max(x, y) ∈ [0, δ[, min(x, y) = 0,
max(x, y) or 0 if (x, y) ∈ {(δ, 0), (0, δ)},
max(x, y) otherwise.

(5)

Denote CUmin the class of uninorms with the form (4) and CUmax the class of uninorms
with the form (5).

Remark 2.8. Any uninorm U in CUmin with u = 0 or U in CUmax with γ = 1 is a
representable uninorm. Both the underlying t-norm TU and underlying t-conorm SU of
U in CUmin (or in CUmax) are continuous.

Definition 2.9. (De Baets [2]) A uninorm U : [0, 1]2 → [0, 1] is said to be idempotent
whenever U(x, x) = x for all x ∈ [0, 1].

Theorem 2.10. (Ruiz-Aquilera and Torrens [27]) Consider e ∈]0, 1[. The following
items are equivalent:

(i) U is idempotent uninorm with neutral element e.
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(ii) There exists a decreasing, Id-symmetrical function g : [0, 1]→ [0, 1] with fixed point
e such that, for all (x, y) ∈ E = [0, 1]2\([0, e]2 ∪ [e, 1]2)

U(x, y) =

 min(x, y) if y < g(x) or (y = g(x) and x < g2(x)),
max(x, y) if y > g(x) or (y = g(x) and x > g2(x)),
x or y if y = g(x) and x = g2(x).

Moreover, U is commutative on the set of points (x, g(x)) such that x = g2(x).

Definition 2.11. A uninorm U is called a uninorm with continuous underlying opera-
tors if both the underlying t-norm TU and underlying t-conorm SU are continuous.

Recently, a characterization of the class of uninorms with strict underlying t-norm
and t-conorm was presented in [10, 13, 15].

Theorem 2.12. Let U be a uninorm with neutral element e ∈]0, 1[ such that TU is
strict and SU is strict. Then one of the following seven statements holds:

(i) U ∈ Umin.

(ii)

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

1 if x = 1 or y = 1,
min(x, y) otherwise.

(6)

(iii)

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

1 if x = 1, y 6= 0 or x 6= 0, y = 1,
min(x, y) otherwise.

(7)

(iv) U ∈ Umax.

(v)

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

0 if x = 0 or y = 0,
max(x, y) otherwise.

(8)

(vi)

U(x, y) =


eTU (xe ,

y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e1−e ,
y−e
1−e ) if (x, y) ∈ [e, 1]2,

0 if x = 0, y 6= 1 or x 6= 1, y = 0,
max(x, y) otherwise.

(9)

(vii) U is representable.
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Definition 2.13. (Fodor and Roubens [11]) A function N : [0, 1] → [0, 1] is said to
be a negation if it is decreasing and satisfies N(0) = 1, N(1) = 0. Moreover, if N is
continuous and strictly decreasing, then it is called a strict negation. If a strict negation
N is involutive, i. e., N(N(x)) = x for all x ∈ [0, 1], then it is called a strong negation.

In [22, 24], the Non-Contradiction and Excluded-Middle logical principles are dis-
cussed for aggregation operators when receiving contradictory information, where con-
tradiction information is represented by means of couples (x,N(x)) and N is a strong
negation. In order to describe the equitable behavior of uninorms when receiving con-
tradictory information, the class of almost equitable uninorms was introduced in [24].

Definition 2.14. A uninorm U with neutral element e ∈]0, 1[ is said to be almost
equitable with respect to a strict negation N if U(x,N(x)) = e for all x ∈]0, 1[.

Remark 2.15. In Definition 2.14, N is a strict negation. Since the strict negation is
often used to represent the contradictory information [11], we give the more general
definition.

3. THE MAIN RESULTS

In this section, we discuss the class of almost equitable uninorms.

Proposition 3.1. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[
and N be a strict negation with the fixed point e. If U is almost equitable with respect
to N then N is a strong negation.

P r o o f . Suppose that N is not a strong negation. Then there exists x ∈]0, 1[ such
that N(N(x)) 6= x. Without loss of generality, assume that x ∈]0, e[ and N(N(x)) >
x. Since U is almost equitable with respect to N , we have U(x,N(x)) = e and
U(N(x), N(N(x))) = e. Hence, U(z,N(x)) = e for all z ∈ [x,N(N(x))] by the mono-
tonicity of U . Taking z ∈]x,N(N(x))[, we have

U(x, U(z,N(x))) = U(x, e) = x

and
U(U(x,N(x)), z) = U(e, z) = z,

a contradiction with the associativity and the commutativity of U . Hence, the result
holds. �

Proposition 3.2. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[
and N be a strict negation. If U is almost equitable with respect to N , then e is the
only fixed point of N , i. e., N(e) = e.

P r o o f . The proof is easy by taking x = e in Definition 2.14. �
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Proposition 3.3. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[
and N be a strict negation. If U is locally internal on [0, e[×]e, 1]∪]e, 1] × [0, e[ (i. e.,
U(x, y) ∈ {x, y} for any (x, y) in this region), then U is not almost equitable with respect
to N .

P r o o f . If N(e) 6= e then U is not almost equitable with respect to N by Proposition
3.2. Now, assume that e is the fixed point of N , i. e., N(e) = e. Since U is locally
internal, we have U(x,N(x)) ∈ {x,N(x)} for all x ∈ [0, 1]. Hence, since N is strictly
decreasing and N(e) = e, there exists x ∈ [0, 1[, x 6= e such that U(x,N(x)) 6= e. �

Corollary 3.4. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[ and
N be a strict negation. If U is an idempotent uninorm then U is not almost equitable
with respect to N .

Corollary 3.5. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[ and
N be a strict negation. If U ∈ Umin or U ∈ Umax, then U is not almost equitable with
respect to N .

Proposition 3.6. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[
and N be a strict negation. If U is continuous in ]0, 1[2, then U is almost equitable
with respect to N if and only if U is a representable uninorm with additive generator
h : [0, 1] → [−∞,+∞] and N = NU is a strong negation, where NU (x) = h−1(−h(x))
for all x ∈ [0, 1].

P r o o f . If U is a representable uninorm and N = NU then U(x,N(x)) = e for all
x ∈]0, 1[ by Proposition 6 in [3].

Conversely, assume that U is almost equitable with respect to N . By Theorem 2.7,
unless U is a representable uninorm, there always exists l ∈]0, e[ such that U(x, y) ∈
{x, y} for all (x, y) ∈ [0, l] × [l, 1] ∪ [l, 1] × [0, l]. Hence, similarly as in Proposition
3.3, U is not almost equitable with respect to N . If U is a representable uninorm
then there exists an additive generator h : [0, 1] → [−∞,+∞] such that h(e) = 0 and
U(x, y) = h−1(h(x) + h(y)) for all (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)}. We have U(x,N(x)) =
h−1(h(x) + h(N(x))) = e and h(x) + h(N(x)) = h(e) = 0, i. e., N(x) = h−1(−h(x)). By
Proposition 7 in [8], N = NU is a strong negation. �

Now, we discuss the class of uninorms with continuous underlying operators. First
we need the following lemmas.

Lemma 3.7. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[. Then
the following statements hold:

(i) If TU is nilpotent then U(x, y) ∈ {x}∪]e, y] for all (x, y) ∈ [0, e[×]e, 1].

(ii) If SU is nilpotent then U(x, y) ∈ {y} ∪ [x, e[ for all (x, y) ∈ [0, e[×]e, 1].
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P r o o f . We only prove (i). Taking (x, y) ∈ [0, e[×]e, 1], we have U(x, y) ≥ U(x, e) = x
by the monotonicity of U . Suppose that U(x, y) = a ∈]x, e]. Since TU is nilpotent there
exists the largest x1 ∈]0, e] such that U(x1, x) = 0. Then by the associativity of U , we
have

U(U(x1, x), y) = U(0, y) = U(U(0, x), y) = U(0, U(x, y)) = U(0, a) = 0.

Moreover, since the nilpotent t-norm TU can be represented by means of an additive
generator, TU is strictly increasing on that part of the unit square where it is positive.
Hence, we have

U(x1, U(x, y)) = U(x1, a) > 0,

a contradiction with the associativity of U . �

Remark 3.8. (i) The results of Lemma 3.7 can also be induced from Lemma 3.13 in
[20] where a general result is proved by adopting the concepts of web geometry.

(ii) If TU (or SU ) is not nilpotent then the results of Lemma 3.7 may not hold. Some
examples are presented here.

Example 3.9. Let U be a representable uninorm with neutral element e ∈]0, 1[. Then
there exists (x, y) ∈ [0, e[×]e, 1] such that U(x, y) ∈]x, e] by Proposition 2.5.

Example 3.10. ([6]) Let U be a binary operator defined by

U(x, y) =


max(x, y) if min(x, y) ≥ 1

2 ,

min(x, y) if 1
8 < min(x, y) < 1

2 or max(x, y) = 1
2 ,

1
8 if 0 < min(x, y) ≤ 1

8 and max(x, y) > 1
2 ,

0 otherwise.

It is easy to prove that U is a uninorm with neutral element e = 1
2 . However, U( 1

16 ,
3
4 ) =

1
8 ∈] 1

16 ,
1
2 ].

Lemma 3.11. (Hliněná et al. [6]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral el-
ement e ∈]0, 1[. Then, for every x ∈]0, 1[, U(1, x) = x or U(1, x) = x′ > x. Furthermore,
if U(1, x) = x′ > x then U(1, z) = x′ for all z ∈ [x, x′].

Lemma 3.12. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[. Then
the following statements hold:

(i) If TU is continuous then U(1, y) ∈ {y, 1} for all y ∈ [0, 1].

(ii) If SU is continuous then U(0, y) ∈ {0, y} for all y ∈ [0, 1].

P r o o f . We only prove (i). If U(1, y) ≥ e then by the associativity and the monotonicity
of U , we have

U(1, y) = U(U(1, 1), y) = U(1, U(1, y)) ≥ U(1, e) = 1.
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Hence, U(1, y) = 1.
On the other hand, from Lemma 3.11 it follows U(1, y) ≥ y. In order to prove the

result, we have only to check the case U(1, y) ∈ [y, e[, i. e., y ∈ [0, e[. If we denote
U(1, y) = z then from Lemma 3.11, it follows U(1, z) = z. The continuity of TU implies
that there exists u ∈ [0, e] such that U(z, u) = y. Then by the associativity of U , we
have

U(1, y) = U(1, U(z, u)) = U(U(1, z), u) = U(z, u) = y.

Summarizing the above results, it is clear that U(1, y) ∈ {y, 1} for all y ∈ [0, 1]. �

Remark 3.13. (i) The results of Lemma 3.12 are consistent with Propositions 2, 3
in [18].
(ii) The results of Lemma 3.12 may not hold when TU (or SU ) is not continuous. Uninorm
U in Example 3.10 can be taken as a counterexample.

Proposition 3.14. Let U : [0, 1]2 → [0, 1] be a uninorm with continuous underlying
operators and neutral element e ∈]0, 1[ and N be a strict negation. U is almost equitable
with respect to N if and only if U is a representable uninorm with additive generator
h : [0, 1] → [−∞,+∞] and N = NU is a strong negation, where NU (x) = h−1(−h(x))
for all x ∈ [0, 1].

P r o o f . If U is a representable uninorm and N = NU then U(x,N(x)) = e for all
x ∈]0, 1[ by Proposition 6 in [3].

Conversely, let U be a uninorm with continuous underlying operators and be almost
equitable with respect to N . Then U(x,N(x)) = e for all x ∈]0, 1[. We can prove the
result following two steps.

Step 1: TU and SU are Archimedean, i. e., there exists no idempotent element of U
in ]0, 1[ except the neutral element e. On the contrary, suppose that x ∈]0, 1[ is an
idempotent element of U . Then we have

U(U(x, x), N(x)) = U(x,N(x)) = e

and
U(x, U(x,N(x))) = U(x, e) = x.

Hence, x = e.

Step 2: TU and SU are strict. On the contrary, suppose that TU is nilpotent. Then
there exist x1, x2 ∈]0, e[ such that x1 < x2, U(x1, x2) = 0. Since U is almost equitable
with respect to N , we have U(x1, N(x1)) = e, U(x2, N(x2)) = e, U(N(x1), N(x2)) ≥ e.
Furthermore, by Lemma 3.7, we have

U(U(x1, x2), U(N(x1), N(x2))) = U(0, U(N(x1), N(x2))) ∈ {0}∪]e, U(N(x1), N(x2))]

and
U(U(x1, N(x1)), U(x2, N(x2))) = U(e, e) = e,

a contradiction with the associativity and the commutativity of U . Hence, TU is strict.
By the similar proof, we can prove that SU is strict.
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Hence, both TU and SU are strict and U is a representable uninorm by Theorem 2.12
and Proposition 3.3. The result holds by the proof of Proposition 3.6. �

The result of Proposition 3.14 can be strengthened.

Theorem 3.15. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[.
Then the following statements hold.

(i) U is a representable uninorm if and only if TU is continuous and there exists a strict
negation N : [0, 1]→ [0, 1] such that U(x,N(x)) = e for all x ∈]0, 1[.

(ii) U is a representable uninorm if and only if SU is continuous and there exists a strict
negation N : [0, 1]→ [0, 1] such that U(x,N(x)) = e for all x ∈]0, 1[.

P r o o f . We only prove (i). Let U be a representable uninorm. Then TU is continuous
and NU is a strong negation by Proposition 7 in [12]. Taking N = NU . By Proposition
6 in [3], U(x,N(x)) = e for all x ∈]0, 1[.

Conversely, suppose that TU is continuous and U is almost equitable with respect
to N . By the similar proof of Proposition 3.14, we obtain that TU is strict. From
Propositions 3.1 and 3.2 we know that N is a strong negation with fixed point e. For
all (x, z1), (x, z2) ∈ E, if U(x, z1) = U(x, z2) = e then z1 = z2. Indeed,

z1 = U(e, z1) = U(U(x, z2), z1) = U(U(x, z1), z2) = U(e, z2) = z2

by the commutativity and the associativity of U .
For all x, y ∈]0, 1[, we have U(U(x, y), N(U(x, y))) = e, U(x,N(x)) = e and U(y,N(y))

= e. Furthermore,

U(U(x, y), U(N(x), N(y))) = U(U(x,N(x)), U(y,N(y))) = U(e, e) = e

by the associativity and the commutativity of U . Hence, for all x, y ∈]0, 1[,

N(U(x, y)) = U(N(x), N(y)).

So, SU is N−dual to TU and is strict. Therefore, U is a representable uninorm by
Theorem 2.12 and Propositions 3.3, 3.14. �

Corollary 3.16. Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[.
Then the following statements hold.

(i) U is a representable uninorm if and only if TU is continuous and there exists a strong
negation N : [0, 1]→ [0, 1] such that U(x,N(x)) = e for all x ∈]0, 1[.

(ii) U is a representable uninorm if and only if SU is continuous and there exists a
strong negation N : [0, 1]→ [0, 1] such that U(x,N(x)) = e for all x ∈]0, 1[.
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4. CONCLUSIONS

In this paper, the class of almost equitable uninorms has been discussed. We have
proved that among several well known classes of uninorms, only the class of representable
uninorms has nonempty intersection with the class of almost equitable uninorms.

In our future work, we plan to deal with the problem: whether the above result is
still true for more general cases of uninorms?
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