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DISTRIBUTED H∞ ESTIMATION FOR MOVING TARGET
UNDER SWITCHING MULTI-AGENT NETWORK

Hu Chen, Qin Weiwei, He Bing and Liu Gang

In this paper, the distributed H∞ estimation problem is investigated for a moving target
with local communication and switching topology. Based on the solution of the algebraic Riccati
equation, a recursive algorithm is proposed using constant gain. The stability of the proposed
algorithm is analysed by using the Lyapounov method, and a lower bound for estimation errors
is obtained for the proposed common H∞ filter. Moreover, a bound for the H∞ parameter
is obtained by means of the solution of the algebraic Riccati equation. Finally, a simulation
example is employed to illustrate the effectiveness of the proposed estimation algorithm.
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1. INTRODUCTION

Recently, multi-agent systems have attracted much attention for its broad applications
in many areas such as sensor networks, power grids, and public transportation. State
estimation by multi-agent systems is one of the important problems related to the mov-
ing target tracking, signals or parameters estimation in sensor networks [17, 22, 24].
Because of the ability of tracking the fast moving target and non-stationary process,
the distributed Kalman filtering have wildly used in distributed estimation for moving
target in sensor networks, and many results have been obtained. For example, a de-
centralized Kalman filter was proposed in [14, 15], which made the sensor network to
track the average of n sensors estimation by using two consensus distributed Kalman
filter. Also, a gossip-based distributed Kalman filter was studied in [10], where each
sensor occasionally and randomly exchanged information with only one neighbor. Fur-
thermore, a diffusion distributed estimation problem was studied in [8]. However, for
the limits of the sensor’s capacity, not all the the sensors could connected to the target
in practice. From this point of view, under switching topology, a distributed consensus
Kalman-based estimation algorithm was studied in [24], where, with some wild assump-
tions (i. e., observability and connectivity), the upper and lower bound were obtained
for estimation errors.

In the presence of the noises and uncertainties, a natural way is to use H∞ estimation
method. Many researches have investigated the distributed H∞ estimation problem. In
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[20], by using the vector dissipativity theory, the distributed robust consensus filter
was proposed via optimization of H∞ disagreement between the nodes, subject to lin-
ear matrix inequalities (LMIs) constraints. Distributed H∞ estimation under missing
measurements and Markovian switching conditions were studied in [22] and [19], re-
spectively. In [12], A PI consensus algorithm was proposed which enable decentralized
implementation of H∞ filters at each node of mobile network. Moreover, in [3], a dis-
tributed H∞ filtering problem was discussed for a class of discrete-time Markovian jump
nonlinear time-delay systems with deficient statistics of mode transitions. Notice that
the sufficient conditions for the existence of distributed H∞ estimation are all based on
solutions of LMIs in some existing distributed H∞ estimations [19–21]. However, there
are no sufficient conditions dependent only on the system dynamics to guarantee the
existence of solution to LMIs [18], and the time complexity of solving such an LMI is
O(n2p4), where n is the number of agents and p is the number of each node state [13].
Thus, in practice, it is not always feasible to design distributed H∞ estimation by using
LMI techniques.

The objective of this paper is to design a distributed H∞ estimation algorithm for
moving target using constant gain under switching topology. We assume that the target
may not be measured by some sensors for the limits of sensor’s capacity. Different
from most existing works, our approach is designed by the solution of the algebraic
Riccati equation (ARE) instead of general LMIs, and then a constant gain is obtained
for distributed H∞ estimation under switching connectivity. Based on the well-known
detectability and connectivity, the distributed H∞ estimation performance is guaranteed
in this paper, and a lower bound for the total mean square estimation errors (TMSEE)
is achieved. Moreover, in order to make sure the positive definiteness of the solution
to ARE, a bound for H∞ parameter is obtained, which is helpful to determine the H∞
parameter.

The rest of this paper is organized as follows. In Section II, the formulation of dis-
tributed H∞ estimation for moving target is presented, along with some preliminaries.
In section III, the stability analysis for the proposed distributed H∞ estimation algo-
rithm and the bound for H∞ parameter are given. In Section IV, a simulation example
is showed. Finally, concluding remarks are found in Section V.

2. PROBLEM STATEMENT

In this section, we provide necessary preliminaries and then formulate the distributed
H∞ estimation problem.

A. Sensor Network Topology

Consider a multi-agent system that consists of n sensors that can only communication
with its neighbors. The topology of the system can be described by graph theory [4].
An undirected graph denoted as G = (V ,E ), where V = {1, 2, . . . , n} is the node set,
and E = {(i, j) : i, j ∈ V } is the edge set. If node i and node j connected by an
edge, then these two vertices are called adjacent, and we define Ni(k) = {j : (i, j) ∈ E }
is the neighbor set of node i. In this paper, we can regard sensor i as node i, the
communication link can be treated as edge. A path is a sequence of edges with the
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form (i1, i2), (i2, i3), . . . , where ij ∈ V . We call G is connected if there exists a path
between any two vertices of graph G . We call graph G ′ = (V ′,E ′) is the subgraph
of G = (V ,E ), if V ′ ⊆ V ,E ′ ⊆ E . For G ′ ⊆ G , if G ′ is connected and there is no
other vertices in V −V ′ connected to the G ′, then we call G ′ is one maximal connected
branches of G . In this paper, we consider the system with n sensors and a target. The
interaction among sensors could be described by an undirected graph G . The interaction
among n sensors and a target can be described as Ḡ . Then we have G ⊆ Ḡ . We call
Ḡ is connected, if for every maximal connected branch of G , there is at least one sensor
that is connected to the target.

The weighted adjacency matrix of graph G defined as G = (gij)nn ∈ Rn×n, where
gii = 0 and gij = gji > 0. Then the degree matrix defined as D(G) = diag{d(G)

1 , d
(G)
2 , . . . ,

d
(G)
n } ∈ Rn×n, where diagonal elements d(G)

i =
∑n
j=1 gij (i = 1, 2, . . . , n). The Laplacian

of the weighted graph defined as L = D(G) −G.
Here, we consider the distributed H∞ estimation problem with switching topology.

The index set of all the possible interconnected graphs (involving n sensors and a target)
denoted as P = {1, 2, . . . , N}. The switching signal defined as τ : [0,∞)→ P. Assume
there exists an infinite sequence of bounded, non-overlapping, contiguous time-intervals
[ki, ki+1) (i = 0, 1, . . . ) with k0 = 0. Therefore, the neighbor set Ni, weighted adjacency
matrix G, degree matrix D are piece-wise constant at the time-interval [ki, ki+1) (i =
0, 1, . . . ) and Laplacian matrix L also is piece-wise constants. Then we can use Ni(k),
G(k) = (gij(k))nn, D(G)(k) = diag(d(G)

1 (k), d(G)
1 (k), . . . , d(G)

n (k)) and Lp(k) = D(G)(k)−
G(k) to describe the time-varying cases.

Furthermore, in order to describe the connection between sensors, we assume that
there are fixed constants αij (i, j = 1, 2, . . . , n). If sensor i and j connected at k, gij(k) =
αij = αji, otherwise gij(k) = 0. Denote bi(k) as the connection weight between sensor
i and the target, and there exist constants βi (i = 1, 2, . . . , n) such that

bi(k) =

{
βi, if sensors i is connected to the target at k,
0, otherwise.

Let Bp(k) = diag(b1(k), b2(k), . . . , bn(k)) and Hp(k) = Lp(k) + Bp(k). Therefore,
Bp(k), Hp(k) are piece-wise constant matrices at the time-interval [ki, ki+1) (i = 0, 1, . . . )
and only take finite values at time-interval [0,∞).

The following assumption on the graphs for sensor network is used in the distributed
estimation literatures [23, 24].

Assumption 1: (Connectivity) The graph Ḡ is connected, i. e., for every maximal con-
nected branch of G , there exist at least one sensor that is connected to the target.

Under above assumption, we review a useful lemma of Hp(k) in [5].

Lemma 2.1. Denote

λ0 = min{λp(k) : Hp(k)φp(k) = λp(k)φp(k), φp(k) 6= 0, p = 1, 2, . . . , N, ∀k}.

If Assumption 1 holds, then λ0 > 0.
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B. Distributed H∞ Estimation

The dynamics of the target is as follows,

x(k + 1) = Ax(k) + w0(k), (1)

where x(k) =
[
x(k, 1) · · ·x(k,m)

]T ∈ Rm×1 and w0(k) is the m-dimensional process
noise.

Furthermore, the measurement of the moving target by sensor i (i = 1, 2, . . . , n) is as
follows,

yi(k) = bi(k)Cx(k) + wi1(k), (2)

where C ∈ Rq×m is the observable matrix. If sensor i is connected to the moving target,
then the measurement obtained by sensor i is yi(k) = βiCx(k) +wi1(k). Otherwise, the
measurement of sensor i is yi(k) = wi1(k).

For sensor i (i = 1, 2, . . . , n), we construct a distributed estimation algorithm:

x̂i(k + 1) = Ax̂i(k) +AK(yi(k)− bi(k)Cx̂i(k) + zi(k)), (3)

where zi(k) is the relative measurement errors of its neighbors, i. e.,

zi(k) =
∑

j∈Ni(k)

gij(k)C(x̂j(k)− x̂i(k)) + wi2(k),

and wi2(k) is q−dimensional communication noise.
The following assumption is adopted throughout the paper.

Assumption 2: (Detectability) The pair (A,C) is assumed to be detectable.

Let ηi(k) = x̂i − x be the local estimation error at node i. From (1) and (2), we can
obtain the local filter error satisfy the following equation:

ηi(k + 1) = x̂i(k + 1)− x(k + 1)
= Ax̂i(k) +AK(yi(k)− bi(k)Cx̂i(k) + zi(k))−Ax(k)− w0(k)

= Aηi(k) +AK(bi(k)Cx(k)− bi(k)Cx̂i(k) +
∑

j∈Ni(k)

gij(k)C(x̂j(k)− x̂i(k)))

+AKw̄i1(k)− w0(k).
(4)

where w̄i1(k) defined in above equation. The following definition is arising inH∞ filtering
theory. This definition is also used in the literature [12] [19].

Definition 1. The filtering errors ηi(k), (i = 1, 2, . . . , n) are said to satisfy H∞-
consensus performance constraints if the following inequalities hold:

1
n

n∑
i=1

‖ηi‖22 ≤
1
γ

(‖x(0)‖2R +
1
n

n∑
i=1

(‖w̄i1‖22 + ‖w0‖22)), (5)
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where ‖ηi‖2 = (
∑N−1
k=0
‖ηi(k)‖22)

1
2 , for some given disturbance attenuation level γ > 0.

The distributed H∞ estimation problem in our paper is to design a static gain K,
such that filtering error ηi satisfies the H∞-consensus performance constraints (5), and
make the TMSEE

E(k) =
n∑
i=1

E(x̂i(k)− x(k))T (x̂i(k)− x(k))

lower bounded. Furthermore, we want to investigate the bound for γ, which helps to
guarantee the existence of the solution to H∞ problem. Obviously, the constant gain K
in the algorithm has advantages of low computational complexity and simple design in
the switching topology case.

3. MAIN RESULTS

In this section, firstly, we analysis the distributed H∞ estimation algorithm for a moving
target. Then we give a lower bound for TMSEE. Finally, the bound for γ is investigated.

First, we denote

X̂(k) = [x̂T1 (k), . . . , x̂Tn (k)]T , X(k) = [xT (k), . . . , xT (k)]T , η(k) = [ηT1 (k), . . . , ηTn (k)]T

D1 = diag(Iq Iq, . . . , Iq Iq), D2 = [Im, . . . , Im]T .

Then (4) can be written as

η(k + 1) = (In ⊗A)η(k) + (In ⊗ (AK))((Bp(k)1)⊗ (Cx(k))

− (Hp(k)⊗ C)X̂(k)) + (In ⊗ (AK))D1w1(k)−D2w0(k),
(6)

where w1(k) = [wT11(k), wT12(k), . . . , wTn1(k), wTn2(k)]T .
Denote D =

[
(In ⊗ (AK))D1 −D2

]
, w(k) = [wT1 (k), wT0 (k)]T , and then (6) can be

rewritten as

η(k + 1) = (In ⊗A)η(k) + (In ⊗ (AK))((Bp(k)1)⊗ (Cx(k))− (Hp(k)⊗ C)X̂(k)) +Dw(k).

Furthermore, by the properties of Kronecker product,

η(k + 1) = (In ⊗A)η(k) + (In ⊗ (AK))((Bp(k)1)⊗ (Cx(k))− (Hp(k)⊗ C)X̂(k)) +Dw(k)

= (In ⊗A)η(k) + (In ⊗ (AK))((Bp(k)⊗ C)X(k)− (Hp(k)⊗ C)X̂(k)) +Dw(k)

= (In ⊗A)η(k) + (In ⊗ (AK))((Hp(k)⊗ C)X(k)− (Hp(k)⊗ C)X̂(k)) +Dw(k)
= (In ⊗A)η(k)− (In ⊗ (AK))(Hp(k)⊗ C)η(k) +Dw(k)
= ((In ⊗A)−Hp(k)⊗ (AKC))η(k) +Dw(k).

(7)

For presentation convenience, the performance of distributed H∞ estimation (5) can
be written as

‖η‖2 ≤ 1
γ
{‖w‖22 + ηT (0)Rη(0)}. (8)
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3.1. Analysis of distributed H∞ filtering

Before giving the main results, the following two lemmas are helpful in subsequent
analysis.

Lemma 3.1. (Kailath et al. [9]) Under Assumption 2, given a γ > 0, there exists a
positive definite matrix P satisfied following algebraic Riccati equation:

P = A(P−1 + CTR−1C − γIm)−1AT +Q, (9)

subject to P−1 + CTR−1C − γIm > 0.

Lemma 3.2. (Marshall et al. [11]) Given any matrix X and any positive definite
matrix P , the following matrix inequalities are equivalent:

XTPX − P < 0; XP−1XT − P−1 < 0. (10)

The following theorem provides a constant gain K for the distributed H∞ estimation
algorithm (3).

Theorem 3.3. Under Assumptions 1 and 2, given a positive γ > 0, and a positive
definite matrix RT = R > 0, there exists a static gain

K = max{ 1
λ0
, 1}MCT (CMCT +R)−1

with initial condition ηTi (0)P−1ηi(0) ≤ 1
γ η

T
i (0)Rηi(0), subject to Im−γP−1 > 0, where

M = (P−1 − γIm)−1, Φ = 1
γ Imn −D

T (In ⊗ P−1)D > 0 and P is the solution of ARE
(9), such that the filter error η(k) satisfied H∞ performance (8).

P r o o f . Since Hp(k) = Lp(k) + Bp(k) is a symmetric matrix, there exists an unitary
matrix Up(k) satisfying

Up(k)Hp(k)UTp (k) = Λp(k) = diag(λp1(k), . . . , λpn(k)).

By Lemma 2.1, λpr(k) ≥ λ0 > 0, r = 1, 2, . . . , n.
Denote η̄(k) = (Up(k)⊗ In)η(k), then

η̄T (k)η̄(k) = ηT (k)η(k).

Let V (k) = η̄T (k)(In ⊗ P−1)η̄(k). Therefore, it follows that

V (k + 1)− V (k) + ‖η(k)‖2 − 1
γ
‖w(k)‖2

= η̄T (k){(In ⊗A− Λp(k)⊗ (AKC))T (In ⊗ P−1)(In ⊗A− Λp(k)⊗ (AKC)) + Imn}η̄(k)

+ 2η̄T (k)(In ⊗A− Λp(k)⊗ (AKC))T (In ⊗ P−1)(Up(k)⊗ In)Dw(k)

− wT (k)(
1
γ
Imn −DT (Up(k)⊗ In)(In ⊗ P−1)D)w(k).
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Completing the square to w(k), the above equation can be written as

V (k + 1)− V (k) + ‖η(k)‖2 − 1
γ
‖w(k)‖2

= η̄T (k){(In ⊗A− Λp(k)⊗ (AKC))TΓ(In ⊗A− Λp(k)⊗ (AKC))

+ (In ⊗A− Λp(k)⊗ (AKC))T (In ⊗ P−1)(In ⊗A− Λp(k)⊗ (AKC)) + In}η̄(k)

− (w(k)− w∗(k))T Φ̃(w(k)− w∗(k)),
(11)

where w∗(k) = Φ−1D(In ⊗ P−1)(In ⊗A− Λp(k)⊗ (AKC))η̄,
Γ = (In ⊗ P−1)DΦ−1DT (In ⊗ P−1).

Take K = µK0, where µ = max{ 1
λ0
, 1}, K0 = MCT (CMCT + R)−1. For any p and

k, we always have λp(k)µ > 1. From ARE (9), it is not hard to obtain

(A−AK0C)P (A−AK0C)T − P
= −Q−A(Im −K0C)(P−1 − γIm)−1CTKT

0 A
T

− γ(A−AK0C)P (Im − γP−1)−1P (A−AK0C)T .

Due to (P−1 − γIm)−1 = P + γP (Im − γP−1)−1P and the condition Im − γP−1 > 0,
we have

(A− λp(k)µAK0C)P (A− λp(k)µAK0C)T − P ≤ −Q.

By Lemma 3.1, there exists a constant α > 0 such that

(A− λp(k)µAK0C)TP−1(A− λp(k)µAK0C)− P−1 < −αIm,

and there exists a constant ρ > 0 such that Γ ≤ ρ(In ⊗ P−1), then we have

V (k + 1)− V (k) + E(‖η(k)‖2 − 1
γ
‖w(k)‖2)

≤ −αλmin(P )V (k)− αρλmin(P )V (k) + E(−(w(k)− w∗(k))TΦ(w(k)− w∗(k)))

≤ −α(1 + ρ)λmin(P )V (k) + E(−(w(k)− w∗(k))TΦ(w(k)− w∗(k)))
≤ 0.

As a result,

E{
N−1∑
k=1

‖η(k)‖2} ≤ 1
γ

N−1∑
k=1

‖w(k)‖2 − E{ηT (N)(In ⊗ P−1)η(N)}+ ηT (0)(In ⊗ P−1)η(0),

with the initial condition ηTi (0)P−1ηi(0) ≤ 1
γ η

T
i (0)Rηi(0), which implies that the H∞

performance (8) is satisfied, as long as P > 0. �
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Remark 3.4. In the above analysis, a static gain K for distributed H∞ estimation is
obtained. Notice that the distributed H∞ estimation we presented has a connection
with the distributed estimation which use the Kalman filter. As γ → 0,M = (P−1 −
γIm)−1 → P , this is consistent with the case in [23], and moreover, if there is no noise,
the result is consistent with [6].

Motivated by Theorem 2 in [23], we can also obtain a lower bound for TMSEE in the
following theorem.

Theorem 3.5. Under Assumptions 1 and 2, a lower bound for E(k) is tr(Z(k)), where
tr(Z(k)) is solution of the following difference equation:

Z(k + 1) = (In ⊗A)(Z−1(k) + (Hp(k)⊗ C)T (D1D
T
1 )−1(Hp(k)⊗ C)− γImn)−1(In ⊗A)T

+D2D
T
2 .

(12)

P r o o f . First, we can construct an estimation algorithm based on commonH∞ filtering.
For sensor i (i = 1, 2, . . . , n), we consider the following estimation algorithm,

x̄i(k + 1) = Ax̄i(k) +AK(k)(yi(k)− Cx̄i(k) + z̄i(k)), (13)

where z̄i(k) has the same definition with zi(k) in (3).
Denote η̄i(k) = x̄i(k)−x(k), X̄(k) = [x̄T1 (k), . . . , x̄Tn (k)]T , η̄(k) = [η̄T1 (k), . . . , η̄Tn (k)]T ,

then we can obtain the following compact form

η̄(k + 1) = ((In ⊗A)− (In ⊗A)K(k)(Hp(k)⊗ C))η̄(k) +D(k)wi(k)−D2w0(k), (14)

where D(k) = (In ⊗ A)K(k)D1, K(k) = [KT
1 (k),KT

2 (k), . . . ,KT
n (k)]T . Based on the

H∞ estimation theory [9], we can taking

K(k) = (Z−1(k)− γImn)(In ⊗ C)T ((In ⊗ C)(Z−1(k)− γImn)(In ⊗ C)T +D1D
T
1 )−1,

where Z(k) is the solution of the following difference Riccati equation,

Z(k + 1) = (In ⊗A)(Z−1(k) + (Hp(k)⊗ C)T (D1D
T
1 )−1(Hp(k)⊗ C)− γImn)−1(In ⊗A)T

+D2D
T
2 .

Denote Ē(k) = E{η̄T (k)η̄(k)}, and tr(Ē(k)) ≥ tr(Z(k)) for any dynamic gain K(k).
If we take K(k) = diag(K,K, . . . ,K), and then the algorithm (13) has the same form
as (3). Therefore, E(k) ≥ tr(Z(k)). Thus the lower bound of TMSEE achieved by
tr(Z(k)). �

Remark 3.6. When γ → 0, the lower bound for TMSEE in our distributed H∞ esti-
mation will be the case in [23].
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3.2. Bound for H∞ certain level

In the preceding subsection, a static constant gain K and a lower bound for TMSEE
were obtained. Notice that, if γ is too large, the distributed H∞ estimator may not have
a solution. Thus, a bound for γ is helpful to design distributed H∞ estimator. In what
follows, we present a bound for γ.

At first, we give two lemmas as follows.

Lemma 3.7. (Horn and Johnson [7]) Suppose S, T ∈ Sn, and P ∈ Rn×m. Then we
have:

a. if S ≥ T , then λ(S) ≥ λ(T ),

b. λn(S)I ≤ S ≤ λ1(S)I,

c. if S ≥ T , then PTSP ≥ PTTP ,

d. if S ≥ T > 0, then T−1 ≥ S−1,

where λ1 and λn denote the maximum and minimum of eigenvalue, respectively.

Lemma 3.8. (Horn and Johnson [7]) If A,B ∈ Cn×n are real symmetric matrix, then

a. λt(A+B) ≥ maxi+j=t+n(λi(A) + λj(B)),

b. λt(A+B) ≤ maxi+j=t+1(λi(A) + λj(B)),

c. σt(AB) ≥ maxi+j=t+n((σi(A)σj(B)),

d. σt(AB) ≤ maxi+j=t+1(σi(A)σj(B)),

where σ1 and σn denote the maximum and minimum of singular value, respectively.

Then we give the main result of this section.

Theorem 3.9. If there is a positive definite matrix P̄ satisfied following equation,

P̄ = AP̄AT −AP̄CT (CP̄CT +R)−1CP̄AT +Q, (15)

then the bound for the γ can be described as 0 ≤ γ ≤ λ1(W ) − Θ where W =
CTR−1C,Θ = σ2

n(A)λn(P̄ )−λn(P̄ )+λn(Q)

λ2
n(P̄ )−λn(Q)λn(P̄ )

.

P r o o f . As γ → 0, (9) reduces to (15). Under Assumption 2, there exists a positive
definite matrix P̄ satisfying (15).

Since W is positive, the algebraic Riccati equation of H∞ estimation (9) can be
written as

P̄ = A(P̄−1 − γI +W )−1AT +Q. (16)

Next, we will show that γ is bounded by the the solution of (15). By Lemmas 3.7
and 3.8, we have
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λn(P̄ ) = λn(A(P̄−1 − γI +W )−1AT +Q)

≥ λn(A(P̄−1 − γI +W )−1AT ) + λn(Q)

≥ σ2
n(A)λn(P̄−1 − γI +W )−1 + λn(Q)

= σ2
n(A)λ−1

n (P̄−1 − γI +W ) + λn(Q)

≥ σ2
n(A)

λ1(P̄−1) + λ1(W − γI)
+ λn(Q)

≥ σ2
n(A)

1
λn(P̄ )

+ λ1(W − γI)
+ λn(Q)

=
σ2
n(A)λn(P̄ )

1 + λn(P̄ )λ1(W − γI)
+ λn(Q).

Since λn(P̄ ) ≥ λn(Q), it is not hard to obtain

λ1(W − γI) ≥ σ2
n(A)λn(P̄ )− λn(P̄ ) + λn(Q)

λ2
n(P̄ )− λn(Q)λn(P̄ )

= Θ.

Combining λ1(W ) + λ1(−γI) ≥ λ1(W − γI), we can obtain 0 ≤ γ ≤ λ1(W )−Θ. �

Remark 3.10. We can treat γ as a disturbance to (15), and thus, the positive definite-
ness of solution can be guaranteed under the disturbance.

4. SIMULATIONS

In this section, we present a numerical example to illustrate the effectiveness of the
proposed algorithm, and verify the bound for γ.

We consider a 2-dimensional tracking problem which used in [24]. The target moves
along a line with the constant velocity, which can be described by

x(k + 1) =
[
1 T
0 1

]
x(k) +

[
0.1
0.1

]
w0(k),

where w0(k) is 1-dimensional Gaussian noises and T is the filter period, x(k) = [x1(k) x2(k)]T ,
and then x1(k) and x2(k) can be treated as the position and velocity of the target, re-
spectively.

Three sensors and the target consist of the graph Ḡ , which is switching periodically
among Ḡ1,Ḡ2,Ḡ3 and Ḡ4 (Figure 1). The switching time from one graph to another one
is 1 second.

Considering that we can only obtain position information, then measurement ob-
tained by sensor i (i = 1, 2) is as follows,

yi(k) = bi(k)[1 0]x(k) + 0.1wi1(k), (17)

where w11(k), w21(k) are white noises. In this case, we take
b1(k) = b2(k) = b3(k) = 1, k = 4nT, n = 0, 1, . . .
b1(k) = 1, b2(k) = b3(k) = 0, k = 4nT + T, n = 0, 1, . . .
b1(k) = b2(k) = 1, b3(k) = 0, k = 4nT + 2T, n = 0, 1, . . .
b1(k) = b2(k) = 0, b3(k) = 1, k = 4nT + 3T, n = 0, 1, . . .

.
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Ḡ4

Fig. 1. Switching Graphs.

The relative measurement errors are as follows,

z12(k) = [1 0](g12(k)(x̂2(k)− x̂1(k)) + g13(k)(x̂3(k)− x̂1(k))) + 0.1w12(k),
z22(k) = [1 0](g21(k)(x̂1(k)− x̂2(k)) + g23(k)(x̂3(k)− x̂2(k))) + 0.1w22(k),
z32(k) = [1 0](g31(k)(x̂1(k)− x̂3(k)) + g32(k)(x̂2(k)− x̂3(k))) + 0.1w32(k),

(18)

where x̂1(k), x̂2(k) and x̂3(k) are the estimations by sensors, and w12(k), w22(k) and
w32(k)are white noises. We take αij = αji, and then

g12(k) = g21(k) = 0, g13(k) = g31(k) = 0, g23(k) = g32(k) = 0, k = 4nT, n = 0, 1, . . .
g12(k) = g21(k) = 1, g13(k) = g31(k) = 1, g23(k) = g32(k) = 0, k = (4n+ 1)T, n = 0, 1, . . .
g12(k) = g21(k) = 0, g13(k) = g31(k) = 1, g23(k) = g32(k) = 1, k = (4n+ 2)T, n = 0, 1, . . .
g12(k) = g21(k) = 1, g13(k) = g31(k) = 0, g23(k) = g32(k) = 1, k = (4n+ 3)T, n = 0, 1, . . .
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Fig. 2. Estimation for position.
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Fig. 3. Estimation for velocity.
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Fig. 4. Filtering errors for position.

We first choose the initial error of the target state as η1(0) = [2 0.2]T , η2(0) = [1 −
0.1], η3(0) = [−2 0.2]. In this case, we obtain 0 ≤ γ ≤ 0.4874, where we choose γ = 0.1

and Q =
[

0.01 0
0 0.01

]
. We can obtain the constant gain K =

[
0.9376 0.5884

]T .

The simulation sample time is 0.1s. Figures 2 and 3 demonstrate that the estimations
of position and velocity of the target. The filtering errors are given in Figures 4 and 5.
Lower bound for TMSEE is illustated in Figure 6, which verifies Theorem 3.5. Denote
P is the solution of (9). When we take 0 ≤ γ ≤ 0.4874, the minimun eigenvalue of P
satisfies λmin(P ) > 0. However, when we take γ = 0.49, the minimun eigenvalue of P
becomes λmin(P ) = −37.23. The minimum eigenvalue of P is showed in Figure 7, which
verifies the Theorem 3.9.
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Fig. 5. Filtering errors for velocity.
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Fig. 6. Total mean square estimation error.

5. CONCLUSIONS

This paper studied the distributed H∞ estimation problem for moving target with
switching topology, and the capacity of sensors take into consideration. By solving
ARE instead of solving general LMIs, we presented a distributed H∞ estimation al-
gorithm with a constant gain, which was of low computational complexity and simple
design. Under the conditions of detectability and connectivity, we showed a constant
gain K and a lower bound for TMSEE were showed. Moreover, we obtained a bound
for the H∞ parameter by solving ARE.
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