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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 5 , P AGES 8 3 0 – 8 5 5

ON SOME RELAXATIONS COMMONLY
USED IN THE STUDY OF LINEAR SYSTEMS

Olivier Bachelier and Driss Mehdi

This note proposes a quite general mathematical proposition which can be a starting point
to prove many well-known results encountered while studying the theory of linear systems
through matrix inequalities, including the S-procedure, the projection lemma and few others.
Moreover, the problem of robustness with respect to several parameter uncertainties is revis-
ited owing to this new theorem, leading to LMI (Linear Matrix Inequality)-based conditions
for robust stability or performance analysis with respect to ILFR (Implicit Linear Fractional
Representation)-based parametric uncertainty. These conditions, though conservative, are com-
putationally very tractable and make a good compromise between conservatism and engineering
applicability.
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1. INTRODUCTION

In modern linear control theory, many results are stated through matrix inequalities,
especially Linear Matrix Inequalities (LMI: [6]). The reason is that existing solvers
enable the designer to handle such inequalities as computationally tractable conditions.
Therefore, they are often encountered in many fields of automatic control, especially
robust analysis and design. A typical approach is to formulate an analysis or control
problem as a set of possibly infinitely many inequalities and to use strong theorems to
transform this set into a finite set of exploitable inequalities such as LMIs. As examples
of such strong theorems, the S-procedure and the projection lemma can be cited. The
S-procedure [41], initially proposed by Yakubovich, has a very long history in automatic
control, as highlighted in [22]. Some modern versions of the S-procedure such as the
ones proposed in [25, 38] are quite general and particularly well adapted to the study
of linear systems. They can be efficiently used to prove the Kalman–Yakubovich–Popov
(KYP) lemma [35] and the Generalised KYP lemma [25]. Indeed, the S-procedure has
always been connected to the KYP lemma [22]. It must be mentioned that there exist
more sophisticated relaxation tools and the S-procedure is only a first level of Lasserre’s
hierarchy of relaxations [27]. However, due to its simplicity, it remains very popular in
the control community. The projection lemma, also called matrix elimination lemma
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[1, 6, 39] is particularly useful to synthesize some controllers [1, 2, 10] or to analyse the
robustness of uncertain linear models with respect to polytopic uncertainties, through
the notion of parameter-dependent Lyapunov functions [5, 10, 17, 32]. It is also very
popular in the control community.

In this paper, a quite general theorem is proposed as an attempt to unify several
propositions in the literature. It particularly encompasses the full block S-procedure
[25, 38] and the projection lemma [1, 6, 39]. It can also be used to prove a more recent
result proposed by Graham et al. [20]. This attempt to unify several contributions is to
be connected to the paper by Feng et al. [15] as well as to the recent book [12] which
particularly focuses on the use of projection lemma to LMI-based robust control. The
second section states the theorem and a proof is provided. The third section estab-
lishes the connection to the literature. The fourth section gives new insights to analyse
the robustness of linear systems with respect to uncertain parameters involved through
Implicit Linear Fractional Representation (ILFR). This attempt to bring in an implicit
formalism in the relaxation schemes is also to be connected to [15] or to [33]. The ob-
tained LMI condition is very tractable from a computational point of view. It does not
really improves the existing results in terms of conservatism but it provides a rather
simple and systematic way of reducing analysis problems where parameter-dependent
ILFR uncertainties are involved to classic polytopic-like conditions. Therefore, although
the uncertainty can be sophisticated, the simplicity and the conservatism are to be com-
pared to the well-known condition in [32]. (see the discussion in the fifth section). The
sixth section is devoted to numeric illustration. The paper is concluded in the seventh
section.

Notation: M ′ is the conjugate transpose of M and MH denotes the epxression M +
M ′. Iq is the identity matrix of order q. I and 0 are identity and zero matrices of
appropriate dimensions. M > 0 (M < 0) means that the matrix M is symmetric and
positive (negative) definite. Hn is the set of Hermitian matrices of dimension n. Ker(M)
can denote either the matrix the columns of which span the right orthogonal nullspace
of M or this nullspace itself. M⊥ is the matrix which span the left orthogonal nullspace
of M . Span(M) is the set spanned by the columns of M . Symbol ⊗ denotes Kronecker’s
product. M+ is some full rank pseudo inverse of M such that MM+M = M and
M+MM+ = M+. The set B? denotes B\{0}. The notation ⊕qi=1Mi = M1 ⊕ · · · ⊕Mq

is used to denote blocdiagi=1,...,qMi. At last, i is the imaginary unit.

2. THE PROPOSED THEOREM

The main result is straight away presented. This is a quite hard and general theorem
which encompasses many results of the literature, as it will be seen in the next section.

Theorem 1. Let the next mathematical objects be defined:

• E , a subspace of lC n;

• ∆, a compact set of complex matrices, the elements of which are matrices denoted
by ∆;
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• Θ(∆) ∈ Hn, which continuously depends on ∆ over ∆;

• VL(∆) ∈ lC l×n and VR(∆) ∈ lC r×n, full rank matrices which continuously depend
on ∆ over ∆;

• V̄ (∆) =
[
VL(∆)
VR(∆)

]
;

• SL(∆) ⊂ lC l, a family of subspaces defined over ∆ through ∆-continuously depen-
dent matrix KL(∆) as SL(∆) = Ker(KL(∆)) ∩ E ;

• SR(∆) ⊂ lC r, a family of subspaces defined over ∆ through ∆-continuously de-
pendent matrix KR(∆) as SR(∆) = Ker(KR(∆)) ∩ E ;

• BL(∆) = {x ∈ E : VL(∆)x ∈ SL(∆)}, ∆ ∈∆;

• BR(∆) = {x ∈ E : VR(∆)x ∈ SR(∆)}, ∆ ∈∆;

• B(∆) = BL(∆)? ∪ BR(∆)?, ∆ ∈∆;

• X̄ (∆) =
{
ξ =

[
z = z(∆) ∈ SL(∆)
t = t(∆) ∈ SR(∆)

]
: ∃x ∈ E : V̄ (∆)x = ξ)

}
,∆ ∈∆.

The two following statements are equivalent :

i)
x′Θ(∆)x < 0 ∀x ∈ B(∆), ∀∆ ∈∆. (1)

ii)

∃H(∆) ∈ lC l×r :


x′((V ′L(∆)H(∆)VR(∆))H + Θ(∆))x < 0, ∀x ∈ E?,∀∆ ∈∆,

ξ′
[

0 H(∆)
H ′(∆) 0

]
ξ ≥ 0 ∀ξ ∈ X̄ (∆), ∀∆ ∈∆.

(2)

a) Moreover, if Θ, VR and VL are ∆-independant, then H can be assumed to be
∆-independant.

b) Furthermore, if VL(∆) equals VR(∆) and if SL(∆) = SR(∆) = S(∆) = {0}, then
there exists a sufficiently large β such that matrix H can be written H = −βI.

Remark 1. All the choices for Θ(∆), VL(∆), VR(∆), KL(∆) and KR(∆) are not appro-
priate to make (1) meaningful. Indeed, let M(∆) be a matrix satisfying x′Θ(∆)x ≥ 0 for
any x such that M(∆)x = 0. Then condition (1) implies that Ker(M(∆))∩BL(∆) = {0}
and Ker(M(∆)) ∩ BR(∆) = {0}. Otherwise, there would exist x• ∈ B(∆) such that
M(∆)x• = 0 and thus x•′Θ(∆)x• ≥ 0, which contradicts (1). As a simple example,

assume that Θ =
[
I 0
0 −I

]
and that M(∆) = VL(∆) = VR(∆) = KL(∆) = KR(∆) =
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[
0 ∆

]
. Then any x which writes x =

[
I
0

]
q belongs to Ker(M(∆)) but also to

B(∆). However, it is clear that x′Θ(∆)x ≥ 0 so (1) cannot hold.
The meaning of this remark is that for inappropriate choices, it is needless to test (1)

through (2) since it can clearly never hold.

Before to prove Theorem 1, some issue is addressed. The idea behind Theorem 1 is
that i) usually corresponds to a property to be tested. Moreover, it is hardly tractable
since checking (1) amounts to check an infinite number of inequalities over a restricted
subset. Condition (2) can be more tractable, especially when H is ∆-independent, even
if this last assumption might introduce a possible level of conservatism. This theorem
might not be exploited in its whole generality but offers nice applications in some special
cases (see the fifth section). However, the reader must keep in mind that it is mainly
introduced as a general framework to encompass several strong results of the literature.

P r o o f . In this proof, arguments and notations are sometimes borrowed from [38]
and [1].
ii)⇒ i)
Assume that the first inequality in (2) holds. If it is satisfied over E?, it is a fortiori
satisfied over B(∆) i. e.

x′(V ′L(∆)H(∆)VR(∆))Hx+ x′Θ(∆)x < 0 ∀x ∈ B(∆),∀∆ ∈∆. (3)

Besides, if x ∈ B(∆), then ξ =
[
z = VL(∆)x
t = VR(∆)x

]
∈ X̄ (∆). From the second inequality

in (2), it comes

x′(V ′L(∆)H(∆)VR(∆))Hx = (z′H(∆)t)H ≥ 0 ∀x ∈ B(∆),∀∆ ∈∆. (4)

Hence, (3) together with (4) lead to (1).
i)⇒ ii)
Assume that (1) holds. Then there exists α > 0 small enough such that

f(x) = x′T (∆)x < 0 ∀x ∈ B(∆), ∀∆ ∈∆, (5)

where T = 1
2 (Θ(∆) + αI). Indeed, suppose that α cannot be found and consider the

sequence which, to any k ∈ IN, associates a matrix ∆k ∈∆, a vector xk ∈ B(∆k) and a
scalar αk = 1

k such that
x′kT (∆k)xk ≥ 0. (6)

Since ∆ is compact, one can extract a subsequence (∆ki
, xki

, αki
) whose limit (∆•, x•, α•),

defined by limi→∞(∆ki
, xki

, αki
), by continuity, is such that, on the one hand, ∆• ∈∆

and, on the other hand, x• ∈ B(∆•). The former is straightforward. To prove the latter,
notice that the definition of SL(∆) and SR(∆) leads to

B(∆) = Ker(KL(∆)VL(∆))? ∪Ker(KR(∆)VR(∆))?

and thus xk ∈ B(∆k) ⇔ KL(∆k)VL(∆k)xk = 0 or KR(∆k)VR(∆k)xk = 0. So, owing
to the continuity of KL(∆)VL(∆) and KR(∆)VR(∆) with respect to ∆, the limit of
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the subsequence x• is such that KL(∆•)VL(∆•)x• = 0 or KR(∆•)VR(∆•)x• = 0, which
means that x• ∈ B(∆•), ∆• ∈∆. For this instance, and noting that α• obvioulsy equals
zero, inequality (6) becomes

x•
′
Θ(∆)x• ≥ 0, x• ∈ B(∆•), ∆• ∈∆. (7)

This is in contradiction with (1) so (6) cannot hold i. e. (5) holds for some α > 0.

To continue the proof, the space E is decomposed over a basis whose columns are
given by matrix B(∆), expressed as follows,

B(∆) =
[
BL∪R(∆) Bc(∆)

]
, (8)

where:

• BL∪R(∆) is a basis of (Ker(VL(∆)) ∪Ker(VR(∆))) ∩ E ;

• Bc(∆) is such that B(∆) is a basis of E .

Moreover, going further with that decomposition, let BL∪R(∆) be itself divided into
three matrices as follows,

BL∪R(∆) =
[
BL∩R(∆) BL\R(∆) BR\L(∆)

]
, (9)

where

• BL∩R(∆) is a basis of Ker(VL(∆))∩Ker(VR(∆))∩E ;

• BL\R(∆) is such that BL(∆)=
[
BL∩R(∆) BL\R(∆)

]
is a basis of Ker(VL(∆))∩E ;

• BR\L(∆) is such that BR(∆)=
[
BL∩R(∆) BR\L(∆)

]
is a basis of Ker(VR(∆))∩E .

Therefore, one can write

∀x ∈ E , ∃µ =

2664
µ1

µ2

µ3

µ4

3775 =

»
µ123

µ4

–
:

x = BL∩R(∆)µ1 +BL\R(∆)µ2 +BR\L(∆)µ3 +Bc(∆)µ4 (10)

⇔ x = BL∪R(∆)µ123 +Bc(∆)µ4. (11)

Another possible induced decomposition is given by

⇔ x = BL(∆)µ12 +BLc(∆)µ34 = BR(∆)µ13 +BRc(∆)µ24 (12)

where

BLc(∆) =
[
BR\L(∆) Bc(∆)

]
, BRc(∆) =

[
BL\R(∆) Bc(∆)

]
, (13)

µ12 =
[
µ′1 µ′2

]′
, µ34 =

[
µ′3 µ′4

]′
,
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µ13 =
[
µ′1 µ′3

]′ and µ24 =
[
µ′2 µ′4

]′
. (14)

Then, from (11), the function f(x) defined in (5) can be written

f(x) = µ′123B
′
L∪R(∆)T (∆)BL∪R(∆)µ123 + µ′123B

′
L∪R(∆)T (∆)Bc(∆)µ4

µ′4B
′
c(∆)T (∆)B′L∪R(∆)µ123 + µ′4B

′
c(∆)T (∆)Bc(∆)µ4, (15)

from which the next partial derivative with respect to µ123 is deduced:

∂f

∂µ123
= (2B′L∪R(∆)T (∆)BL∪R(∆)µ123 + 2B′L∪R(∆)T (∆)Bc(∆)µ4). (16)

A critical point is attained for
∂f

∂µ123
= 0, (17)

i. e. for the special value of µ123:

µ̂123 = −(B′L∪R(∆)T (∆)BL∪R(∆))+B′L∪R(∆)T (∆)Bc(∆)µ4. (18)

From (16), one can also infer that

∂2f

∂µ2
123

∣∣∣∣
µ123=µ̂123

= 2BL∪R(∆)T (∆)BL∪R(∆). (19)

Each vector of the form x = BL∪R(∆)q is an element of (Ker(VL(∆))∪Ker(VR(∆)))∩E
so either VL(∆)x = 0 or VR(∆)x = 0, which implies that either VL(∆)x ∈ SL(∆) or
VR(∆)x ∈ SR(∆), and therefore either x ∈ BL(∆) or x ∈ BR(∆). Thus x ∈ B(∆). So
taking (5) into account, the right handside member of (19) is a negative definite matrix
over E . Consequently, the above-mentioned critical point is a maximum of f(x) with
respect to µ123, which, using (11) applied at this critical point, leads to

max
µ123

f(x) = (µ̂′123B
′
L∪R(∆) + µ′(4)B′c(∆))T (∆)(BL∪Rµ̂123 +Bc(∆)µ4).

Taking (18) into account yields

max
µ123

f(x) = µ′4M(∆)µ4. (20)

with

M(∆)=B′c(∆)T (∆)Bc(∆)−B′c(∆)T (∆)BL∪R(∆)(B′L∪R(∆)T (∆)BL∪R(∆))+B′L∪R(∆)T (∆)Bc(∆)

⇔M(∆) = B′c(∆)
`
T (∆)− T (∆)BL∪R(∆)(B′L∪R(∆)T (∆)BL∪R(∆))+B′L∪R(∆)T (∆)

´| {z }
M̂(∆)

Bc(∆)

⇔M(∆) = B′c(∆)M̂(∆)Bc(∆).

Notice that from (14),

µ4 =
[

0 I
]
µ34 =

[
0 I

]
µ24.
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So if the maximum of f(x) is expressed with respect to µ34 and µ24 instead of simply
µ4, then it can be written[

0
B′c(∆)

]
M̂(∆)

[
0 Bc(∆)

]
µ24.

Since x complies with the two expressions in (12) and since VL(∆)BL(∆) = 0 and
VR(∆)BR(∆) = 0, it comes

VL(∆)x = VL(∆)BLc
µ34,

VR(∆)x = VR(∆)BRc
µ24.

Therefore, once again, the maximum can be rewritten as

max
µ123

f(x)

=
(
(VL(∆)BLc

)+VL(∆)x
)′ [ 0

B′c(∆)

]
M̂(∆)

[
0 Bc(∆)

] (
(VR(∆)BRc

)+VR(∆)x
)

(21)
⇔ max

µ123
f(x) = x′V ′L(∆)H(∆)VR(∆)x,

with

H(∆) = −(VL(∆)BLc
(∆))

′+
[

0
B′c(∆)

]
M̂(∆)

[
0 Bc(∆)

]
(VR(∆)BRc

(∆))+. (22)

Then, it comes

⇔ x′(V ′L(∆)H(∆)VR(∆))Hx = −(max
µ123

(f(x)))H ≤ − (f(x))H ∀x ∈ E? (23)

⇔ x′(V ′L(∆)H(∆)VR(∆))Hx ≤ −(x′T (∆)x)H , ∀x ∈ E?. (24)

Keeping in mind that T (∆) = 1
2 (Θ(∆) + αI) for some α > 0, it comes

⇔ x′
(

(V ′L(∆)H(∆)VR(∆))H + Θ(∆)
)
x ≤ −αI < 0, ∀x ∈ E? (25)

which proves the first inequality in (2).

Consider any pair of vectors {z; t} such that ξ = [z′ t′]′ ∈ X̄ (∆). Both subvectors
can be written z = VL(∆)x and t = VR(∆)x respectively, with the same x that can be
expressed x = B(∆)µ. Keeping in mind that, since z ∈ SL(∆) and t ∈ SR(∆), then x ∈
B(∆)∪{0}. Besides, still because z ∈ SL(∆) and t ∈ SR(∆) and since VL(∆)BL(∆) = 0
and VR(∆)BR(∆) = 0, from (12) we get z = VL(∆)x = VL(∆)BLc

(∆)µ34 and t =
VR(∆)x = VR(∆)BRc

(∆)µ24 which yields

ξ′
»

0 H(∆)
H ′(∆) 0

–
ξ =(z′H(∆)t)H = −

“
µ′4B

′
c(∆)M̂(∆)Bc(∆)µ4

”H
= −max

µ123
(f(x))H ≥ 0

(26)

which proves the second inequality in (2).
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Case a):
Moreover, it is clear that in the event of Θ(∆), VL(∆L) and VR(∆R) equaling ∆-
independent matrices Θ, VL and VR respectively, then, it is no longer required that
matrix B defined in (8) depends on ∆ and thus matrices M̂(∆), M(∆) and H(∆) also
equal ∆-independent matrices M̂ , M and H.

Case b):
If VL(∆) = VR(∆), one gets BL∪R(∆) = BL∩R(∆) = BL(∆) = BR(∆) and it is pos-
sible to choose BLc(∆) = BRc(∆) = Bc(∆) so as to get a ∆-independent product
VL(∆)Bc(∆) = VR(∆)Bc(∆). Besides, since ∆ is compact, and since Θ(∆) (and thus
also T (∆), Bc(∆) and M̂(∆)) as well as VL(∆) are continuous with respect to ∆ over
∆, then one can find a scalar β large enough so that

β ≥ λ̄((VL(∆)Bc(∆))′+B′c(∆)′M̂(∆)B′c(∆)((VL(∆)Bc(∆))+), (27)

where λ̄(.) denotes the maximum eigenvalue. Therefore, if H is chosen as follows,

H(∆) = H = −βI ∀∆ ∈∆, (28)

then it comes

x′(V ′L(∆)H(∆)VL(∆))Hx ≤ x′((VL(∆)Bc(∆))′+B′c(∆)′M̂(∆)B′c(∆)(VL(∆)Bc(∆))+)Hx,

which, from the reasoning of the proof of the part i)⇒ii) (equations (21) to (25)), implies

x′(V ′L(∆)H(∆)VL(∆))Hx ≤ (x′T (∆)x)H , ∀x ∈ E?

⇔ x′V ′L(∆)H(∆)VL(∆)x+ x′Θ(∆)x ≤ −αI < 0, ∀x ∈ E? (29)

which proves the first inequality in (2).
Since SL(∆) = SR(∆) = {0}, the set X̄ (∆) reduces to {0} and the second inequality

in (2) necessarily holds and is of no interest in that case. �

Remark 2. The compactness assumption allows the achievement of the proof in the
“difficult path” i. e. i)⇒ ii) but, without this assumption, the implication ii)⇒ i)
remains true. For a non compact set ∆, the proof cannot be followed but the question
is to know if the equivalence can still be true. It probably depends on the set but this
is an open question.

Remark 3. Matrix H is usually called a multiplier.

3. CONNECTION TO THE LITERATURE

Theorem 1 is surely general and it is difficult to catch in such a statement what can
really be exploited in the context of automatic control. However, for the reader who
is familiar with the literature related to robustness or to KYP lemma, this formulation
might look like other strong and well-known propositions. In this section, several known
results are stated as corollaries of Theorem 1. The justifications are provided. Most of
these connections correspond to cases where matrix H is ∆-independent.
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3.1. Projection lemma and Finsler’s lemma

The first result to be connected to the present work is the so-called projection lemma or
matrix elimination lemma.

Corollary 1. (Apkarian and Gahinet [1], Boyd et al. [6] or Skelton et al. [39, Theorem
2.3.12]) Let Θ belong to Hn and VL and VR be full rank matrices. The following
statements are equivalent:

a) {
Ker(VL)′ΘKer(VL) < 0 (or V ′LVL > 0),
Ker(VR)′ΘKer(VR) < 0 (or V ′RVR > 0). (30)

b)
∃H : (V ′LHVR)H + Θ < 0. (31)

P r o o f . In this case, one considers E = lC n and the matrices are ∆-independent.
Condition (30) can be rewritten{

x′Θx < 0, ∀x ∈ Ker∗ (VL)
y′Θy < 0, ∀y ∈ Ker∗ (VR) (32)

which is equivalent to

x′Θx < 0, ∀x ∈ Ker∗ (VL) ∪Ker∗ (VR) .

The condition above is exactly condition i) of Theorem 1 with

B = Ker∗ (VL) ∪Ker∗ (VR) .

As a consequence we have

BL = Ker (VL) , BR = Ker (VR) , SL(∆) = {0} = SR(∆) = {0}, X̄ (∆) = {0}. (33)

Applying Theorem 1 leads to conclude that condition i) (i. e. (32) is equivalent to con-
dition ii) which must here be interpreted. Indeed, with the special case defined by (33),
it can be seen that the second inequality in ii) is always satisfied since ξ reduces to zero.
Moreover, the first condition in ii) clearly reduces to (31) by refering to the case b) of
Theorem 1 where Θ, VL, VR and then H are ∆-independent. �

Corollary 1 is particularly useful to prove interesting results in the realm of robust
analysis and state feedback robust control, especially against polytopic uncertainty [10,
17, 32]. It is also exploited by some techniques of static or dynamic output feedback
controller design [1, 9]. See [34] for a quite recent survey on the possible applications of
this lemma to the study of linear systems, as well as [15] for applications to descriptor
linear systems. See also the very recent book [12] for a complete approach of robust
control based upon this lemma.
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Note that if one particularises the previous theorem to the case where VL = VR = V ,
then (30) becomes

Ker(V )′ΘKer(V ) < 0 (34)

and (31) becomes
∃X : V ′XV + Θ < 0, (35)

with X = X ′ = H + H ′. The equivalence between (34) and (35) corresponds to [39,
corollaire 2.3.5]. If a little more attention is paid to Theorem 1 (statement b)), it can
be seen that a possible structure for X is X = −σI with σ = 2β > 0 large enough. This
particular instance corresponds to Finsler’s lemma [16, 39].

3.2. S-procedure for linear systems

Corollary 2. (Scherer [38]) Let the next mathematical objects be defined:

• E , a subspace of lC n;

• ∆, a compact set of complex matrices ∆;

• Θ(∆) ∈ Hn, a matrix which continuously depends on ∆ over ∆;

• V ∈ lC l×n;

• S(∆) ⊂ lC l, a family of subspaces defined over ∆ through ∆-continuously depen-
dent matrix K(∆) as S(∆) = Ker(K(∆)) ∩ E ;

• B(∆) = {x ∈ E : V x ∈ S(∆)}, ∆ ∈∆;

The two following statements are equivalent:

a)
x′Θ(∆)x < 0 ∀x ∈ B(∆)?, ∀∆ ∈∆. (36)

b)

∃X :

 x′(V ′XV + Θ(∆))x < 0, ∀x ∈ E?,∀∆ ∈∆,

z′Xz ≥ 0 ∀z ∈ S(∆), ∀∆ ∈∆.
(37)

P r o o f . This is a special instance of Theorem 1. Indeed, in this case, one can consider
l = r, VL = VR = V , B(∆) = BL(∆) = BR(∆) and S(∆) = SL(∆) = SR(∆). Then
the set B(∆) in the present corollary matches that in Theorem 1 and inequality (36)
matches (1). Moreover, in this case, the set X̄ (∆) is defined as a set of vectors ξ =[
z′ z′

]′ where z ∈ S(∆). Matrix H is constant (case a) of Theorem 1). So matrix
X can comply with X = HH . Then inequality (2) can be rewritten as (37). Therefore,
by virtue of Theorem 1, inequality (36) is then equivalent to (37). �

Such an equivalence is called abstract full block S-procedure [38]. If S(∆) reduces to
{0} then [39, corollaire 2.3.5] is recovered again.
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In practice, in automatic control, ∆ is directly defined by the second inequality
in (37). Indeed, in many problems of robust analysis, a special choice is made: The set
S(∆) is defined through

K(∆) =
[
I −∆

]
. (38)

The second inequality in (37) becomes[
∆
I

]′
X

[
∆
I

]
≥ 0, ∀∆ ∈∆, (39)

and, in numerous cases, the previous inequality is even the definition of ∆ itself. There-
fore, this second inequality in (37) is satisfied by definition. Moreover, V is often chosen
as

V =
[
I 0
A B

]
, (40)

so that this special instance of the S-procedure is called the concrete full block S-
procedure. It is particularly useful to analyse the robustness of some properties of linear
systems with respect to LFR (Linear Fractional Representation)-based uncertainties
(such as stability, D-stability, H∞ performance, and so on) [37].

3.3. Generalized KYP lemma

Considering the discussion about the concrete S-procedure in the previous subsection, an
even more special instance deserves attention, namely the finite frequency KYP lemma:

Corollary 3. (Iwasaki et al. [26]) Let the pair (A,B) be controllable and Θ be a
symmetric matrix. The two following statements are equivalent:

a) [
(iωI −A)−1B

I

]′
Θ
[

(iωI −A)−1B
I

]
< 0 ∀ω ≤ ω ≤ ω. (41)

b)

∃P = P ′, Q = Q′ > 0 :

»
A B
I 0

–′ 2664 −Q P + i

„
ω + ω

2

«
Q

P − i

„
ω + ω

2

«
Q −ωωQ

3775» A B
I 0

–
+ Θ < 0. (42)

P r o o f . It is an application of the concrete full block S-procedure but with

V =
[
A B
I 0

]
. (43)

Indeed, in this case ∆ matches sI, with s = iωI and since ω is considered only in the
range (−ω;ω) in property (41), it means that ∆ indirectly defines a closed segment of
the imaginary axis I in which iω lies and which is the intersection between I and a disc
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of centre
(

0, γ =
ω + ω

2

)
and of radius r =

(
ω − ω

2

)
. Consider the definition of K(∆)

given in (38), i. e. in this case, K(∆) = K(s) = [I − sI] with s = iωI. The considered
segment can then be defined through:[

sI
I

]′
X(P,Q)

[
sI
I

]
≥ 0, ∀P = P ′,∀Q = Q′ > 0, (44)

where

X = X(P,Q) =
[

−Q P + iγQ
P − iγQ −ωωQ

]
. (45)

Indeed, (44) and (45) amount to

(−s′s− iγs+ iγs′ − ωω)Q+ (s+ s′)P ≤ 0, ∀P = P ′,∀Q = Q′ > 0. (46)

Since this inequality is meant to hold for any P = P ′ and for any Q = Q′ > 0, it
particularly holds for P = 0 meaning that it necessarily comes

−s′s− iγs+ iγs′ − ωω ≤ 0.

This is the inequality which defines the disc of centre (0, γ) and of radius r to which s
thus belongs. Besides, for Q = αI, with α as low as desired (making the first term of
the left handside member of (46) negligible), then the two possible instances P = I and
P = −I lead to conclude that

s+ s′ = 0,

constraining s to also belong to I. Reciprocally, if s belongs to both the disc and I
then (46) obviously holds. The special structure of multiplier (45) is then appropriate
to define the considered segment. Therefore, it can be used as a lossless definition of ∆.
As in the previous paragraph, it can be seen that z ∈ S(∆) is parametrized by a vector
q as follows: z = [sI I]′q. So the characterization of the frequency range proposed
in (44 – 45) involves an expression which matches the second inequality in (37), provided
that X complies with (45). In other words, with such a characterization of ∆, X can
only comply with (45). The second inequality in (37) becomes useless since it is implied
by the definition of ∆ itself. The application of the S-procedure (Corollary 2) reduces
to the equivalence between (36 and the first inequality (37), while ensuring that X
matches (45) to work on the suitable set ∆. Now focus on this equivalence. With the
choice (43), one gets

B(∆) = Ker(K∗(∆)V ) = Span∗
([

(sI −A)−1B
I

])
= Span∗

([
(iωI −A)−1B

I

])
,

keeping in mind that, due to the defintion of ∆, ω satisfies ω ≤ ω ≤ ω. So in this
case, (36) writes as (41). Besides, (37) is nothing but (42), so the previously mentioned
equivalence between (36) and (37) under constraint (45) is the equivalence between a)
and b). �

Following the same kind of reasoning, it is possible to address a more general case (by
changing the defintion of ∆ so as to characterize other regions than imaginary ranges)
and to prove the famous Generalized KYP lemma [25].
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Moreover, when ω → −∞ and ω → +∞, then ∆ is such that iω describes the
imaginary axis I. Such a set is not compact but it can be extended to a compact set
in the sense of Alexandrov by adding {∞}, and in that case, Corollary 3 reduces to
the classic continous KYP lemma [35] which encompasses many propositions such as
the Bounded real lemma [1] and so on. Of course, the discrete counterpart of the KYP
lemma [35] can also be proved in the same fashion.

3.4. Lyapunov and Stein’s inequalities

To recover an even more classic result, as an amusement, the next corollary can be
proved.

Corollary 4. (Ostrowski and Schneider [30], Hill [24]) A complex matrix A has no
eigenvalue on the extended imaginary axis I ∪ {∞} if and only if

∃P = P ′ : A′P + PA < 0. (47)

P r o o f . A has no eigenvalue on I ∪ {∞} if and only if

det(λI −A) 6= 0 ∀λ ∈ I ∪ {∞} (48)

⇔ (λ′I −A′)(−I)(λI −A) < 0 ∀λ ∈ I ∪ {∞}

⇔
[
λ′I I

] [ I
−A′

]
(−I)

[
I −A

]
︸ ︷︷ ︸

Θ

[
λI
I

]
< 0 ∀λ ∈ I ∪ {∞}. (49)

Following the same lines as in the proof of Corollary 3, the extended imaginary axis
I ∪ {∞} is losslessly defined by

I ∪ {∞} =

λ ∈ lC ∪ {∞} :
[
λ′I I

] [ 0 P
P 0

]
︸ ︷︷ ︸

X

[
λI
I

]
≥ 0, ∀P = P ′

 . (50)

By applying Theorem 1 with the choice V = I, ∆ = {λI : λ ∈ I ∪ {∞}}, one deduces
that A has no eigenvalue on I ∪ {∞} if and only if

X + Θ < 0. (51)

By virtue of Corollary 1, and noting that[
A
I

]
= Ker

([
I −A

])
,

inequality (51) is equivalent to (47). �

This result is to be connected to the notion of δD-regularity or S-regularity of a
matrix introduced in [3]. If the extended closed right half complex plane lC + ∪ {∞}
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is considered instead of I ∪ {∞}, then the above reasoning can be followed but with
imposing P > 0 in (50). Then Corollary 4 is modified so as to state that A is Hurwitz-
stable if and only if there exists P = P ′ > 0 such that (47) holds, which is nothing but
Lyapunov’s inequality [28]. For the discrete counterpart, an analogous reasoning enables
the recovery of Stein’s inequality [24, 40].

3.5. A new theorem

Now, another theorem is proposed, which can also be deduced (but a little less directly)
from Theorem 1. This theorem is a basis for an approach to robust analysis. It does not
(at least obvioulsy) lead to less conservative results than other results of the literature,
but, as it will be seen in the next section, it offers the possibility to derive tools which,
on the one hand, take sophisticated uncertainties into account and, on the other hand,
are as simple as the ones proposed in [32] for polytopic uncertainties.

Theorem 2. Let the next mathematical objects be defined:

• X , a subset of the set Y, defined by

X ⊂
(
Y =

{
X = X ′ ∈

[
X11 X12

X ′12 X22

]
: X11 < 0

})
(52)

such that the set ∆ of complex matrices ∆ defined by

∆ =

{
∆ :

[
∆
I

]′
X

[
∆
I

]
≥ 0, ∀X ∈ X

}
, (53)

is compact and nonempty;

• Θ ∈ Hn;

• A, B, E and F matrices such that the square ILFR-based matrix (E−∆A)−1(∆B−
F ) is well-posed over ∆ (meaning that (E −∆A)−1 exists over ∆).

The two following statements are equivalent :

a) [
(E −∆A)−1(∆B − F )

I

]
Θ
[

(E −∆A)−1(∆B − F )
I

]
< 0, ∀∆ ∈∆. (54)

b)

∃H :
{
H
[

(E −∆A) (F −∆B)
]}H + Θ < 0 ∀∆ ∈∆. (55)

P r o o f . The idea is of course to draw an analogy with Theorem 1 where E = lC n.
a)⇒b):
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Consider that VL = VR = V with

V =
[
E F
A B

]
. (56)

Moreover, consider the choice (38). Then the set

B(∆) = Span
([

(E −∆A)−1(∆B − F )
I

])
, ∆ ∈∆. (57)

matches the definition in Corollary 2 with SL(∆) = SR(∆) = [I − ∆], and inequal-
ity (54) corresponds to (36).

Besides, by definition, there exists some multiplier X which satisfies the second in-
equality in (37) due to the definition of ∆, i. e. (53).

Therefore, the application of Corollary 2 here consists in the equivalence between (54)
and the existence of a ∆-independent multiplier X ∈ X such that the first inequality
in (37) holds. This inequality here becomes

Θ +
[
E F
A B

]′
X

[
E F
A B

]
< 0. (58)

Since ∆ belongs to ∆ and since X belongs to X ⊂ Y, then it comes

∆′X11∆ + ∆′X12 +X ′12∆ +X22 ≥ 0, ∀∆ ∈∆ (59)

which, by using Schur’s complement argument, is equivalent to

Φ(∆) =
[

X11 −X11∆
−∆′X11 −X22 −∆′X12 −X ′12∆

]
≤ 0, ∀∆ ∈∆. (60)

It implies
V ′Φ(∆)V ≤ 0, ∀∆ ∈∆. (61)

Adding inequalities (58) and (61) leads to

Θ + V ′ (X + Φ(∆))︸ ︷︷ ︸
Z(∆)

V < 0 ∀∆ ∈∆. (62)

Note that Z(∆) satisfies

Z(∆) =
[

2X11 X12 −X11∆
X ′12 −∆′X11 −∆′X12 −X ′12∆

]
=
([

X11

X ′12

] [
I −∆

])H
∀∆ ∈∆.

(63)
With this expression at hand, inequality (62) can be written

Θ +

([
E F
A B

]′ [
X11

X ′12

] [
(E −∆A) (F −∆B)

])H
< 0, ∀∆ ∈∆, (64)
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which is nothing but (55) with the choice

H =
[
E F
A B

]′ [
X11

X ′12

]
. (65)

b)⇒a):
Now assume that VL = I and that

VR(∆) =
[

(E −∆A) (F −∆B)
]
, ∆ ∈∆. (66)

Also make the choice that SL(∆) = {0} and SR(∆) = {0}. Then the set B(∆) as defined
by (57) matches the set BR(∆) in Theorem 1. Since BL(∆) reduces to {0}, then B(∆)
in (57) is also the same as B(∆) in Theorem 1.

The second inequality in condition ii) of Theorem 1 necessarily holds since SL(∆) =
{0} and SR(∆) = {0} imply X̄ (∆) = {0}. At last, inequality (55) can be written as the
first inequality in condition ii) of Theorem 1. Then the application of Theorem 1 leads
to inequality (1), which, in the present case, is nothing but (54). �

In Theorem 2, the set X is implicitly defined through ∆. In other words, from (53),
any X in X is such that [

∆
I

]′
X

[
∆
I

]
≥ 0, ∀∆ ∈∆. (67)

Reciprocally, still from (53), any ∆ ∈∆ is such that (67) is satisfied. This is a particular
and ideal case where the structure of X perfectly characterizes ∆. The set X is then
lossless. This is a generalization of what was used in the proof of Corollary 3.

Of course, the definition of a lossless set X (i. e. a lossless structure of X) is not
always easy to obtain and is a well-known problem which induces conservatism in various
conditions for robust analysis proposed in the literature. However, in the following
corollary, the use of a lossless X is possible. This corollary turns to be the alternative
KYP lemma which was originally proposed in [20] (Note that it also led to interesting
and significant extensions in [21, 19]), This alternative KYP lemma can be seen as an
alternative to Corollary 3.

Corollary 5. (Graham et al. [20]) Let the pair (A,B) be controllable and let Θ ∈ Hn
affinely depend on ω over the range (ω;ω). The statements a) and b) as expressed in
Corollary 3 are equivalent to the following one:

c)

∃H : Θ +

(
H

[
I

iwI

]′ [
A B
I 0

])H
< 0 ∀ω ∈ {ω;ω}. (68)

P r o o f . The equivalence between a) and b) is of course proved by virtue of Corollary 3.
The equivalence between a) and c) results from the application of Theorem 2 with the
next change of variables :

∆← iωI, A← I, B ← 0 E ← A, F ← B, (69)
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and X as defined in (45) which is known to be lossless (it is also shown in the proof
of Corollary 3). With such an instance, Theorem 2 proves the equivalence between a)
and c) but for any ω belonging to the range (ω;ω). However, if the inequality in c) is
satisfied for the whole range (ω;ω), it is a fortiori satisfied for the extreme values ω and
ω and, the other way around, if it is satisfied for the extreme values, it is also satisfied
anywhere inside the range by simple convex combination. �

4. NEW INSIGHTS FOR ROBUSTNESS ANALYSIS AGAINST PARAMETRIC
UNCERTAINTIES

In this section, Theorem 2 is exploited to analyse the robustness of some properties of
uncertain linear systems with respect to time invariant ILFR-based parametric uncer-
tainties. It is shown that, by exploiting Theorem 2, such an uncertainty can be handled
with the same simplicity as if the parameters were involved in a linear fashion in the
model.

Corollary 6. Let the matrix M be Hermitian and ∆ be the set of real matrices ∆
which are defined by

∆ =
q
⊕
j=1

δjInj
(70)

where the real parameters δj satisfy

δj ≤ δj ≤ δj , ∀j ∈ {1, . . . , q}. (71)

Also define the N = 2q matrices ∆i, i = 1, . . . , N , as the vertices of the set ∆, which
is actually the polytope of matrices obtained when the parameters δj describe their
respective ranges. At last, define the uncertain matrix A as the ILFR

A(∆) = D + C(E −∆A)−1(∆B − F ), (72)

which is assumed to be well-posed over ∆. Consider the two next statements:

i) [
A(∆)
I

]′
M

[
A(∆)
I

]
< 0, ∀∆ ∈∆. (73)

ii) There exists a ∆-independent matrix H such that[
C D
0 I

]′
M

[
C D
0 I

]
+
{
H
[

(E −∆iA) (F −∆iB)
]}H

< 0

∀i ∈ {1, . . . , N}. (74)

Then statement ii) is sufficient for statement i) to hold and if q = 1, then the converse
is also true.

P r o o f . The first issue to address is to make the connection between ∆ as defined
in the present corollary and the definition of ∆ proposed in Theorem 2. Actually, the
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present set ∆ is a subset (and only a subset!) of ∆ defined in Theorem 2 with the
special choice

X =

 X11 = −
q
⊕
j=1

Qj X12 =
q
⊕
j=1

(cjQj +Gj)

X ′12 =
q
⊕
j=1

(cjQj +G′j) X22 =
q
⊕
j=1

gjQj

 , (75)

and with

Qj ∈ IR nj×nj , Qj = Q′j > 0, Gj ∈ IR nj×nj , Gj = −G′j ∀j ∈ {1, . . . , q}, (76)

and

cj =
δj + δj

2
, , gj =

(
δj − δj

2

)2

− c2j , (77)

meaning that each δj is in a disc of centre cj with radius rj =
(
δj−δj

2

)
. This is now

a quite classic characterization which was proposed for instance in [11] or in a slightly
different fashion in [25].

Besides, also in a very classic fashion, each matrix ∆ belonging to the present set ∆
can be written as a convex combination of the vertices ∆i:

∆ =
N∑
i=1

αi∆i, αi ≥ 0,
N∑
i=1

αi = 1. (78)

Therefore, since the barycentric coordinates αi are positive, if the convex combination
of the inequalities in (84) is built with these coordinates, then condition (55) is satisfied
over ∆ with

Θ =
[
C D
0 I

]′
M

[
C D
0 I

]
. (79)

If inequality (74) holds, then inequality (55) holds for an overset of ∆ and therefore also
for ∆ itself. Thus, by virtue of Theorem 2, inequality (54) is satisifed, which can also
be written as (73).

To complete the proof, the case q = 1 must be considered. In this case, the struc-
ture (75) defines a lossless set X which losslessly characterizes the set ∆ (see [25] or
follow a similar reasoning as in the proof of Corollary 3). Hence, the application of
Theorem 2 leads to the equivalence between both statements. �

To clearly understand why necessity is not verified for q > 1, consider the case where
∆ is defined by (70) and (71) with q = 2, n1 = n1 and δj = −δj = 1⇒ cj = 0, gj = 1.
A possible instance of X could be

X =
[
X11 = −I2 ⊗Q X12 = 0

X ′12 = 0 X22 = I2 ⊗Q

]
, (80)
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meaning that Q1 = Q2 = Q > 0 and G1 = G2 = 0. Indeed, it is a particular element of
the set X defined by (52) and (75). However, for such multiplier, matrix

∆ =
[
αI αI
αI αI

]
, (81)

with α ∈ IR checking |α| ≤ 1
2 satisfies (67) whereas it does not belong to ∆. If the

obtained H is such that the underlying X complies with (80), it means that the property
to be tested is proved to be satisfied for uncertainties which are “beyond” the considered
set ∆ (e. g. ∆ in (81)), which is not required. Therefore, some degree of conservatism
is introduced.

Corollary 6 can be used to assess the robustness of many properties, at least when
matrix M is ∆-independent. Note that the case q = 1 corresponds to the problem
addressed in [18].

For instance, the next corollary can be stated.

Corollary 7. Let the set ∆ and the matrix A(∆) be defined as in Corollary 6. Then
matrix A(∆) is quadratically Hurwitz stable against ∆ if (and only if when q = 1) there
exist matrices P = P ′ > 0 and H such that[

C D
0 I

]′ [ 0 P
P 0

] [
C D
0 I

]
+
{
H
[

(E −∆iA) (F −∆iB)
]}H

< 0

∀i ∈ {1, . . . , N}. (82)

P r o o f . This is a special application of Corollary 6 with

M =
[

0 P
P 0

]
. (83)

In this case, inequality (73) is nothing but Lyapunov’s inequality and P is a ∆-independent
Lyapunov matrix valid for the whole set ∆. �

But of course, it would be very interesting to obtain the same result with parameter-
dependent Lyapunov functions, i. e. P (∆) instead of P . It is unfortunately not so
straightforward since M is assumed to be ∆-independent in Theorem 6. This comes
from the fact that Θ is assumed to be ∆-independent in Theorem 2. The question is to
know if it is possible that Θ depends on ∆ in Theorem 2. In [19, 21], Corollary 5 (i. e.
alternative KYP lemma) is extended to the case where Θ is affine with respect to the
frequency, while preserving necessity of the condition. But in the general case where
Θ would depend on several parameters in a more sophisticated way, the necessity can
anyway not hold (see the counterexample further mentioned).

Nevertheless, the sufficiency in itself provides a quite interesting result:

Corollary 8. Let the set ∆ and the matrix A(∆) be defined as in Corollary 6. Then
matrix A(∆) is robustly Hurwitz stable against ∆ if N symmetric positive matrices Pi,
i = 1, . . . , N and a matrix H exist such that[

C D
0 I

]′ [ 0 Pi
Pi 0

] [
C D
0 I

]
+
{
H
[

(E −∆iA) (F −∆iB)
]}H

< 0

∀i ∈ {1, . . . , N}. (84)
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P r o o f . It is similar to the proof of the sufficiency part of Corollary 6. By using convex
combination, inequality (55) is recovered with

Θ(∆) =
[
C D
0 I

]′ [ 0 P (∆)
P (∆) 0

] [
C D
0 I

]
, (85)

and with

P (∆) =
N∑
i=1

αiPi. (86)

By virtue of Theorem 2, inequality (54) holds and it can also be written

A′(∆)P (∆) + P (∆)A(∆) < 0 ∀∆ ∈∆, (87)

which is nothing but Lyapunov’s inequality applied to A(∆). Thus, A(∆) is robustly
Hurwitz-stable against ∆. �

5. DISCUSSION AND COMMENTS

The first comment is that this robust Hurwitz stability test can be easily extended
to many other performances tests such as H∞ level [1], pole clustering constraints in
convex regions i. e. D-stability [8, 17, 32] or even pole clustering constraints in non
convex regions [3, 4, 5]. Indeed, all those performances have been expressed in terms of
inequalities such as (1) or (54). Thus, Theorem 2 can be exploited following the same
lines as for Corollary 8.

The second comment is that the result presented by Corollary 8 is conservative and
thus cannot be positively compared in that sense to other results of the literature such
as for instance [7, 36]. But these references exhibit quite sophisticated conditions which,
though interesting, are often very cumbersome and which might not find their way to
the engineering world, unlike conditions proposed in [17, 32] which are very tractable
from a numeric point of view and thus very easy to test with usual solvers.

Going on with dilated LMI conditions which can reasonably be considered by an
engineer, the connection to [13] has to be mentioned. Corollary 8 might be seen as an
extension of [13, Theorem 3] to the case of ILFR. Also, Corollary 8 is very close to
[13, Theorem 4]. In [13, Theorem 4], the possibility to consider a multiaffine Lyapunov
matrix with respect to the parameters δj is offered and the multiplier H, which is also
multiaffine, is considered on the vertices of ∆. However, an additional condition is
imposed on the multiplier which, if easily satisfied for some special cases [13], might be
somewhat constraining in the general case i. e. for any LFR matrices. On the contrary, in
Corollary 8 the multiplier H is ∆-independent but the more general case of an implicit
LFR is considered. Whatever the present comments are, the connection with [13] is
strong and much attention should be paid to this paper.

Moreover, even if a sophisticated ILFR uncertainty might increase the size of the
matrices A, B, C, D, E, F and ∆, the number of inequalities to be tested remains
the same, i. e. N = 2q where q is the number of involved parameters. It means that
the number of LMIs (which contributes more to computational heavyness than the size
of the matrices) does not depend on the complexity of the ILFR. Only the number of
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parameters is really significant. In that sense, once again, it makes the present condition
similar to the very frequently used condition for D-stability proposed in [32]. It is even
equivalent in the case where A(∆) is an affine function of the parameters δj . But, clearly,
it can be used for a far larger class of uncertainties. For this reason, the authors think
that it is a very good compromise between conservatism and computational heavyness.

Of course, the way the matrices A, B, C, D, E, F can be found is a possibly hard
challenge when the parameters appear in a very sophisticated fashion in A(∆) but this
is an unfortunately classic problem encountered in the whole of the literature devoted
to robustness analysis. The derivation of LFR-based expressions is hidden behind many
contributions to robust analysis and design. The reader must be aware that Implicit LFR
are very useful to decrease the dimension of ∆ when building expression (72) [29, 31]
and a great attention can be paid to [23].

6. ILLUSTRATIVE EXAMPLES

To illustrate the efficiency of Corollary 8, the following academic example is proposed.
Consider the set ∆ as defined by (70), q = 2 and{

δ1 = −0.7289 ≤ δ1 ≤ δ1 = 0.7289,
δ2 = 0.3600 ≤ δ2 ≤ δ2 = 1.6400,

(88)

as well as the following uncertain matrix:

A(∆) =


−10 +

δ1
1− δ1

(3δ1 − 2)(δ2 + 2)
δ2(1− δ1)

1

−3 −3 0

−4
δ2 + 2
δ2

−1

 . (89)

This matrix is well-posed over ∆ and a possible (minimal) ILFR is given by

 A B
C D
E F

 =



1 3 1 0 0
0 −1 0 1 0
1 0 −10 0 1
0 0 −3 −3 0
0 1 −4 0 −1
1 2 0 0 0
0 0 0 −2 −1


, (90)

meaning that n1 = n2 = 1. Using condition (84) (involving (N = 4) LMIs) which is
found feasible, matrix A(∆) is proved to be robustly stable against ∆. To appreciate the
weak conservatism of the condition, we plot the eigenvalues of A(∆) for 1600 random
instances of ∆ = δ1⊕δ2 inside ∆. The result is depicted on Figure 1. It can be seen that
some clusters of eigenvalues tend to touch the imaginary axis, highlighting the tightness
of the condition.

Note that if the size of the polytope is very slightly increased by enlarging either
the range (δ1; δ1) or the range (δ2; δ2) on both sides, not only the LMI system is found
infeasible but plotting the clusters of eigenvalues shows that instability is reached.
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−15 −10 −5 0
−3

−2

−1

0

1

2

3

Fig. 1. Migration of the eigenvalues of A(∆) over ∆ (first example).

Another academic example is now considered. The set of uncertain parameters is
defined by {

δ1 = −0.5145 ≤ δ1 ≤ δ1 = 0.5145,
δ2 = 0.4340 ≤ δ2 ≤ δ2 = 1.5660,

(91)

and the uncertain matrix to be analysed is given by

A(∆) =


−5 +

δ1
1− δ1

0 4

−3 −3 +
2

1 + δ2
0

−4 +
δ1

1− δ1
+

1
2δ2

2− 1
2δ2

−1 +
1
δ2

 . (92)

This matrix is well-posed over the set of uncertain parameters and a possible ILFR is
given by

 A B
C D
E F

 =



1 0 0 1 0 0
0 −1 0 0 0 0
2 0 −2 0 0 0
1 0 0 −5 0 4
0 1 0 −3 −3 0
0 0 1 −4 2 −1
1 0 0 0 0 0
0 1 0 0 −2 0
0 0 0 −1 1 −2


, (93)
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meaning that, in this case, n1 = 1 but n2 = 2, i. e.

∆ = δ1 ⊕ δ2I2 =

 δ1 0 0
0 δ2 0
0 0 δ2

 . (94)

This ILFR might not be minimal. Using condition (84) (involving (N = 4) LMIs) which
is found feasible, matrix A(∆) is proved to be robustly stable against ∆. To appreciate
the weak conservatism of the condition, we plot the same clusters of eigenvalues as in
the previous example, highlighting once again that the condition is weakly conservative
(see Figure 2).

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−4

−3

−2

−1

0

1

2

3

4

Fig. 2. Migration of the eigenvalues of A(∆) over ∆ (second

example).

Note that, once again if the size of the polytope is very slightly increased by enlarging
either the range (δ1; δ1) or the range (δ2; δ2) on both sides, not only the LMI system is
found infeasible but plotting the clusters of eigenvalues shows that instability is reached.

These rather sophisticated examples could tend to show that condition (84) is not
conservative. This is not true. Indeed, if a little attention is paid to the proof of
Corollary 8, then it can be seen that the structure of P (∆) is

∑N
i=1 αiPi. Such a class

of Lyapunov matrices is not general enough to assess robust stability, even in the case of
one single real uncertain parameter, as pointed out in [14] through a counter-example.
Nevertheless, condition (84) is very tractable and induces a conservatism which is often
more than reasonable.
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7. CONCLUSION

In this paper, a quite general proposition was established. It can be a starting point
to prove many useful theorems encountered in the theory of linear systems, especially
when robustness aspects are considered. Moreover, a simple and strong LMI condition
for a matrix to be stable against ILFR-based parametric uncertainy was proposed.

This work is mostly achieved in order to give coherence to some existing results but
the perspectives have to be regarded with attention. An investigation could be followed
to know if this work could be exploited to propose extensions of the presented conditions
from robust analysis to robust synthesis.

(Received September 18, 2014)

R E F E R E N C E S

[1] P. Apkarian and P. Gahinet: A linear matrix inequality approach to H∞ control. Int. J.
Robust Nonlinear Control 4 (1994), 421–448. DOI:10.1002/rnc.4590040403

[2] D. Arzelier, D. Peaucelle, and S. Sahli: Robust static output feedback stabilization for
polytopic uncertain systems. In: Robust Control Design, ROCOND, Milan 2003.

[3] O. Bachelier, D. Henrion, B. Pradin, and D. Mehdi: Robust matrix root-clustering of a
matrix in intersections or unions of subregions. SIAM J. Control Optim. 43 (2004), 3,
1078–1093. DOI:10.1137/s0363012903432365

[4] O. Bachelier and D. Mehdi: Robust matrix root-clustering through extended KYP
Lemma. SIAM J. Control Optim. 45 (2006), 1, 368–381. DOI:10.1137/s036301290444349x

[5] J. Bosche, O. Bachelier, and D. Mehdi: An approach for robust matrix root-clustering
analysis in a union of regions. IMA J. Math. Control Inform. 22 (2005), 227–239.
DOI:10.1093/imamci/dni007
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