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K Y B E R N E T I K A — V O L U M E 5 1 ( 2 0 1 5 ) , N U M B E R 6 , P A G E S 9 0 9 – 9 2 2

RANK TESTS IN REGRESSION MODEL
BASED ON MINIMUM DISTANCE ESTIMATES

Radim Navrátil

In this paper a new rank test in a linear regression model is introduced. The test statistic is
based on a certain minimum distance estimator, however, unlike classical rank tests in regression
it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived,
and further, the asymptotic distribution both under the null hypothesis and the local alternative
is investigated. It is shown that the proposed test is applicable in measurement error models.
Finally, a simulation study is conducted to show a good performance of the test. It has, in
some situations, a greater power than the widely used Wilcoxon rank test.

Keywords: measurement errors, minimum distance estimates, rank tests

Classification: 62J05, 62G10

1. INTRODUCTION

Consider the following model of a regression line

Yi = β0 + xiβ + ei, i = 1, . . . , n, (1)

where β0 and β are unknown parameters, x1, . . . , xn are fixed or stochastic regressors, the
model errors e1, . . . , en are assumed to be i.i.d. with an unknown distribution function F
and a uniformly continuous density f independent from x1, . . . , xn (if they are random).
Our aim is to test the hypothesis

H0 : β = 0 against K0 : β 6= 0.

Since F is unknown, we should use nonparametric tests. Among them, rank tests
play an important role. They use, instead of the original response variables Yi’s, their
ranks. Rank tests form a class of statistical procedures which have the advantage of
simplicity combined with a surprising power.

Modern development of rank tests began in the 1930’s, see e. g. [8] and [12]. In 1945
Wilcoxon [24] introduced a popular Wilcoxon test for comparing two treatments. At
first, it was believed that a high price in loss of efficiency when using rank tests has
to be paid. However, it turned out that the efficiency of the rank tests behaves quite
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910 R. NAVRÁTIL

well under the classical normality assumption. In addition, these tests remain valid and
have a high efficiency when the normality assumption is not satisfied. These facts were
first described by Pitman [19]. At the moment, rank tests remain still very popular and
widely used, see [7] and [15].

Let us briefly show the classical approach based on a linear rank statistic (see e. g.
[11]). Denote

Qn =
1
n

n∑
i=1

(xi − x)2, with x =
1
n

n∑
i=1

xi.

Let Ri be the rank of Yi among Y1, . . . , Yn and let us define a simple linear rank statistic

Sn = n−1/2
n∑
i=1

(xi − x)ϕ
(

Ri
n+ 1

)
for a nondecreasing, nonconstant, square integrable score function ϕ : (0, 1) 7→ R.
The test criterion for H0 is then

T 2
n =

S2
n

A2(ϕ)Qn
, (2)

where

A2(ϕ) =
∫ 1

0

(ϕ(t)− ϕ)2 dt, ϕ =
∫ 1

0

ϕ(t) dt.

Under H0, T 2
n has asymptotically (under very mild conditions) χ2 distribution with 1

degree of freedom.
The regression model (1) assumes that the regressors xi are observed accurately, but

in practise this is often not satisfied. We will, therefore, consider a measurement error
model

Yi = β0 + βxi + ei, (3)
wi = xi + vi, i = 1, . . . , n,

where we observe wi instead of xi that are affected by additive measurement errors vi
which are i.i.d. independent from ei and xi.

The influence of measurement errors on parameter estimates was first considered by
Adcock at the end of the nineteenth century. Adcock [1] showed that in the regression
line model with measurement errors the least squares estimate of the slope is downward
in magnitude. Since then a lot of methods for dealing with measurement errors have
been developed, e. g. the method of moments (see [6, 20]), the maximum likelihood
method (see [17]), the total least squares method ([10]). There are even several books
devoted entirely to measurement error models, see e. g. [3, 4, 5] and [9].

Most of the methods use parametric approach with its restrictive normality assump-
tions or with some additional information about the error distribution. However, this is
not our case, we will introduce a class of new rank tests applicable in the measurement
error model (3) without any further information about the errors.

Jurečková [14] was the first who introduced rank tests into measurement error models.
She showed that the test (2) in the model (3) remains valid even if measurement errors are
present, they only cause a decrease in the test power. This result was further extended
by Navrátil [18] and Jurečková [13] for various other measurement error models.
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2. TEST IN SIMPLE LINEAR REGRESSION

Koul [16] considered a class of estimates in a linear regression model based on the
minimization of a certain type of distances. He also showed that such estimates might
have, in some situations, a greater efficiency than the corresponding R-estimates. This
fact motivated us to introduce a class of test statistics based on Cramér–von Mises type
of distance involving various weighted empirical processes and investigate their power.
We will also pay attention to their robust properties.

Let us define

Tg,n(s) =
1√
n

n∑
i=1

g(xi)I{Ri ≤ ns}, 0 ≤ s ≤ 1, (4)

K∗g,n =
∫ 1

0

T 2
g,n(s) dL(s), (5)

where Ri is the rank of Yi among Y1, . . . , Yn, L a distribution function on [0, 1] and g
a real (weight) function, such that

∑n
i=1 g(xi) = 0.

Let us discuss some computation aspects of (5). First, let us look at the formula (5)
for K∗g,n. Inserting (4) into (5) we obtain

K∗g,n =
1
n

n∑
i=1

n∑
j=1

g(xi)g(xj)
∫ 1

0

I{Ri ≤ ns}I{Rj ≤ ns} dL(s)

=
1
n

n∑
i=1

n∑
j=1

g(xi)g(xj)
∫ 1

max
n

Ri
n ,

Rj
n

o 1 dL(s).

Since L is a distribution function, then L(max{a, b}) = max{L(a), L(b)}. This also
remains true for the limits from the left:

K∗g,n =
1
n

n∑
i=1

n∑
j=1

g(xi)g(xj)
(

1−max
{
L

(
Ri
n
−
)
, L

(
Rj
n
−
)})

.

Since
∑n
i=1 g(xi) = 0, we get

K∗g,n = − 1
n

n∑
i=1

n∑
j=1

g(xi)g(xj) max
{
L

(
Ri
n
−
)
, L

(
Rj
n
−
)}

.

Using the fact that

2 max{a, b} = a+ b+ |a− b|, ∀ a, b ∈ R

and
∑n
i=1 g(xi) = 0 we have

K∗g,n = − 1
2n

n∑
i=1

n∑
j=1

g(xi)g(xj)
∣∣∣∣L(Rin −

)
− L

(
Rj
n
−
) ∣∣∣∣,

which is much more convenient for practical computations.
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Under H0 (β = 0), the model (1) is reduced to

Yi = β0 + ei, i = 1, . . . , n. (6)

Since the distribution of model errors ei is absolutely continuous, there cannot be any
ties in ranks with probability 1. Thanks to the invariance of ranks with respect to
the location, the distribution of R1, . . . , Rn under the null hypothesis is uniform over
all n! permutations of numbers {1, . . . , n}. Therefore, the distribution of K∗g,n given
x1, . . . , xn, under H0, is distribution-free and may be even computed directly. To do
so, we have to compute all values of the test statistic K∗g,n for each of n! permutations
of numbers {1, . . . , n} and order these values in the increasing magnitude. The critical
region is then formed by M = bαn!c largest values. The combination which leads to the
(M + 1)-st largest value can be possibly randomized.

However, the computation of exact (conditional) distribution may be time consuming
for large sample size n. We will, therefore, investigate the asymptotic distribution of
K∗g,n. We have to distinguish two cases: random or fixed regressors xi. We will present
only the first one because it is often overlooked and because the assumptions and proofs
of asymptotic distributions are analogous for fixed regressors.

For s ∈ [0, 1], let us define empirical processes

Vg,n(s) =
1√
n

n∑
i=1

g(xi)I{ei ≤ F−1
n (s)},

V̂g,n(s) =
1√
n

n∑
i=1

g(xi)I{ei ≤ F−1(s)},

where Fn(s) = 1
n

∑n
i=1 I{ei ≤ s)} is an empirical distribution function.

Now, let us state the assumptions needed for proving the asymptotic properties of
K∗g,n:

n∑
i=1

(xi − x̄) > 0 a.s. ∀ n > 1, (7)

max
i=1,...,n

(xi − x̄)2∑n
j=1(xj − x̄)2

p−→ 0, (8)

g(xi) 6= 0 a.s. for some i = 1, . . . , n, (9)

0 < |Eg(X1)(X1 − EX1)| <∞, (10)

xig(xi) ≥ 0 a.s. ∀i = 1, . . . , n or xig(xi) ≤ 0 a.s. ∀i = 1, . . . , n, (11)

max
i=1,...,n

g2(xi)
p−→ 0, (12)

sup
n∈N

max
i=1,...,n

|g(xi)| ≤ c a.s. for some 0 < c <∞, (13)

0 < γ =
√

Eg2(X1) <∞. (14)
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Lemma 2.1. Let us assume that (7) – (10) hold, then under H0∣∣∣K∗g,n − ∫ V 2
g,n(s) dL(s)

∣∣∣ = op(1), as n→∞.

P r o o f . For the convenience, we will drop off index g in K∗g,n and Vg,n. Adding and
subtracting Vn(s) in the first integrand and using the Cauchy–Schwarz inequality we get∣∣∣ ∫ T 2

n(s) dL(s)−
∫
V 2
n (s) dL(s)

∣∣∣
=
∣∣∣ ∫ [Tn(s)− Vn(s)]2 dL(s) + 2

∫
Vn(s)(Tn(s)− Vn(s)) dL(s)

∣∣∣
≤ sup

0≤s≤1
|Tn(s)− Vn(s)|2 + 2

√∫
V 2
n (s) dL(s)

∫
(Tn(s)− Vn(s))2 dL(s).

The fact that
sup

0≤s≤1
|Tn(s)− Vn(s)| ≤ 2 max

i=1,...,n
|g(xi)| = op(1)

together with
∫
V 2
n (s) dL(s) = Op(1) proves the Lemma. �

Lemma 2.2. Let us assume that (7) – (10) hold, then under H0∣∣∣K∗g,n − ∫ V̂ 2
g,n(s) dL(s)

∣∣∣ = op(1), as n→∞.

P r o o f . ∣∣∣ ∫ T 2
n(s) dL(s)−

∫
V̂ 2
n (s) dL(s)

∣∣∣
=
∣∣∣ ∫ [Tn(s)− V̂n(s)

]2
dL(s) + 2

∫
V̂n(s)(Tn(s)− V̂n(s)) dL(s)

∣∣∣. (15)

Using the Minkowski inequality∫
[Tn(s)− V̂n(s)]2 dL(s) =

∫
[Tn(s)− Vn(s) + Vn(s)− V̂n(s)]2 dL(s)

≤ 2
∫

[Tn(s)− Vn(s)]2 dL(s) + 2
∫

[Vn(s)− V̂n(s)]2 dL(s). (16)

By the Cauchy–Schwarz inequality

∣∣∣ ∫ V̂n(s)(Tn(s)− V̂n(s)) dL(s)
∣∣∣ ≤ √∫

V̂ 2
n (s) dL(s)

∫
[Tn(s)− V̂n(s)]2 dL(s)

= op(1), (17)

because
∫
V̂ 2
n (s) dL(s) = Op(1) and

∫
[Tn(s)− V̂n(s)]2 dL(s) = op(1).
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Observe that

V̂n(FF−1
n (s)) =

n∑
i=1

g(xi)I{ei ≤ F−1FF−1
n (s)} =

n∑
i=1

g(xi)I{ei ≤ F−1
n (s)} = Vn(s).

Therefore

sup
0≤s≤1

|Vn(s)− V̂n(s)| = sup
0≤s≤1

|V̂n(FF−1
n (s))− V̂n(s)| = op(1),

because

sup
0≤s≤1

|FF−1
n (s)− s| = sup

0≤s≤1
|FF−1(s)− FnF−1

n (s) + FnF
−1
n (s)− s|

≤ sup
x∈R
|F (x)− Fn(x)| + sup

0≤s≤1
|FnF−1

n (s)− s| = op(1).

Now, combining the previous result, Lemma 2.1 and (15), (16) and (17) we have proven
the Lemma. �

Remark 2.3. The previous lemma states that the asymptotic distribution of K∗g,n is
the same as of

∫
V̂ 2
g,n(s) dL(s), which is easier to investigate. Now, we are able to state

the theorem about the asymptotic null distribution of K∗g,n.

Theorem 2.4. Let us assume that (7) – (14) hold. Then in the model (1), under H0,

K∗g,n
d−→ γ2 · YL, with YL =

∫ 1

0

B2(s) dL(s),

where B(s) is a Brownian bridge in C[0, 1].

P r o o f . Recall that

V̂g,n(s) =
1√
n

n∑
i=1

g(xi)I{ei ≤ F−1(s)} =
1√
n

n∑
i=1

g(xi)I{F (ei) ≤ s}

=
1√
n

n∑
i=1

g(xi)I{Ui ≤ (s)},

where U1, . . . , Un are i.i.d. random variables with the uniform U(0, 1) distribution.
By [16] we have

V̂g,n(s)⇒ γ ·B(s) in D[0, 1]

and therefore
∫
V̂ 2
g,n(s) dL(s) d−→ γ2

∫
B2(s) dL(s). That, together with Lemma 2.2,

proves the Theorem. �
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The distribution of the random variable YL for L(s) = s was first investigated by
Smirnov [21]. The values of its distribution function may be found for example in [2] or
in [22] and [23], some quantiles are listed in Table 1. One has to use simulated values
for other choices of the function L.

(1− α) 0.90 0.95 0.99 0.999
(1− α)-quantile 0.34730 0.46136 0.74346 1.16786

Tab. 1. Quantiles of the distribution of YL for L(s) = s.

Now, we will investigate behavior of K∗g,n under the local alternative

K0,n : β = n−1/2β∗, 0 6= β∗ ∈ R fixed.

For t ∈ R, let us define

K∗g,n(t) =
∫ 1

0

(
1√
n

n∑
i=1

g(xi)I{Ri,t ≤ ns}

)2

dL(s), (18)

K̂∗g,n(t)

=
∫ 1

0

(
1√
n

n∑
i=1

g(xi))I{Ui ≤ s} −
t√
n

n∑
i=1

g(xi)(xi − x̄)f(F−1(s))

)2

dL(s),

(19)

where Ri,t is the rank of Yi − xit among Y1 − x1t, . . . , Yn − xnt and U1, . . . , Un are i.i.d.
random variables with uniform U(0, 1) distribution.

Remark 2.5. Koul [16] defined an estimator of β in the model (1) as a minimizer of
(18) with respect to t ∈ R. Hence, the proposed test statistic K∗g,n is K∗g,n(t) computed
in the hypothetical value t = 0, i. e. K∗g,n = K∗g,n(0) is the test statistic under H0, while
K∗g,n(n−1/2β∗) is the test statistic under K0,n.

Lemma 2.6. Let us assume that (7) – (10) hold. Then for every 0 < b <∞

sup
|u|≤b

|K∗g,n(n−1/2u)− K̂∗g,n(n−1/2u)| = op(1), as n→∞.

P r o o f . See [16, Theorem 5.5.5]. �

Remark 2.7. Particularly, if u = 0 in Lemma 2.6, we get K∗g,n(0) = K̂∗g,n(0) + op(1),
i. e.

K∗g,n =
∫ 1

0

(
1√
n

n∑
i=1

g(xi))I{Ui ≤ s}

)2

dL(s) + op(1).

Lemma 2.2 is then a special case of Lemma 2.6.
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Now, let (7) – (14) be satisfied. Rewrite (19) as

K̂∗g,n(t) = K̂∗g,n(0)− 2t
n

n∑
j=1

g(xj)(xj − x̄)
n∑
i=1

g(xi)
∫ 1

0

I{Ui ≤ s}f(F−1(s)) dL(s)

+
t2

n

(
n∑
i=1

g(xi)(xi − x̄)

)2 ∫ 1

0

f2(F−1(s)) dL(s)

= K̂∗g,n(0) +
2t
n

n∑
j=1

g(xj)(xj − x̄)
n∑
i=1

g(xi)ϕ(Ui) +
t2

n
σf,L

(
n∑
i=1

g(xi)(xi − x̄)

)2

,

where ϕ(u) =
∫ u
0
f(F−1(s)) dL(s) and σf,L =

∫ 1

0
f2(F−1(s)) dL(s). From Lemma 2.6,

(18) and (19) we finally get

K∗g,n(n−1/2β∗) = K∗g,n(0) + 2β∗
1
n

n∑
j=1

g(xj)(xj − x̄)
1√
n

n∑
i=1

g(xi)ϕ(Ui)

+ (β∗)2σf,L

(
1
n

n∑
i=1

g(xi)(xi − x̄)

)2

+ op(1). (20)

The right-hand side of (20) converges to the convolution of two (dependent) random
variables γ2 · YL and Z ∼ N (a, b), where

a = (β∗)2σf,L(E{g(X1) · (X1 − EX1)})2,

b = 4(β∗)2 [E{g(X1) · (X1 − EX1)}]2 Eg2(X1) varϕ(Ui).

Hence, under (7) – (14) the asymptotic distribution of K∗g,n under the local alternative
K0,n is the above convolution of dependent random variables.

As far as practical applications are concerned, there arises a natural question how
to choose the functions g and L. The function g is in fact a weight function, so it can
downweight outlying observations (regressors) to robustify our test against the extreme
values of xi (if g is bounded for example). The function L has a similar interpretation
as the score-function ϕ in the standard rank test theory. The optimal L could be chosen
based on the estimate of unknown model errors. The simplest choice L(s) = s provides
very reasonable results (see the simulations).

3. EXTENSIONS OF THE TEST

Now, let us return to the problem with measurement errors in the model (3). We would
like to use our test although the original regressors are not observable. We apply our
test based on the observed regressors wi, denote the corresponding test statistic K∗w,n
and show that the test works: under H0 (β = 0), the measurement error model (3) is
reduced to the model (6) – the same model as in the case without measurement errors.
Hence, the exact distribution (given w1, . . . , wn) of K∗w,n, under H0, might be derived in
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the same way as in the model without measurement errors. Using the same arguments,
if (7) – (14) hold for wi, then the asymptotic null distribution of K∗w,n is the same as in
the model without measurement errors.

The previous ideas might be summarized in the following theorem.

Theorem 3.1. Let the conditions (7) – (14) for wi’s be satisfied. Then in the measure-
ment error model (3) under H0

K∗w,n
d−→ γ2 · YL, with γ =

√
Eg2(W1) and YL =

∫ 1

0

B2(s) dL(s).

Remark 3.2. The presence of measurement errors decreases the power of our test be-
cause we do not use the values of the function g in the optimal points x1, . . . , xn but in
wi’s.

Now, let us show the extension of our test into a multiple regression model

Yi = β0 + x>i β + ei, i = 1, . . . , n, (21)

where β0 ∈ R and β ∈ Rp are unknown parameters, x1, . . . ,xn are fixed or stochastic
vectors of regressors, the model errors e1, . . . , en are assumed to be i.i.d. with an un-
known distribution function F and a uniformly continuous density f independent from
x1, . . . ,xn (if they are random). Now, we test the hypothesis

H0 : β = 0 against K0 : β 6= 0.

We will introduce the test statistic K∗g,n into the multiple regression model (21). Let
us define

T jg,n(s) =
1√
n

n∑
i=1

gj(xi,j)I{Ri ≤ ns}, 0 ≤ s ≤ 1,

Tg,n(s) = (T 1
g,n(s), . . . , T pg,n(s))>,

K∗g,n =
∫ 1

0

T>g,n(s)Tg,n(s) dL(s), (22)

where Ri is the rank of Yi among Y1, . . . , Yn, L a distribution function on [0, 1] and
g = (g1, . . . , gp) : Rp 7→ R a (weight) function, such that

∑n
i=1 gj(xi,j) = 0 and∑n

i=1 g
2
j (xi,j) = 1 for all j = 1, . . . p.

Remark 3.3. Similarly as in Section 2, the formula (22) might be simplified for practi-
cal computations. Based on the permutation principle its exact null distribution might
be derived. A detailed analysis of K∗g,n in the multiple regression model (21) will be
part of our future study.
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4. SIMULATIONS

To support the previous theoretical results, we conducted a large simulation study. Let
us present several interesting results.

Let us start with the model (1) without measurement errors for a moderate sample
size n = 30. We have compared the empirical power of our test based on the test statistic
K∗g,n with g(xi) = xi − x̄ and L(s) = s (call it the minimum distance test) with the
Wilcoxon test for regression (based on (2) with ϕ(u) = u) and the standard t-test for
regression.

The regressors x1, . . . , x30 were generated from the uniform U(−2, 10) distribution,
the model errors ei were generated from the normal, logistic, Laplace and t-distribution
with 6 degrees of freedom, respectively, always with 0 mean and variance 3/2. The em-
pirical powers of the tests were computed as a percentage of rejections of H0 among
10 000 replications, at the significance level α = 0.05. The results are summarized in
Table 2.

β \ ei N
(
0, 3

2

)
Log

(
0,
√

2π
3

)
Lap

(
0,
√

3
2

)
t(6)

test MD W t MD W t MD W t MD W t
0 4.98 4.42 5.00 5.06 4.55 5.00 5.00 4.55 5.04 5.00 4.32 4.93

0.1 28.7 28.3 31.5 32.7 31.4 32.0 42.4 39.0 33.5 34.6 33.1 32.9
−0.1 28.3 28.2 30.9 32.7 31.2 32.2 42.5 39.0 33.7 33.3 32.1 31.9

0.2 78.2 78.8 82.3 82.5 81.8 81.9 88.3 86.6 82.0 84.5 83.9 82.6
−0.2 78.3 78.7 82.9 83.3 82.7 82.9 89.2 87.5 83.1 84.0 83.4 82.5

Tab. 2. The percentage of rejections of the hypothesis H0 : β = 0 of

the minimum distance test (MD), the Wilcoxon test for regression

(W) and the t-test for regression (t); n = 30.

The t-test achieves (not surprisingly) the largest power for normal model errors, but
the differences among the three tests are not very distinct. For the distributions with
heavier tails than normal, our test has the largest power, even for the logistic distribution
(for which the Wilcoxon test is locally most powerful rank test). It is caused by the slow
convergence of the Wilcoxon test statistic to its asymptotic distribution.

Now, let us compare the three previous tests in the measurement error model (3)
– under the same simulation design as before. The empirical errors of the first kind
for various measurement errors are summarized in Table 3. The empirical powers for
various measurement errors are summarized in Table 4 (with the true value of parameter
β = 0.2).

According to Table 3, the minimum distance test preserves the error of the first kind
at the prescribed α even if measurement errors are present. The presence of measure-
ment errors decreases the power of all tests – the larger variance of measurement errors,
the smaller power.
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vi \ ei N
(
0, 3

2

)
Log

(
0,
√

2π
3

)
Lap

(
0,
√

3
2

)
t(6)

MD W t MD W t MD W t MD W t
0 4.98 4.42 5.00 5.06 4.55 5.00 5.00 4.55 5.04 5.00 4.32 4.93

N (0, 4) 4.45 3.94 4.39 4.90 4.29 5.03 4.90 4.29 5.04 4.99 4.66 4.92
N (0, 6) 4.53 3.97 4.44 4.81 4.41 5.05 4.81 4.41 5.06 4.77 4.59 4.95

U(−
√

18,
√

18) 5.49 4.78 5.36 5.13 4.53 4.97 5.13 4.53 4.81 4.51 3.85 4.34
2t(6) 5.09 4.63 5.04 5.11 4.59 4.94 5.11 4.59 4.96 5.17 4.51 4.81

U(−6, 6) 5.50 4.73 5.42 5.18 4.62 5.12 5.18 4.62 4.85 4.87 4.19 4.55

Tab. 3. The percentage of rejections of the hypothesis H0 : β = 0 of

the minimum distance test (MD), the Wilcoxon test for regression

(W) and the t-test for regression (t); true β = 0, n = 30.

vi \ ei N
(
0, 3

2

)
Log

(
0,
√

2π
3

)
Lap

(
0,
√

3
2

)
t(6)

MD W t MD W t MD W t MD W t
0 78.2 78.8 82.3 82.5 81.8 81.9 88.3 86.6 82.0 84.5 83.9 82.6

N (0, 4) 64.1 63.8 68.2 69.1 67.9 68.2 76.4 74.0 68.8 71.5 70.4 69.6
N (0, 6) 58.1 57.8 61.7 63.0 62.2 62.6 71.0 68.0 63.5 65.9 64.7 63.5

U(−
√

18,
√

18) 58.4 58.4 62.5 62.7 61.9 62.8 70.7 67.8 63.8 65.8 64.3 63.6
2t(6) 59.0 59.0 62.5 63.8 62.5 63.0 71.4 68.6 64.1 66.8 65.8 64.6

U(−6, 6) 45.2 44.7 48.0 49.8 48.4 49.4 57.0 54.1 50.3 51.6 50.2 49.6

Tab. 4. The percentage of rejections of the hypothesis H0 : β = 0 of

the minimum distance test (MD), the Wilcoxon test for regression

(W) and the t-test for regression (t); true β = 0.2, n = 30.

We performed more simulations for various regressors xi (both random and fixed),
sample sizes n and the model errors ei. We also compared the tests according to the
choice of the functions L and g. However, the corresponding results are very similar to
those presented in Tables 2 – 4.

Remark 4.1. Koul [16] derived a formula for the asymptotic variance of the minimum
distance estimator from Remark 2.5 with g(xi) = xi − x̄ and L(s) = s. It is given by

σ2
0 =

∫ ∫
[F (x ∧ y)− F (x)F (y)]f2(x)f2(y) dxdy(∫

f3(x) dx
)2 .

We may compare the minimum distance estimator with the Wilcoxon and the least
squares estimate via the relative asymptotic efficiency (ARE) for various distributions
of the model errors, see Table 5.

Pitman [19] generalized asymptotic relative efficiencies for tests; we tried to arrive
at similar formulae for the minimum distance tests. However, in Pitman’s definition
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F ARE(MD,W ) ARE(MD,LSE)
Laplace 1.667 1.309
Logistic 0.988 1.034
Normal 0.957 0.914
Cauchy 1.278 ∞

Tab. 5. The asymptotic relative efficiencies of the minimum distance

estimate (MD), the Wilcoxon estimate (W) and the least squares

estimate (LSE) for various model errors.

the asymptotic distribution of the test statistic needs to be χ2, which is not our case.
In addition, we did not obtain a closed formula for the asymptotic distribution of our
test statistic under Pitman’s alternative.

However, we compared the empirical powers of the three tests. The simulation results
are in accordance with Table 5 which compares variances of the corresponding estimates.
The minimum distance test has not only a slightly greater power than the Wilcoxon
test or the t-test for some model errors, but it also converges faster to its asymptotic
distribution than the Wilcoxon test (see Table 4).

CONCLUSION

In this paper we proposed a new rank test for hypothesis testing in a simple linear
regression model. The test statistic is based on minimum distance estimates (Cramér–
von Mises distance) and unlike the classical rank tests (such as Wilcoxon, or van der
Waerden) it is not a linear function of the ranks.

We derived its exact null distribution and asymptotic distribution under both the null
and alternative hypotheses. In the simulation study we showed a good performance of
the test. It achieves a greater power than the Wilcoxon test for the distribution of model
errors with heavy tails. Moreover, it converges faster to its asymptotic distribution than
the Wilcoxon test.

Our test is neither sensitive to leverage observations, nor outliers and has robust
properties. It might be also used in measurement error models, the errors cause only a
decrease of its power. The extension into a multiple regression model is straightforward,
a detailed analysis will be included in our further study.
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