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Abstract. An augmented Lagrangian method, based on boundary variational formula-
tions and fixed point method, is designed and analyzed for the Signorini problem of the
Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point
problem, we develop a new iterative algorithm that formulates the Signorini problem as
a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both
theoretical results and numerical experiments show that the method presented is efficient.
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1. Introduction

As we know, Signorini problems are very important for a wide range of applications

in mechanics and engineering [1], [4], [7], and these problems are very complicated,

because their boundary conditions involve inequality constraints, which make them

strong nonlinear. On a part of the boundary, the zone of the classical Dirichlet

and Neumann boundary conditions is unknown in advance. Therefore, the main

challenge in such problems is how to identify the boundary conditions. Usually

Signorini problems have been transformed into variational inequalities, which can

be solved with the finite element method (FEM) [1], [3], [4], [6], [21], [24] or the

boundary element method (BEM) [2], [8], [12], [20]. The development of new fast

The research has been supported by China Scholarship Council, the Natural Sci-
ence Foundation Project of CQ CSTC of China (Grant Nos. cstc2013jcyjA30001 and
cstc2014jcyjA00005) and Fundamental Research Funds of Chongqing Normal University
of China (Grant No. 13XL001), the National Natural Science Foundation of China
(Grant No. 11471063 and 11301575).
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convergent, accurate and efficient methods for the numerical simulation of Signorini

problems is still a very active field of research, and we mention selected contributions

[5], [11], [14], [16], [18], [23], [25], [26].

Recently, the projection method has been successfully applied to constrained

problems such as complementary problems and variational inequalities in finite-

dimensional space [9], [17]. The main idea of this method is to transform the problem

into the fixed-point problem by using projection, which is very useful in developing

various iterative methods for solving the original problem. During the last twenty

years, a number of projection methods have been studied extensively [9], [17]. In

these methods, the problem has been formulated only by equality with a projection

operator, and no inequality constraint is needed. In comparison to other methods,

the projection method is much easier to implement in both theory and application.

BEM has turned out to be an accurate and effective method for many partial

differential equations, especially elliptic boundary value problems. The advantage of

BEM is the significant reduction of expense mesh generation because of discretization

only on the boundary of the domain. In the case of Signorini problems, the unknown

boundary values are the potential and its derivative on the boundary, which are

considered primary variables in BEM and can be obtained directly [10], [22]. There-

fore, BEM is more appropriate for Signorini problems [14], [25], [26]. However, little

research has been done on the Signorini problem using the fixed-point method and

BEM up to now.

The focus of this paper is to develop a boundary augmented Lagrangian method

(BALM) for the solution of Signorini problems, which is inspired by the classical

augmented Lagrangian methods (ALM). Although ALM needs to solve a nonlinear

problem in every iteration step, the semismooth Newton method can be applied

for the solution [11], [21]. For the Signorini problem of Laplace equation, we first

use the projection technique to deal with the Signorini boundary conditions by an

equality which is based on the fixed-point method. Next, we deduce a boundary

weak formulation with Steklov-Poincaré operator [13], [15], [19], [22]. Although

the new problem is still strong nonlinear on the boundary, this problem no longer

has the inequality constraint and is useful from a numerical point of view. Using

transformations, we then propose a BALM for the Signorini problem which needs

only the iteration for boundary values and the computing of the boundary variational

problem. We can use the properties of projection and boundary integral operators

to analyse the convergence of the method. Numerical results show that our method

is accurate and efficient.

The paper is organized as follows. In Section 2, we start with the classical Sig-

norini problem of the Laplacian and establish equivalent formulations of the nonlinear

boundary conditions and a fixed-point problem. We use the Steklov-Poincaré oper-
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ator to introduce the boundary variational formulation in Section 3. In Section 4

we propose a new ALM for the Signorini problem and obtain monotone convergence

of the method, which shows unconditional convergence for all positive parameters.

In Section 5, we present some numerical examples to investigate the performance of

our method, and finally a brief conclusion is given in Section 6.

2. The Signorini problem and the fixed-point method

For the sake of simplicity, we consider the Signorini problem for the Laplace equa-

tion in an open and bounded domain Ω ⊂ R
2 with a Lipschitz boundary Γ = ∂Ω.

This boundary Γ consists of three disjoint parts ΓD, ΓN , and ΓS 6= ∅, where Dirich-

let, Neumann, and Signorini conditions are prescribed. For a given g ∈ H1/2(Γ\ΓN ),

f ∈ H−1/2(Γ \ ΓD), find u ∈ H1(Ω) and λ ∈ H−1/2(ΓS) such that

∆u = 0 in Ω,(2.1)

u = g on ΓD,(2.2)

λ = f on ΓN ,(2.3)

u > g, λ > f, (u− g)(λ− f) = 0 on ΓS ,(2.4)

where λ := ∂u
∂n . It can be proved in the theory of variational inequalities that this

problem has a unique solution if ΓS 6= ∅ or
∫

(Γ\ΓD)
f ds < 0, see [7], [8], [20].

Since the main difficulty of the problem arises from the nonlinear boundary con-

ditions (2.4), in this paper we transfer them to a fixed-point problem [9], [14], [17],

[26]. Let us introduce the projection notation for a ∈ R

[a]+ =

{

a if a > 0,

0 otherwise.

As a result, we obtain the following result.

Lemma 2.1. For all ̺ > 0, the boundary conditions (2.4) on ΓS are equivalent to

(2.5) λ− f − [λ− f − ̺(u− g)]+ = 0 on ΓS .

P r o o f. Let u and λ be such that (2.4) holds. From the condition λ > f

we have either λ > f or λ = f . Suppose first that λ > f . Then the condition

(u− g)(λ− f) = 0 implies that u = g. In this case, it holds that

[λ− f − ̺(u − g)]+ = [λ− f ]+ = λ− f.
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Then, suppose that λ = f . The condition u > g can also be expressed as

[−̺(u− g)]+ = 0, so

[λ− f − ̺(u − g)]+ = [−̺(u− g)]+ = λ− f.

On the other hand, let u and λ be such that (2.5) holds. Note first that it implies

λ > f . If λ = f , then (2.5) can be rewritten as

[−̺(u− g)]+ = 0,

which is equivalent to the condition u > g. Since λ = f , then the condition

(u− g)(λ− f) = 0

also holds. We now consider the case λ > f . From (2.5), [λ− f − ̺(u− g)]+ > 0, so

in this case

λ− f = [λ− f − ̺(u− g)]+ = λ− f − ̺(u− g),

which implies u = g, so all conditions (2.4) hold. �

3. Boundary weak formulation of the Signorini problem

To develop a boundary variational formulation that is suitable for the Signorini

problem we start with the space of functions defined as

H1
D(Ω) := {v ∈ H1(Ω), v = g on ΓD}.

From Green’s formula and (2.1) we obtain the following variational problem: find

u ∈ H1(Ω) and λ ∈ H−1/2(ΓS) such that

(3.1)

∫

Ω

∇u∇v dx =

∫

ΓN∪ΓS

λv ds ∀v ∈ H1
D(Ω),

with boundary conditions (2.3) and (2.5).

As in [15], [19], [22], we introduce the single layer potential V , the double layer

potential K, the adjoint double layer potential K ′ and the hypersingular integral

operator D by

(V λ)(x) =

∫

Γ

U(x, y)λ(y) dsy, V : H−1/2(Γ) → H1/2(Γ),

(Ku)(x) =

∫

Γ

∂

∂ny
U(x, y)u(y) dsy, K : H1/2(Γ) → H1/2(Γ),

(K ′λ)(x) =

∫

Γ

∂

∂nx
U(x, y)λ(y) dsy, K ′ : H−1/2(Γ) → H−1/2(Γ),

(Du)(x) = −
∂

∂nx

∫

Γ

∂

∂ny
U(x, y)u(y) dsy, D : H1/2(Γ) → H−1/2(Γ),
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where U(x, y) is the fundamental solution of the two-dimensional Laplace equation

U(x, y) = −
1

2π

ln |x− y|.

Next, we introduce the Dirichlet-to-Neumann mapping on Γ

S : H1/2(Γ) → H−1/2(Γ),

u|Γ 7→ λ|Γ.

Note that S(u|Γ) = λ|Γ, so

∫

Ω

∇u∇v dx =

∫

Γ

S(u|Γ)v ds ∀v ∈ H1
D(Ω),

where the Steklov-Poincaré operator S, see [15], [22] is defined by

(3.2) (Su)(x) =
[

D +
(1

2
I +K ′

)

V −1
(1

2
I +K

)]

u(x).

Let us define

H
1/2
D (Γ) := {v ∈ H1/2(Γ), v = g on ΓD},

H
1/2
0 (Γ,ΓD) := {v ∈ H1/2(Γ), v = 0 on ΓD},

〈Su, v〉Γ :=

∫

Γ

Su(x)v(x) dsx,

〈λ, v〉ΓS :=

∫

ΓS

λ(x)v(x) dsx,

L(v) :=

∫

ΓN

f(x)v(x) dsx.

We then can obtain a pure boundary weak formulation of the original problem (2.1)–

(2.4) as follows: find u ∈ H1/2(ΓS) and λ ∈ H−1/2(ΓS) such that

(3.3) 〈Su, v〉Γ − 〈λ, v〉ΓS = L(v) ∀v ∈ H
1/2
D (Γ),

with boundary condition (2.5). From the properties of the boundary integral oper-

ators it follows that the Steklov-Poincaré operator S is linear, bounded, symmetric,

and semielliptic on H1/2(Γ). Moreover, the operator S has the following characteri-

zation [22].
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Lemma 3.1. The Steklov-Poincaré operator S defined by (3.2) is elliptic on

H
1/2
0 (Γ,ΓD), i.e., there exists a constant α > 0 such that for any v ∈ H

1/2
0 (Γ,ΓD)

(3.4) 〈Sv, v〉L2(Γ) > α‖v‖2H1/2(Γ).

Now, we obtain the boundary weak formulation (3.3) for the problem (2.1)–(2.4)

via the Steklov-Poincaré operator S (3.2) and the fixed-point problem (2.5) for the

nonlinear boundary conditions (2.4), which has only boundary integral operators

and avoids inequality constraints. Both alternative equivalent formulations are also

convenient for the numerical and theoretical analysis.

4. Boundary augmented Lagrangian method for the

Signorini problem

With the above preparations, we can now present our boundary augmented La-

grangian method (BALM) for the Signorini problem as follows.

Algorithm BALM

Step 0 : Choose λ(0) ∈ L2(ΓS), ̺ ∈ R
+ and set k := 0.

Step 1 : Solve

(4.1) 〈Su(k+1), v〉Γ − 〈λ(k+1), v〉ΓS = L(v) ∀v ∈ H
1/2
D (Γ),

with

(4.2) λ(k+1) − f − [λ(k) − f − ̺(u(k+1) − g)]+ = 0 on ΓS ,

for u(k+1) and λ(k+1) on ΓS .

Step 2 : Update k := k + 1 and go to Step 1.

Let u∗ and λ∗ denote the solution of the Signorini problem and the corresponding

derivative on the boundary Γ, respectively. In order to analyse the convergence of

the BALM, we define

B̺(u, λ) := B(u, λ; g, f, ̺) := λ− f − ̺(u− g),

and introduce the following projection property on ΓS [9], [17], [21].
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Lemma 4.1. For all u(k), λ(k) ∈ L2(ΓS) generated by (4.2), we have

(4.3) 〈λ(k+1) − λ∗, B̺(u
(k+1), λ(k))−B̺(u

∗, λ∗)〉ΓS > ‖λ(k+1) − λ∗‖2ΓS
,

where 〈·, ·〉ΓS stands for the extension of the usual scalar product.

P r o o f. Let us separate ΓS into four subparts ΓS1, ΓS2, ΓS3, and ΓS4, where

B̺(u
(k+1), λ(k)) > 0, B̺(u

∗, λ∗) > 0 on ΓS1,

B̺(u
(k+1), λ(k)) > 0, B̺(u

∗, λ∗) < 0 on ΓS2,

B̺(u
(k+1), λ(k)) < 0, B̺(u

∗, λ∗) > 0 on ΓS3,

B̺(u
(k+1), λ(k)) < 0, B̺(u

∗, λ∗) < 0 on ΓS4.

From (2.5) and (4.2) we then have

λ(k+1) − λ∗ = B̺(u
(k+1), λ(k))−B̺(u

∗, λ∗) on ΓS1,

0 6 λ(k+1) − λ∗ = B̺(u
(k+1), λ(k))− 0 < B̺(u

(k+1), λ(k))−B̺(u
∗, λ∗) on ΓS2,

0 > λ(k+1) − λ∗ = 0−B̺(u
∗, λ∗) > B̺(u

(k+1), λ(k))−B̺(u
∗, λ∗) on ΓS3,

λ(k+1) − λ∗ = 0− 0 = 0 on ΓS4.

It follows that

〈λ(k+1) − λ∗, B̺(u
(k+1), λ(k))−B̺(u

∗, λ∗)〉ΓS > ‖λ(k+1) − λ∗‖2ΓS
.

�

Theorem 4.1. Let {(u(k), λ(k))} be the sequence generated by the BALM. Then

for all k, u(k) converges to u∗ in H1/2(Γ) and λ(k) converges to λ∗ in L2(ΓS) as

k → ∞.

P r o o f. Let δ
(k)
u := u(k) − u∗ and δ

(k)
λ := λ(k) − λ∗. Then δ

(k)
u ∈ H

1/2
0 (Γ,ΓD)

and δ
(k)
λ ∈ L2(ΓS). Considering that (u

∗, λ∗) satisfies (3.3), we have

(4.4) 〈Su∗, δ(k+1)
u 〉Γ − 〈λ∗, δ(k+1)

u 〉ΓS = L(δ(k+1)
u ).

From (4.1) of BALM we get

(4.5) 〈Su(k+1), δ(k+1)
u 〉Γ − 〈λ(k+1), δ(k+1)

u 〉ΓS = L(δ(k+1)
u ).

Subtracting (4.4) from (4.5) results in

(4.6) 〈Sδ(k+1)
u , δ(k+1)

u 〉Γ = 〈δ
(k+1)
λ , δ(k+1)

u 〉ΓS .
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Using Lemma 4.1 and Young’s inequality, we obtain

〈δ
(k+1)
λ , δ(k+1)

u 〉ΓS = ̺−1〈δ
(k)
λ , δ

(k+1)
λ 〉ΓS − ̺−1〈δ

(k+1)
λ , B̺(u

(k+1), λ(k))−B̺(u
∗, λ∗)〉ΓS

6 ̺−1〈δ
(k)
λ , δ

(k+1)
λ 〉ΓS − ̺−1‖δ(k+1)

u ‖2ΓS

6 (2̺)−1‖δ
(k)
λ ‖2ΓS

− (2̺)−1‖δ
(k+1)
λ ‖2ΓS

.

From (4.6) and Lemma 3.1, we then have

(4.7) 〈Sδ(k+1)
u , δ(k+1)

u 〉Γ 6 (2̺)−1‖δ
(k)
λ ‖2ΓS

− (2̺)−1‖δ
(k+1)
λ ‖2ΓS

and

(4.8) 〈Sδ(k+1)
u , δ(k+1)

u 〉Γ > α‖δ(k+1)
u ‖2H1/2(Γ).

It follows from (4.7) and (4.8) that

(4.9) α‖δ(k+1)
u ‖2H1/2(Γ) 6 (2̺)−1‖δ

(k)
λ ‖2ΓS

− (2̺)−1‖δ
(k+1)
λ ‖2ΓS

.

Consequently,
∞
∑

k=0

α‖δ(k+1)
u ‖2H1/2(Γ) 6 (2̺)−1‖δ

(0)
λ ‖2ΓS

< ∞,

which means that

lim
k→∞

‖δ(k+1)
u ‖2H1/2(Γ) = 0.

Thus u(k) converges to u∗ in H1/2(Γ) and from (4.2) of BALM, λ(k) converges to λ∗

in L2(ΓS) as k → ∞. �

From (4.9), it is easy to verify that the sequence {λ(k)} is bounded and the sequence

{‖δ
(k)
λ ‖ΓS} is monotonically decreasing. Furthermore, larger values of parameter ̺

result in faster convergence of the algorithm. Therefore, we can use this method to

identify the boundary condition on ΓS .
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5. Numerical examples

In order to demonstrate the efficiency and accuracy of the proposed method, we

present three numerical examples of Signorini problems in this section. An analytic

solution is available for the first example, and the analytic solution for the other

two examples is unknown. In order to simplify the numerical process, we apply the

constant BEM to the problem (4.1) with iteration (4.2) and solve the corresponding

linear systems [14], [26]. LetN andNS denote the total number of boundary elements

on Γ and ΓS , respectively. We choose ‖u
(k+1)
h − u

(k)
h ‖∞,ΓS 6 10−10‖u

(k+1)
h ‖∞,ΓS as

the stopping criterion, where ‖u
(k)
h ‖∞,ΓS := max

16i6NS

|u
(k)
h (xi)| and u

(k)
h (xi) denotes

numerical solution for the mesh step h.

5.1. Dirichlet-Signorini problem. First we consider a Signorini problem for

the Laplacian ∆u = 0 in the annular domain Ω = {(x, y) : a <
√

x2 + y2 < b}

(a, b ∈ R
+) with a Dirichlet boundary condition on the boundary ΓD = {(x, y) :

√

x2 + y2 = b}∪{(x, y) :
√

x2 + y2 = a, y > 0} and the following Signorini boundary

conditions on the ΓS = {(x, y) :
√

x2 + y2 = a, y < 0}:

u > 0, λ > 0, uλ = 0 on ΓS .

For this problem, the analytic solution in the domain Ω is given by the function

u(x, y) = Imω3(x+ iy),

with

ω(x+ iy) =

√

1

2

√

(x2 − y2

r2

)2

+
1

4

( r2

a2
−

a2

r2

)2

+
1

4

x2 − y2

r2

( r2

a2
+

a2

r2

)

sgnx

+ i

√

1

2

√

(x2 − y2

r2

)2

+
1

4

( r2

a2
−

a2

r2

)2

−
1

4

x2 − y2

r2

( r2

a2
+

a2

r2

)

sgn y,

where r =
√

x2 + y2 > a. From the analytic solution, we can easily obtain the

Dirichlet boundary condition on ΓD.

The analytic solution and its normal derivative on the Signorini boundary ΓS are

u(x, y) = −

√

max
(

0,
y2 − x2

a2

)3

sgn y,(5.1)

λ(x, y) = −
6

a3

√

max
(

0,
x2 − y2

a2

)

|x|y.(5.2)

223



This problem has been solved by the BEM with different methods, such as the

decomposition-coordination method [20], and the projection iterative algorithm

[25], [26].

For the case a = 0.1 and b = 0.25, we introduce the parameterizations t →

(a cos πt,−a sin πt) and t → (b cos πt, b sin πt). First we apply our method to this

problem on a uniform grid for t with ̺ = 10000 and N = 160. Here, the discretiza-

tion includes 40 boundary elements on ΓS and 120 boundary elements on ΓD. The

numerical and exact solutions for the potential u and the normal derivative λ are

shown in Figures 1–2, respectively. It can be seen that our results are in a good

agreement with the exact solution (5.1) and (5.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

t

u
Numerical solution
Analytical solution

Figure 1. Analytic and approximate solutions for u on ΓS .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0

2

4
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16

18

20

t

λ

Numerical solution
Analytical solution

Figure 2. Analytic and approximate solutions for λ on ΓS .
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In order to investigate the convergence behavior of our method, we solve the prob-

lem by choosing different numbers of boundary elements N and various parameters ̺.

Table 1 gives the number of iterations for N = 40, 80, 160, 320, and 640 on Γ and

N = 40 N = 80 N = 160 N = 320 N = 640

̺ = 102 23 34 55 93 155

̺ = 103 11 11 14 19 26

̺ = 104 7 7 8 9 10

̺ = 105 6 5 6 7 7

̺ = 106 6 5 6 6 6

Table 1. Number of iterations for different values of N and ̺.

̺ = 102, 103, 104, 105, and 106. We note that numerical results converge quickly as

the parameter ̺ increases. In addition, the number of iterations increases slowly as

N increases. Besides, we define the error

e(u) =
1

NS

Ã

NS
∑

i=1

(u(xi)− uh(xi))2,

where u(xi) denotes the exact solution. We draw the error in the logarithmic scale

depending on the step h. Figure 3 gives the change trend of the error for u. The

results for λ are presented in Figure 4. It can be seen that our method yields very

accurate results and converges superlinearly.

10−3 10−2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

h

er
ro
r

e(u)
order 1

Figure 3. Log-log plot of convergence for approximate solutions uh on ΓS .
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h
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ro
r

e(λ)
order 1

Figure 4. Log-log plot of convergence for approximate solutions λh on ΓS .

5.2. Dirichlet-Neumann-Signorini problem. For the second numerical ex-

periment, we consider the following Signorini problem, known as the steady-state

shallow dam problem:

∆u = 0 in Ω = (0, 1)× (0, 1),

λ = 0 on ΓN = {(x, y) : 0 6 x 6 1, y = 0},

u = G(1) on ΓD1
= {(x, y) : x = 1, 0 6 y 6 1},

u = 0 on ΓD2
= {(x, y) : x = 0, 0 6 y 6 1},

with the following Signorini boundary conditions on ΓS = {(x, y) : 0 6 x 6 1, y = 1}:

u 6 G(x), λ 6 0, (u−G(x))λ = 0.

Let u′ := −u and λ′ := −∂u/∂n = −λ. Then the new problem for u′ and λ′ is

same as (2.1)–(2.4). In this problem the function G(x), which describes the sur-

face profile, is known. The Signorini boundary conditions describe the location of

the saturated and unsaturated parts of the upper surface, and the solution of the

problem depends on the surface profile G(x). This problem has been solved by the

FEM [1], BEM [12], method of fundamental solutions [18], switching algorithm [2],

and projection iterative algorithm [25].

We now apply our method to this problem, and three cases with different surface

profiles are considered. We choose N = 160 and ̺ = 10000 again, and the numerical

results corresponding to the surface profile G1(x) = (12 − x)(1 − x) − x, G2(x) =

(12 − 5
2x)(1 −

5
3x)(1 − x) − x and G3(x) = sin 12x− 2 are presented in Figures 5–7,
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Figure 5. Approximate solution for the first profile on ΓS .
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Figure 6. Approximate solution for the second profile on ΓS .
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Figure 7. Approximate solution for the third profile on ΓS .
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respectively. Although it is difficult to identify accurately where u = G(x) or u <

G(x), it can be observed that our results are in a good agreement with the numerical

results of [2], [12], [18], [26].

We also investigate the convergence behavior of our method in this example. Ta-

bles 2–4 display the number of iterations for the three cases with different numbers

of boundary elements N and various values of ̺. As can be seen from our tests, our

method converges quickly when ̺ is sufficiently large and the number of iterations

depends only weakly on N .

N=40 N = 80 N = 160 N = 320 N = 640

̺ = 102 11 15 19 26 37

̺ = 103 7 8 8 9 11

̺ = 104 6 6 6 6 7

̺ = 105 5 5 5 5 6

̺ = 106 5 5 5 5 6

Table 2. Number of iterations for the first case.

N=40 N = 80 N = 160 N = 320 N = 640

̺ = 102 14 16 22 31 49

̺ = 103 9 10 10 11 15

̺ = 104 7 8 7 8 9

̺ = 105 6 7 6 7 8

̺ = 106 6 6 6 6 7

Table 3. Number of iterations for the second case.

N = 40 N = 80 N = 160 N = 320 N = 640

̺ = 102 14 18 23 34 49

̺ = 103 8 10 11 13 13

̺ = 104 6 7 8 9 9

̺ = 105 6 7 6 7 8

̺ = 106 5 6 6 7 6

Table 4. Number of iterations for the third case.

5.3. Dirichlet-Signorini problem. Finally, the presented algorithm is applied

to a Signorini problem in a domain defined by two ellipses [20]. Let E(a, b) denote

the ellipse {(x, y) : (x/a)2 + (y/b)2 < 1}, and consider the Signorini problem

∆u = 0 in Ω = E(0.4, 0.2) \ E(0.1, 0.15),

u = 1 on ΓD = ∂E(0.4, 0.2),
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with boundary conditions

u > 0, λ > −12.5, u(λ+ 12.5) = 0 on ΓS = ∂E(0.1, 0.15).

Following Spann [20], we use the same parameterizations t → (0.1 cos 2πt,

−0.15 sin2πt) and t → (0.4 cos 2πt, 0.2 sin2πt). The numerical results with N = 160

and parameter ̺ = 10000 are given in Figures 8–9. It can be seen that our results

are again in excellent agreement with those in [20]. Table 5 shows the number of

iterations for different ̺ and various N . Similarly, we observe that the algorithm

converges quickly and the number of iterations depends only weakly on N as ̺

increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1−

0

0.1

0.2

0.3

0.4

t

u

Figure 8. Approximate solutions for u on ΓS .
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Figure 9. Approximate solutions for λ on ΓS .
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N=40 N=80 N=160 N=320 N=640

̺ = 102 17 28 41 66 98

̺ = 103 8 12 12 15 20

̺ = 104 5 8 8 8 9

̺ = 105 4 7 6 6 6

̺ = 106 3 7 5 6 6

Table 5. Number of iterations for different values of N and ̺.

6. Conclusion

In this paper, we have studied a BALM for the solution of Signorini problems

and its convergence analysis. The advantage of this method is that it only needs to

solve a simple elliptic variational problem for each iteration. For different boundary

elements, the method converges quickly when the parameter ̺ is sufficiently large.

Moreover, this method can be easily applied to the Signorini problems defined in

domains of arbitrary shape. The numerical examples demonstrate the perfect con-

vergence and effectiveness of the method.
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