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Selections and approaching points in products

Valentin Gutev

Abstract. The present paper aims to furnish simple proofs of some recent re-
sults about selections on product spaces obtained by Garćıa-Ferreira, Miyazaki
and Nogura. The topic is discussed in the framework of a result of Katětov
about complete normality of products. Also, some applications for products
with a countably compact factor are demonstrated as well.
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1. Introduction

All spaces in this paper are Hausdorff topological spaces. For a set Z, let

F2(Z) = {S ⊂ Z : 1 ≤ |S| ≤ 2} and [Z]2 = {S ⊂ Z : |S| = 2}.

A map σ : F2(Z)→ Z is a weak selection for Z if σ(S) ∈ S for every S ∈ F2(Z).
Every weak selection σ generates an order-like relation �σ on Z defined by y �σ z

if σ({y, z}) = y [14, Definition 7.1]. The relation �σ is emulating a linear order
being both total and antisymmetric, but is not necessarily transitive. Motivated
by this, we often write y ≺σ z if y �σ z and y 6= z. If Z is a topological space, then
σ is continuous if it is continuous with respect to the Vietoris topology on F2(Z).
This can be expressed only in terms of �σ by the property that for every y, z ∈ Z
with y ≺σ z, there are open sets U, V ⊂ Z such that y ∈ U , z ∈ V and s ≺σ t for
every s ∈ U and t ∈ V (i.e. U ≺σ V ), see [10, Theorem 3.1]. Thus, σ is continuous
if and only if so is the restriction σ ↾[Z]2, which is behind the reason that often
selections for [Z]2 are also called weak selections for Z.

For a non-isolated point p of a space X , a(p,X) denotes the least cardinal λ
such that there exists S ⊂ X \{p} with |S| ≤ λ and p ∈ S, see [4], [11]. Whenever
p is isolated in X , set a(p,X) = 0. The cardinal number a(p,X) stands for the
approaching number of X in p, and can be compared with the tightness t(p,X) of
X at p, see [4], [11]. Originally, a(p,X) was defined as the selection approaching

number of X at p (abbreviated “sa”, see [4]), but is not depending on weak
selections. Finally, we will use ψ(p,X) to denote the pseudocharacter of p in X .

The cardinal invariants a(p,X) and ψ(p,X) are not global and depend only
on the topology of X at the point p. In this regard, we will broadly use Xp to
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denote a space X with only one non-isolated point p ∈ X . For instance, for a non-
isolated point p ∈ X , we have such a space Xp obtained from X by promoting the
points of X \ {p} to be isolated and preserving the same local base at p. Thus,
we have both a(p,Xp) = a(p,X) and ψ(p,Xp) = ψ(p,X). Furthermore, if X has
a continuous weak selection, then so does the space Xp, see [10, Corollary 3.2].
Accordingly, investigating local properties induced by weak selections, it makes
sense to consider at first spaces with only one non-isolated point. The following
theorems were proved in [5].

Theorem 1.1. Let Xp and Yq be such that Xp × Yq has a continuous weak

selection. Then ψ(q, Yq) ≤ a(p,Xp).

Theorem 1.2. If S is a stationary set in a regular uncountable cardinal and

a(p,Xp) < |S|, then Xp × S has no continuous weak selection.

In Theorem 1.2, a subset S ⊂ λ of a regular uncountable cardinal λ is called
stationary if it intersects any closed unbounded subset of λ. Here, and in the
rest of the paper, an ordinal λ will be always equipped with the open-interval
topology, and called simply an ordinal space.

The main purpose of this paper is to give simple self-contained proofs of these
theorems, and discuss also some natural relations with other results. Both proofs
are based on the following interpretation of continuity of weak selections. For
subsets S, T ⊂ Z and a weak selection σ for a set (space) Z, we will write that
S ‖σ T if S ≺σ T or T ≺σ S. If S = {y} and T = {z} are different singletons,
we always have {y} ‖σ {z}, written simply y ‖σ z. Hence, in these terms, σ is
continuous if and only if for every {y, z} ∈ [Z]2 there are open sets U, V ⊂ Z such
that y ∈ U , z ∈ V and U ‖σ V .

The proof of Theorem 1.1 is given in the next section. In Section 3, this
theorem is related to a classical result of Katětov [13] about complete normality
of products. This interpretation leads to another alternative proof of Theorem 1.1,
see Propositions 3.3 and 3.4. Theorem 1.2 is proved in Section 4. Whenever λ is an
ordinal of uncountable cofinality, the ordinal space λ is countably compact. In the
last Section 5, we consider the problem in the realm of countably compact spaces
and show that a regular countably compact space X is compact, first countable
and zero-dimensional provided its product with a nontrivial convergent sequence
has a continuous weak selection, see Theorem 5.2. This is then applied to show
that a regular countably compact space X is zero-dimensional and metrizable if
and only if X2 has a continuous weak selection, see Corollary 5.3.

2. Proof of Theorem 1.1

Suppose that Xp × Yq has a continuous weak selection σ, but ψ(q, Yq) >

a(p,Xp). Take a subset A ⊂ Xp \ {p} with |A| = a(p,Xp) and p ∈ A. Whenever
s, t ∈ A are different points, we have that 〈s, q〉 ‖σ 〈t, q〉. Hence, by the continu-
ity of σ, for every a = {s, t} ∈ [A]2 there is an open set Ua ⊂ Yq with q ∈ Ua

and {s} × Ua ‖σ {t} × Ua. Take distinct points y, z ∈ (
⋂

a∈[A]2 Ua) \ {q} which



Selections and approaching points in products 91

is possible because |[A]2| = |A| = a(p,Xp) < ψ(q, Yq). Since 〈p, y〉 ‖σ 〈p, z〉, just
like before, there is an open set V ⊂ Xp with p ∈ V and V × {y} ‖σ V × {z}.
Finally, use that p ∈ A to take distinct points s, t ∈ V ∩ A. We now have that
{s, t} × {y} ‖σ {s, t} × {z}, which implies that 〈s, y〉 ≺σ 〈t, z〉 if and only if
〈t, y〉 ≺σ 〈s, z〉. However, y, z ∈ Ua for a = {s, t}, and we must also have that
{s}×{y, z} ‖σ {t}×{y, z}, accordingly 〈s, y〉 ≺σ 〈t, z〉 if and only if 〈s, z〉 ≺σ 〈t, y〉.
A contradiction!

Remark 2.1. In contrast to the proof of Theorem 1.1 in [5], the above arguments
do not use the corner point r = 〈p, q〉 of the product Xp×Yq. Hence, they provide
a slight generalisation showing that even the subspace Xp × Yq \ {〈p, q〉} has no
continuous weak selection provided ψ(q, Yq) > a(p,Xp).

3. Separating sets in products

Subsets A,B ⊂ Z of a space Z are separated if A ∩ B = ∅ = A ∩ B; and Z is
called completely normal (or, hereditarily normal) if every pair of separated sets
can be separated by open sets. The following interesting result was proved by
Katětov [13].

Theorem 3.1 (Katětov [13]). Let λ be an infinite cardinal number and X and

Y be spaces such that X × Y is completely normal. Then either each subset of

X of cardinality ≤ λ is closed, or each closed subset of Y is Gλ.

A subset of Y is Gλ if it is an intersection of λ many open sets. It is evident
that ψ(q, Y ) ≤ λ if and only if {q} is a Gλ-set. If X has the property that S
is closed for every S ⊂ X with |S| ≤ λ, then a(p,X) > λ for every non-isolated
point p ∈ X . Accordingly, we have the following consequence.

Corollary 3.2. Let X and Y be such that X×Y is completely normal. If p ∈ X
is a non-isolated point and q ∈ Y , then ψ(q, Y ) ≤ a(p,X).

Since a(p,Xp) = a(p,X) and ψ(q, Yq) = ψ(q, Y ), Corollary 3.2 is reduced
to the associated spaces Xp and Yq. For such spaces, complete normality of
Xp × Yq makes sense only to ensure that the separated sets (Xp \ {p})× {q} and
{p} × (Yq \ {q}) can be separated by open sets. Indeed, we now have the follow-
ing interpretation of Corollary 3.2 without any explicit mentioning of complete
normality.

Proposition 3.3. Let Xp and Yq be such that ψ(q, Yq) > a(p,Xp). Then the

sets (Xp \ {p})× {q} and {p} × (Yq \ {q}) cannot be separated by open sets.

Proof: Suppose U ⊂ Xp × Yq is open such that (Xp \ {p})× {q} ⊂ U . Since p
is a non-isolated point of Xp, there exists S ⊂ Xp \ {p} such that |S| = a(p,Xp)

and p ∈ S. For every x ∈ S there exists an open Vx ⊂ Yq containing q such that
{x}×Vx ⊂ U . Since ψ(q, Yq) > a(p,Xp) = |S|, it follows that

⋂

x∈S Vx contains a

point y 6= q. Since S × {y} ⊂ U , we get that 〈p, y〉 ∈ S × {y} ⊂ U and, therefore,
U ∩ ({p} × (Yq \ {q})) 6= ∅. �
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Complementary to Proposition 3.3 is the following observation showing that,
in the same setting, “existence of continuous weak selections” is quite similar to
“complete normality”.

Proposition 3.4. Let Xp and Yq be such that ψ(q, Yq) > a(p,Xp). If Xp × Yq

has a continuous weak selection, then there are sets p ∈ A ⊂ Xp and q ∈ B ⊂ Yq

such that ψ(q,B) > a(p,A) > 0 and (A \ {p})× {q} and {p} × (B \ {q}) can be

separated by open sets.

Proof: Let r = 〈p, q〉, and σ be a continuous weak selection for Z = Xp × Yq.
Then the �σ-open intervals

(←, r)�σ
=

{

z ∈ Z : z ≺σ r
}

and (r,→)�σ
=

{

z ∈ Z : r ≺σ z
}

are disjoint open sets forming a partition of Z\{r}. We are going to show that they
must separate some subsets of the “corner” sides (Xp\{p})×{q} and {p}×(Yq\{q})
of the product. Indeed, (Xp\{p})×{q} ⊂ Z\{r} and there exists S ⊂ Xp\{p} such

that |S| = a(p,Xp), p ∈ S and either S × {q} ⊂ (←, r)�σ
or S × {q} ⊂ (r,→)�σ

,
say S × {q} ⊂ (←, r)�σ

. Take A = S ∪ {p} and B = {y ∈ Yq : r �σ 〈p, y〉}.
Since A× {q} ⊂ (←, r]�σ

= (←, r)�σ
∪ {r}, it follows from [4, Theorem 4.1] that

ψ(r, (←, r]�σ
) ≤ |A| = a(p,Xp) < ψ(q, Yq). Hence, ψ(q,B) = ψ(q, Yq) because

{p} × B ⊂ [r,→)�σ
= Z \ (←, r)�σ

. These A and B are as required because
(A \ {p})× {q} ⊂ (←, r)�σ

and {p} × (B \ {q}) ⊂ (r,→)�σ
. �

It is evident that Propositions 3.3 and 3.4 offer another alternative proof of
Theorem 1.1, now relating this result to Katětov’s Theorem 3.1.

Remark 3.5. The proof of Proposition 3.4 relies on [4, Theorem 4.1] that for
a continuous weak selection σ for a space Z and r ∈ Z, we have

ψ
(

r, (←, r]�σ

)

≤ a
(

r, (←, r]�σ

)

and ψ
(

r, [r →)�σ

)

≤ a
(

r, [r,→)�σ

)

.

This fact also has a very simple proof. Namely, suppose that r ∈ A for some
A ⊂ (←, r)�σ

, and take a point s ∈
⋂

z∈A(z, r]�σ
. Then A ⊂ (←, s]�σ

and,

therefore, r ∈ A ⊂ (←, s]�σ
. So, s = r because r �σ s �σ r. Consequently,

ψ(r, (←, r]�σ
) ≤ |A|.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the same idea as that of Theorem 1.1;
in fact, it is almost identical but uses the following observation.

Proposition 4.1. Let S be a stationary subset of regular uncountable cardinal λ,

and η be a continuous weak selection for {0, 1} × S. Then S contains a closed

unbounded subset T with {0} × T ‖η {1} × T .

Proof: Since η is continuous, for every α ∈ S \ {0}, there exists f(α) < α such
that {0}×(S∩(f(α), α]) ‖η {1}×(S∩(f(α), α]). This defines a regressive function
f : S → λ, i.e. a function f with the property that f(α) < α for every α ∈ S \{0}.
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By the pressing down lemma, S contains a stationary subset H ⊂ λ such that f is
constant on H . By the properties of f , we have that {0} ×H ‖η {1} ×H . Since

η is continuous, the same is true for the closure T = H of H in S. The proof is
completed. �

Having the above property, the proof of Theorem 1.2 goes precisely in the
same way as that of Theorem 1.1. Namely, let a(p,Xp) < |S| = λ, and contrary
to the claim, suppose that Xp × S has a continuous weak selection σ. Just like

before, take a subset A ⊂ Xp \ {p} such that |A| = a(p,Xp) and p ∈ A. Since
σ is continuous, by Proposition 4.1, for every a = {s, t} ∈ [A]2, there exists a
closed unbounded subset Ta ⊂ S such that {s} × Ta ‖σ {t} × Ta. Let Ca be
the closure of Ta in λ. Then {Ca : a ∈ [A]2} is a collection of closed unbounded
subsets of λ. Since |[A]2| = |A| = a(p,Xp) < λ, the intersection C =

⋂

a∈[A]2 Ca

is also a closed unbounded subset of λ. Since S is stationary and each Ta is
closed in S, there are distinct α, β ∈ S ∩ C ⊂

⋂

a∈[A]2 Ta. Having 〈p, α〉 ‖σ 〈p, β〉
and using the continuity of σ, there is an open set V ⊂ Xp with p ∈ V and

V × {α} ‖σ V × {β}. Since p ∈ A, there are distinct points s, t ∈ V ∩ A such
that {s, t} × {α} ‖σ {s, t} × {β}. However, α, β ∈ S ∩ C ⊂ Ta for this particular
a = {s, t}, and we must also have that {s} × {α, β} ‖σ {t} × {α, β}, which is
impossible. A contradiction!

5. Countable compactness and products

The following is an immediate consequence of Theorem 1.2. In particular, it
furnishes a very simple proof of [3, Example 3.1].

Corollary 5.1. The space (ω + 1)× ω1 has no continuous weak selection.

Here, ω is the first infinite ordinal, and ω1 — the first uncountable one. The or-
dinal space ω1 is certainly regular and countably compact. The following theorem
now provides a natural generalisation of Corollary 5.1.

Theorem 5.2. Let X be a regular countably compact space such that (ω+1)×X
has a continuous weak selection. Then X is a compact zero-dimensional first

countable space.

Proof: Consider the nontrivial case when X is infinite. According to Theo-
rem 1.1, ψ(p,X) ≤ ω for every p ∈ X , i.e., each point of X is a Gδ-point. Since X
is regular, each point is the intersection of the closure of countably many neigh-
bourhoods, hence the space is first countable being countably compact. Thus,
a(p,X) ≤ ω for every p ∈ X and, by [2, Corollary 5.4], X will be both Tychonoff
and suborderable (in particular, pseudocompact). By [5, Theorem 3.4], X will be
totally disconnected. It remains to show that X is also compact. We will actually
show that X = βX , where βX is the Čech-Stone compactification of X . To this
end, let us observe that Y = (ω+1)×X is pseudocompact because so is X . Since
Y has a continuous weak selection, by [7, Theorem 2.3], Y 2 is also pseudocompact.
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Accordingly, the Čech-Stone compactification βY of Y has a continuous weak se-
lection [1], [16], see also [9, Corollary 3.6]. However, by Glicksberg’s theorem [8],
βY = β((ω + 1) × X) = (ω + 1) × βX . Thus, by the same reasoning as before,
each point of βX must be a Gδ-point. Since X is pseudocompact, by a result of
Hewitt [12, Theorem 28], the remainder βX \X does not contain any nonempty
closed Gδ-subset of βX . Therefore, X = βX . �

We now have the following interesting consequence.

Corollary 5.3. A regular countably compact space X is zero-dimensional and

metrizable if and only if X2 has a continuous weak selection.

Proof: If X is zero-dimensional and metrizable, then so is X2. Moreover, X2

is a subset of the Cantor set, hence it has a continuous weak selection because
so does the Cantor set. Conversely, suppose X is an infinite countably compact
regular space and X2 has a continuous weak selection. Then X has a continuous
weak selection (because so does X2), and it follows from [18, Theorem 2] that
X is sequentially compact. Hence, X contains a nontrivial convergent sequence
being infinite. So, it also contains a copy of (ω + 1); accordingly, (ω + 1) × X
has a continuous weak selection as well. Thus, by Theorem 5.2, X is compact
and zero-dimensional. Then X2 will be orderable being compact and having itself
a continuous weak selection [15, Theorem 1.1]. Finally, by a result of Treybig [17],
X will be also metrizable. �

Since every Tychonoff pseudocompact space with a continuous weak selection
is countably compact (see, e.g., [9, Corollary 3.9]), Corollary 5.3 is a natural
generalisation of [6, Theorem 2.18]. It also answers [6, Question 2.22] in the
affirmative.

Acknowledgment. In conclusion, the author wishes to express his gratitude
to the referee for several helpful comments, also for simplifying the last part of
the proof of Theorem 5.2 by drawing the author’s attention to Hewitt’s result
[12, Theorem 28].
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