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SEVERAL NOTES ON THE CIRCUMRADIUS CONDITION

Václav Kučera, Praha

(Received January 21, 2016)

Abstract. Recently, the so-called circumradius condition (or estimate) was derived, which
is a new estimate of the W 1,p-error of linear Lagrange interpolation on triangles in terms
of their circumradius. The published proofs of the estimate are rather technical and do not
allow clear, simple insight into the results. In this paper, we give a simple direct proof of
the p = ∞ case. This allows us to make several observations such as on the optimality
of the circumradius estimate. Furthermore, we show how the case of general p is in fact
nothing more than a simple scaling of the standard O(h) estimate under the maximum
angle condition, even for higher order interpolation. This allows a direct interpretation of
the circumradius estimate and condition in the context of the well established theory of the
maximum angle condition.

Keywords: finite element method; a priori error estimate; circumradius condition; La-
grange interpolation
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1. Introduction

In the long history of the finite element method (FEM), much work has been

devoted to answer the basic question: when do the approximate solutions converge

to the exact solution. In the simplest case, Poisson’s problem is treated on a domain

Ω and convergence is studied in the energy (semi)norm, i.e., in H1(Ω).

We consider a system of conforming triangulations {Th}h∈(0,h0) of Ω ⊂ R
2, which

defines the piecewise linear finite element space Vh = {vh ∈ C(Ω); vh|K ∈ P 1(K) for

all K ∈ Th}, where P 1(K) is the space of linear functions on the triangular element

This work is a part of the research project P201/13/00522S of the Czech Science Founda-
tion. V.Kučera is currently a Fulbright visiting scholar at Brown University, Providence,
RI, USA, supported by the J.William Fulbright Commission in the Czech Republic.
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K ∈ Th. The convergence is then usually measured with respect to the parameters
hK = diamK and h = max

K∈Th

hK .

For Poisson’s problem, estimates on the finite element error are obtained via Céa’s

lemma and estimates for Lagrange interpolation on triangles. For u ∈ C(K), let

ΠKu ∈ P 1(K) be the Lagrange interpolation defined by the vertices of K. From

this, we can construct the global interpolant Πhu ∈ Vh such that (Πhu)|K = ΠKu

for all K ∈ Th. The error of the finite element method is then estimated by the error
of the interpolant.

The first condition for O(h) convergence of Πhu to u in the H1(Ω)-seminorm is

the so-called minimum angle condition derived independently in [13], [14].

Lemma 1.1. Let γ0 > 0 and let the minimal angle of K ∈ Th satisfy γK > γ0.

Then there exists a constant C = C(γ0) independent of u and hK such that

(1.1) |u−ΠKu|1,2,K 6 ChK |u|2,2,K .

Assuming γK > γ0 > 0 for all K ∈ Th and all h ∈ (0, h0), we obtain

(1.2) |u−Πhu|1,2,Ω 6 Ch|u|2,2,Ω,

which gives an O(h) error estimate for the FEM in H1(Ω).

Later, a generalization of Lemma 1.1 was proved independently in [1], [2], and [6],

leading to the maximum angle condition:

Lemma 1.2. Let α0 < π and let the maximal angle of K ∈ Th satisfy αK 6 α0.

Then for all p ∈ [1,∞] there exists a constant Cp(α0) independent of u and hK such

that

(1.3) |u−ΠKu|1,p,K 6 Cp(α0)hK |u|2,p,K .

Again, assuming that αK 6 α0 < π for all K ∈ Th and all h ∈ (0, h0), we obtain

a W 1,p(Ω) version of (1.2).

Recently, a generalization of Lemmas 1.1 and 1.2 was given in [8] and [12].
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Lemma 1.3 (Circumradius estimate). Let RK 6 1 be the circumradius of K.

Then for all p ∈ [1,∞] there exists a constant Cp independent of u and K such that

(1.4) |u−ΠKu|1,p,K 6 CpRK |u|2,p,K .

Assuming the circumradius condition

(1.5) lim
h→0

max
K∈Th

RK → 0,

we obtain convergence (not O(h) convergence) of the finite element method similarly

as in (1.2). We shall refer to Lemma 1.3 as the circumradius estimate, although in [8]

both (1.4) and (1.5) are ambiguously called the circumradius condition.

In this paper we show close links between the circumradius estimate and the

maximum angle condition. The first such observation is the following. Since αK is

the largest angle in K, its opposing side has length hK . By the law of sines,

(1.6) 2RK =
hK

sinαK
.

If we substitute this expression into (1.4), we get an O(h) estimate if and only if

the denominator sinαK is uniformly bounded away from zero for all K ∈ Th, which
is exactly the maximum angle condition. Therefore, as far as O(h) convergence is

concerned, Lemmas 1.2 and 1.3 are equivalent.

The history of the circumradius estimate is interesting in itself. For p = 2 it was

first proved by Rand in his Ph.D. thesis [12], however this result was not published

in a journal. The case p = 2 was independently shown by Kobayashi in [7] where it is

claimed that the constant in (1.4) can be taken as C2 = 1. However, the proof relies

heavily on numerical computations and is therefore hard to verify. Finally, the case

of general p was proven by Kobayashi and Tsuchiya in [8] using the technique of [1].

However, we must point out that the circumradius estimate was essentially proved

already in [10] by Křížek, although the result is not stated—this will be explained

in detail at the end of Section 3. Finally, in [9], circumradius-type estimates were

derived for higher order Lagrange interpolation.

The proofs of the circumradius estimate presented in [8], [9], and [12] are rather

lengthy and technical. It is therefore hard to obtain good insight on why Lemma 1.3

should hold, whether or not the estimate is optimal, etc. The purpose of this paper

is twofold: first, to clarify these issues by presenting an as simple as possible straight-

forward proof of the special case p = ∞; and second, to show that the circumradius
estimate is essentially an optimal scaling of the O(h) estimate under the maximum

angle condition, thus connecting the estimate to well established results.
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The structure of the paper is as follows. In Section 2, the case p = ∞ is proved.
This is especially simple and self-contained, using only simple geometric and analyt-

ical tools, hence a good understanding of the circumradius estimate can be gained.

In Section 3, the case of p ∈ [1,∞) is treated. We show how the result can be ob-

tained by a simple scaling argument from the maximum angle condition. Section 4

is devoted to higher order Lagrange interpolation and again we show that the results

proved in [9] can be obtained by scaling from O(h) estimates valid under the max-

imum angle condition. Finally, in Section 5, we show that the factor RK in (1.4)

cannot be improved for general u and is optimal for αK → π.

1.1. Basic notation. We will use the standard Sobolev spaces W k,p(G), k ∈
N0, p ∈ [1,∞] on a domain G ⊂ R

2 equipped with the standard norm ‖·‖k,p,G
and seminorm |·|k,p,G. We will use abbreviated notation for partial derivatives, i.e.,
uxiyj := ∂i+ju/∂xi∂yj. By ξi ∈ K we will denote an auxiliary point defining the

Lagrange form of the Taylor remainder or some other similar expression based on

the context.

We will use the following notation for the triangle K with vertices ABC, cf. Fig-

ure 1. Let the maximal angle αK be at A, the minimal angle γK at C and βK at B.

By a, b, c we denote the sides opposite to αK , βK , and γK , respectively. Let hA be

the altitude from A to BC and let H be the foot of this altitude. Finally, let xb and

xc be the lengths of the two segments of BC given by H .

Without loss of generality, assume that B has coordinates (0, 0), C lies at (hK , 0)

and A at (xb, hA), i.e., the side BC lies on the x-axis. This is possible, since a general

triangleK can be transformed into this configuration by F : R
2 → R

2, a combination

of translation and rotation. Such a mapping changes Sobolev seminorms only by

a constant factor, specifically, for u ∈ W k,p(K)

(1.7) |u ◦ F−1|k,p,F (K) 6 C(k, p)|u|k,p,K ,

where C(k, p) is independent of u and K, cf. [3]. A straightforward calculation yields

e.g. C(1,∞) =
√
2 and C(2,∞) = 2, which is relevant to the following section.

B C

A

H

hA

xb xc

bc

βK γK

αK

Figure 1. An element K ∈ Th.
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2. The circumradius estimate for p = ∞

Lemma 2.1. Let K be a triangle with the notation introduced above. Then

(2.1)
xbxc

hA
= 2RK cosβK cos γK .

P r o o f. By the law of sines,

2RK =
c

sin γK
=

cb

hA
=

xbxc

hA cosβK cos γK
,

since xb = c cosβK and xc = b cosγK . Multiplying by cosβK cos γK gives (2.1). �

Theorem 2.1 (Circumradius estimate for p = ∞). Let K be a triangle as in
Section 1.1. Let u ∈ C2(K). Then

(2.2) |u−ΠKu|1,∞,K 6 (2
√
2 + 2)RK |u|2,∞,K .

P r o o f. Since ΠKw = w for all w ∈ P 1(K), by subtracting a suitable w, we can

assume without loss of generality that u(B) = u(C) = uy(H) = 0.

Denote v := ΠKu ∈ P 1(K). Trivially vx = (u(C) − u(B))/hK = 0 and vy =

(u(A)− v(H))/hA = u(A)/hA. Since uy(H) = 0, by Taylor’s theorem

u(A) = u(H) + 1
2uyy(ξ1)h

2
A.

On the side BC, the function v is simply the 1D linear Lagrange interpolation of u,

for which we have the error formula

u(H) = u(H)− v(H) = − 1
2uxx(ξ2)xbxc,

cf. [4]. Therefore,

|vy| =
|u(A)|
hA

6

1
2 (h

2
A + xbxc)

hA
|u|2,∞,K 6 2RK |u|2,∞,K ,

due to Lemma 2.1 and the estimate hA 6 hK 6 2RK .

Finally, we estimate the left-hand side of (2.2). Since u(B) = u(C) = 0, there

exists x̃ on the side BC such that ux(x̃) = 0. For x ∈ K

|ux(x)− vx| = |ux(x)| = |ux(x)− ux(x̃)| = |∇ux(ξ3)(x− x̃)| 6
√
2hK |u|2,∞,K .

Similarly, since uy(H) = 0,

|uy(x)− vy| 6 |uy(x)− uy(H)|+ |vy| 6 |∇uy(ξ4)(x−H)|+ 2RK |u|2,∞,K

6 (
√
2hK + 2RK)|u|2,∞,K .

Combining the last two estimates gives us (2.2), since hK 6 2RK . �
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R em a r k 2.1. The factor RK comes only from the estimation of vy, all other

terms can be estimated using hK . Hence, (2.2) can be written more finely as

|u−ΠKu|1,∞,K 6 (
√
2 + 1

2 )hK |u|2,∞,K +RK‖uxx‖0,∞,K .

Therefore, if uxx ≈ 0, we obtain an O(hK) error estimate instead of O(RK).

Using Theorem 2.1, we can obtain a ‘cheap’, slightly weakened variant of

Lemma 1.3 for general p.

Theorem 2.2 (Cheap circumradius estimate). Let K ⊂ R
2 be an arbitrary

triangle. Let u ∈ C2(K). Then there exists Cp depending only on p ∈ [1,∞] such

that

(2.3) |u−ΠKu|1,p,K 6 CpRK |K|1/p|u|2,∞,K .

P r o o f. Let p ∈ [1,∞). Then from Theorem 2.1

|u− v|p1,p,K = ‖ux − vx‖p0,p,K + ‖uy − vy‖p0,p,K
6 2|K||u− v|p1,∞,K 6 2|K|(2

√
2 + 2)pRp

K |u|p2,∞,K .

Taking the p-th root gives (2.3). IfK is a general element not aligned with the x-axis,

we get an additional factor of 2
√
2 in the final estimate obtained by transforming K

and the seminorms |u− v|1,∞,K , |u|2,∞,K via (1.7). �

R em a r k 2.2. The factor |K|1/p|u|2,∞,K in (2.3) mimics the behavior of the

W 2,p(K)-seminorm in that it is also additive in the p-th power:

|u−Πhu|p1,p,Ω =
∑

K∈Th

|u−ΠKu|p1,p,K 6
∑

K∈Th

Cp
pR

p
K |K||u|p2,∞,K 6 Cp

pR
p|Ω||u|p2,∞,Ω,

which is an O(R)-estimate in W 1,p(Ω) for the global interpolation error. Further-

more, trivially |u|2,p,K 6 41/p|K|1/p|u|2,∞,K , i.e., (2.3) is a weaker version of (1.4).

In the proof of Theorem 2.1, we did not need the assumption RK 6 1 from

Lemma 1.3. This is true for all the proofs in this paper. We note that the role of this

condition is not completely clear in the papers of Kobayashi et al. and the estimate

is formulated alternately with and without this assumption even within the same

paper. The case of RK > 1 may seem irrelevant, since in the end we assume (1.5),

however, using the ideas of [5], it can be easily shown that (1.5) is not necessary

for convergence or even O(h) convergence of the FEM. Therefore any attempt at

formulating a necessary and sufficient condition for FEM convergence will need to

take the case of RK > 1 into account somehow, cf. also [11].
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3. The general circumradius estimate

Here we establish a direct connection between Lemmas 1.2 and 1.3. The main idea

is to dilate the triangle K in the y-direction by a suitable factor so that the resulting

triangle K̂ has a prescribed maximum angle. One can then use the maximum angle

condition on K̂ and transform the resulting estimate back to K. The result of this

procedure is the factor RK instead of hK in the final estimate. First, we need the

following simple scaling result.

Lemma 3.1. Let a > 0 and K̂ be obtained from K by the transformation F :

K → K̂, F (x, y) = (x, ay) = (x̂, ŷ). For f : K → R let f̂ : K̂ → R be defined by

f̂(x̂, ŷ) = f(F−1(x̂, ŷ)). Then for i, j ∈ N 0

(3.1) ‖fxiyj‖0,p,K = aj−1/p‖f̂x̂iŷj‖0,p,K̂ .

P r o o f. By the chain rule and substitution,

∫

K

∣∣fxiyj (x, y)
∣∣p dxdy =

∫

K

∣∣f̂x̂iŷj (F (x, y))aj
∣∣p dxdy

=
ajp

detJF

∫

K̂

∣∣f̂x̂iŷj (x̂, ŷ)
∣∣p dx̂dŷ,

where detJF = a is the Jacobian of F . Taking the p-th root gives (3.1). �

Theorem 3.1 (Circumradius estimate). Let u ∈ W 2,p(K). There exists Cp

depending only on p ∈ [1,∞] such that

(3.2) |u−ΠKu|1,p,K 6 CpRK |u|2,p,K .

P r o o f. Let α0 = 3
4π. If αK 6 α0, K satisfies the maximum angle condition,

therefore

|u−ΠKu|1,p,K 6 Cp(α0)hK |u|2,p,K 6 2Cp(α0)RK |u|2,p,K ,

since hK 6 2RK . Here Cp(α0) is the constant from Lemma 1.2.

If αK > α0, we find the unique triangle K̂ with vertices Â, B, C such that αK̂ :=
6 BÂC = α0 and Â, A have the same footH of their altitudes to BC. This is possible,

since the set of all vertices Â such that 6 BÂC = α0 is a circular arc, cf. Figure 2.

Triangles K, K̂ are related as in Lemma 3.1 with a = hÂ/hA, where hÂ is the

altitude from Â to BC. We estimate the factor a. Because βK > γK , then also
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B C

A

H

hA

xb xc

Â

h
Â

βK

β̂

Figure 2. Proof of Theorem 3.1.

β̂ > γ̂, where β̂ := 6 ÂBC, γ̂ := 6 ÂCB. Since αK̂ = 3
4π, then β̂ ∈ [ 18π, 1

4π) and

tan β̂ ∈ [
√
2− 1, 1). As hÂ = xb tan β̂, we obtain

(
√
2− 1)xb 6 hÂ < xb.

Because a = hÂ/hA,

(3.3) (
√
2− 1)xbh

−1
A 6 a < xbh

−1
A .

On the other hand, hA = xb tanβK < xb, since βK < π−αK < 1
4π. Thus 1 < xbh

−1
A

and from (3.3) we get the sought estimate for a:

(3.4) (
√
2− 1) 6 a < xbh

−1
A .

Finally, we estimate (3.2). Defining e := u−ΠKu, by Lemma 3.1

(3.5) |e|p1,p,K = ‖ex‖p0,p,K + ‖ey‖p0,p,K = a−1‖êx̂‖p0,p,K̂ + ap−1‖êŷ‖p0,p,K̂
6 (a−1 + ap−1)|ê|p

1,p,K̂
6 (a−1 + ap−1)Cp(α0)

php

K̂
|û|p

2,p,K̂
,

since K̂ satisfies the maximum angle condition and ê is simply the Lagrange inter-

polation error for û on K̂. Transforming back to K gives us

|û|p
2,p,K̂

= ‖ûx̂x̂‖p0,p,K̂ + ‖ûx̂ŷ‖p0,p,K̂ + ‖ûŷŷ‖p0,p,K̂
= a‖uxx‖p0,p,K + a1−p‖uxy‖p0,p,K + a1−2p‖uyy‖p0,p,K
6 (a+ a1−p + a1−2p)|u|p2,p,K .

Together with (3.5), this gives

(3.6) |e|p1,p,K 6 (2 + 2a−p + a−2p + ap)Cp(α0)
php

K |u|p2,p,K ,

since hK̂ = hK . Due to (3.4), we have a
−p 6 (

√
2− 1)−p, a−2p 6 (

√
2− 1)−2p, which

are constants depending only on p. As for the last remaining factor ap in (3.6), we

have due to (3.4) and Lemma 2.1

(3.7) aphp
K < (xbh

−1
A 2xc)

p < (4RK)p,
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since hK/2 < xc. Collecting the estimates for a
−p and a−2p along with the trivial

inequality hp
K 6 2pRp

K and combining with (3.7), we finally obtain from (3.6)

|e|p1,p,K 6
(
2p+1 + (

√
2− 1)−p2p+1 + (

√
2− 1)−2p2p + 4

)
Cp(α0)

pRp
K |u|p2,p,K .

Taking the p-th root gives us (3.2). �

Having established a connection with the maximum angle condition, it is perhaps

not surprising that all the ingredients needed to prove Theorem 3.1 are already

contained in one of the papers dealing with the maximum angle condition.

As stated on the introduction, everything needed to prove Theorem 3.1 is already

present in [10], although the final result is never formulated, since the paper only

deals with O(h) convergence and the maximum angle condition. However, estimates

using RK are used throughout the paper and Theorem 3.1 could have been obtained

in the following way. An intermediate step of (2.22) in [10] states

(3.8) |detBK | = fKgKhK

2RK
,

where detBK is the Jacobian of the mapping from a reference triangle to K and

fK , gK , hK are the lengths of sides of K. An intermediate step of the chain of

inequalities following (2.22) in [10] is

(3.9) |v −ΠKv|1,p,K 6 32Ĉ| detBK |−1fKgKhK |v|2,p,K .

Substituting (3.8) into (3.9) immediately gives (3.2). The reason this is not done in

the paper is that (3.8) is further estimated using the maximum angle condition, thus

eliminating RK from the final estimate in order to obtain O(h) convergence.

4. The circumradius estimate for higher order interpolation

Now we turn our attention to higher order Lagrange interpolation. This is treated

in detail in [9], where estimates of the error in Wm,p(K) for general m are derived.

Here we only show how the W 1,p(K) results can again be simply obtained by scaling

from existing results assuming the maximum angle condition.

On a triangle K, we define the Lagrange interpolation points of degree k ∈ N by

(4.1) Σk(K) =
{(a1

k
,
a2
k
,
a3
k

)
∈ K; ai ∈ {0, . . . , k}, a1 + a2 + a3 = k

}
,

where a triplet (λ1, λ2, λ3) denotes the barycentric coordinates on K. Let Πk
K :

C(K) → P k(K) be the Lagrange interpolation of degree k on the set Σk(K). Under

the maximum angle condition on Th, we have the following theorem proved in [6]
and indicated in [1] for p = 2.
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Theorem 4.1 (Jamet). Let k > 2 be an integer and p ∈ [1,∞]. Let u ∈
W k+1,p(K). Then there exists a constant Cp,k(αK) depending only on p, k, and the

maximum angle αK of K such that

(4.2) |u −Πk
Ku|1,p,K 6 Cp,k(αK)hk

K |u|k+1,p,K .

Here we show that the ideas of Section 3 can be used to obtain circumradius-type

estimates for higher order Lagrange interpolation from Theorem 4.1.

Theorem 4.2 (Higher order circumradius estimate). Let u ∈ W k+1,p(K). There

exists Cp,k depending only on p ∈ [1,∞] and k ∈ N such that

(4.3) |u−Πk
Ku|1,p,K 6 Cp,kRKhk−1

K |u|k+1,p,K .

P r o o f. We take a as in Theorem 3.1 and apply Lemma 3.1. As in (3.5) we get

(4.4) |e|p1,p,K 6 (a−1 + ap−1)|ê|p
1,p,K̂

6 (a−1 + ap−1)Cp,k(α0)
phkp

K̂
|û|p

k+1,p,K̂
,

where Cp,k(α0) is the constant from Theorem 4.1. Due to Lemma 3.1,

|û|p
k+1,p,K̂

=
k+1∑

i=0

‖ûx̂k+1−iŷi‖p
0,p,K̂

=
k+1∑

i=0

a1−ip‖uxk+1−iyi‖p0,p,K

6

(k+1∑

i=0

a1−ip

)
|u|pk+1,p,K .

Together with (4.4), we obtain

(4.5) |e|p1,p,K 6

(k+1∑

i=0

a−ip +

k+1∑

i=0

a(1−i)p

)
Cp,k(α0)

phkp
K |u|pk+1,p,K .

Due to (3.4), we have a−ip 6 (
√
2 − 1)−ip for i = 0, . . . , k + 1, which are constants.

Only ap, the first term of the second sum, is estimated using (3.7), resulting in the

factor Rp
Kh

(k−1)p
K . Taking the p-th root gives (4.3). �

We note that in [6], Theorem 4.1 is stated under the assumption k > 2/p if

p > 1 and holds for k > 2 if p = 1, although this case is not stated explicitly. In

Theorem 4.1, we have simplified these assumptions to k > 2, since the remaining

cases correspond to linear interpolation and are treated in Section 3.

296



5. Optimality of the circumradius estimate

In this section, we show that the circumradius estimate gives the correct scaling as

αK → π, i.e., that the factor RK in (1.4) cannot be improved. This observation relies

on the fact that for a quadratic function, the estimates in the proof of Theorem 2.1

are sharp. We consider p ∈ [1,∞), the case p = ∞ follows similarly.
We take u(x, y) = x2 and again assume without loss of generality that the longest

side BC of K is aligned with the x-axis. Then

(5.1) |u|2,p,K =

(∫

K

|uxx|p dxdy
)1/p

= 2|K|1/p.

Since u(x, y) = x2, we have u(A) = u(H) and uy = 0. As in the proof of Theorem 2.1,

v := ΠKu is the 1D linear Lagrange interpolation of u on the side BC, hence

|uy − vy| = |vy| =
|u(A)− v(H)|

hA
=

|u(H)− v(H)|
hA

=
1
2xbxc|uxx|

hA
=

xbxc

hA
.

Therefore,

(5.2) |u − v|1,p,K > ‖uy − vy‖0,p,K =

(∫

K

|uy − vy|p dxdy
)1/p

=
xbxc

hA
|K|1/p

= 2RK cosβK cos γK |K|1/p = RK cosβK cos γK |u|2,p,K

due to Lemma 2.1 and (5.1). Taking e.g. αK > 2
3π, we have βK , γK 6 1

3π and (5.2)

gives us

(5.3) |u−ΠKu|1,p,K > 1
4RK |u|2,p,K .

Therefore, the factor RK in (1.4) cannot be improved for general u and αK large.

We note that as αK → π, the factor cosβK cos γK → 1. This gives support to the

claim of [7], where (1.4) is shown with C2 = 1 based on numerical computations.

Of course for special functions, e.g. u(x, y) = y2, the factor RK can be replaced

by hK via Remark 2.1.
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6. Conclusions

We have presented several observations on the circumradius estimate (condition)

and its relation to the maximum angle condition. Since the original proofs of [8]

and [12] are lengthy and technical, we gave a simple straightforward proof of the

p = ∞ case. For p ∈ [1,∞), we showed that the result can be obtained by simple

scaling of the classical O(h) estimate under the maximum angle condition. This

holds also in the case of higher order Lagrange interpolation. Finally, we showed

that the factor RK in the circumradius estimate cannot be improved in general.

Future work includes a purely analytic proof (i.e., without the assistance of nu-

merical computations) of the result from [7] that C2 = 1 can be taken in (1.4).
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