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Abstract. We investigate the Zassenhaus conjecture regarding rational conjugacy of tor-
sion units in integral group rings for certain automorphism groups of simple groups. Re-
cently, many new restrictions on partial augmentations for torsion units of integral group
rings have improved the effectiveness of the Luther-Passi method for verifying the Zassen-
haus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the
automorphism group of the simple group PSL(2, 11). Additionally we prove that the Prime
graph question is true for the automorphism group of the simple group PSL(2, 13).
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1. Introduction and main results

Let U(ZG) be the unit group of the integral group ring of a finite group G. It is

well known that

U(ZG) = {±1} × V (ZG),

where V (ZG) is the group of units of augmentation one. Throughout this article,

G is always a finite group and torsion units will always represent torsion units in

V (ZG) \ {1}. A very important conjecture in the theory of integral group rings is:

Conjecture 1.1. If G is a finite group, then for each torsion unit u ∈ V (ZG)

there exists g ∈ G, such that |u| = |g| where |u| and |g| are the orders of u and g,

respectively.

A stronger version of this conjecture was formulated by Hans Zassenhaus in [37],

which states

Conjecture 1.2. A torsion unit in V (ZG) is rationally conjugate to a group ele-

ment if it is conjugate to an element of G by a unit of the rational group algebra QG.

561



This conjecture was confirmed for some classes of solvable groups in [24], nilpotent

groups in [36], [31] and cyclic-by-abelian groups in [18]. The Luthar-Passi method

(which was introduced in [29]) is the main investigative tool for simple groups G in

relation to the Zassenhaus conjecture for ZG. It was confirmed true for all groups

up to order 71, A5, S5, central extensions of S5 and other simple finite groups in

[26], [29], [30], [4], [5]. Partial results were given for A6 in [34] and the remaining

cases were dealt with in [21]. Higher order alternating groups were also considered

in [33], [32]. It was also proved for PSL(2, p) when p = {7, 11, 13} in [22], PSL(2, p)

when p = {8, 17} in [20] and PSL(2, p) when p = {19, 23} in [2]. Further results

regarding PSL(2, p) can be found in [25].

Let H be a group with a torsion part t(H) (i.e. the set of elements of H of finite

order) of finite exponent and let #H be the set of primes dividing the order of

elements from the set t(H). The prime graph of H (denoted by π(H)) is a graph

with vertices labeled by primes from #H , such that vertices p and q are adjacent

if and only if there is an element of order pq in the group H . The following was

composed as a problem in [27], Problem 37:

Question 1.1 (Prime graph question). If G is a finite group, then π(G) =

π(V (ZG)).

This question was upheld for Frobenius and Solvable groups in [28] and was also

confirmed for some Sporadic Simple groups in [17], [11], [6], [14], [15], [8], [9], [3], [10],

[7], [13], [12]. We use the Luthar-Passi method to obtain our results. Our results are

the following:

Theorem 1.1. The Zassenhaus conjecture is true for the integral group ring of

the automorphism group of the group PSL(2, 11).

Theorem 1.2. Let G be the automorphism group of PSL(2, 13) and let u be

a torsion unit of V (ZG). The following conditions hold:

(i) If |u| ∈ {2, 3, 13}, then u is rationally conjugate to some g ∈ G.

(ii) There are no elements of order 21, 26, 39 and 91 in V (ZG).

(iii) If |u| = 4, then νrx = 0 for all rx /∈ {ν2a, ν2b, ν4a} and

(ν2a, ν2b, ν4a) ∈ {(2, 0,−1), (0, 0, 1), (−2, 0, 3), (3, 1,−3),

(1, 1,−1), (−1, 1, 1), (−3, 1, 3)}.

(iv) If |u| = 6, then νrx = 0 for all rx /∈ {ν2a, ν2b, ν3a, ν6a} and

(ν2a, ν2b, ν3a, ν6a) ∈ {(0,−2, 0, 3), (0,−2, 3, 0), (0, 0, 0, 1), (0, 0, 3,−2),

(0, 2, 0,−1), (1,−1, 0, 1), (1, 1, 0,−1)}.
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(v) If |u| = 7, then νrx = 0 for all rx /∈ {ν7a, ν7b, ν7c} and

(ν7a, ν7b, ν7c) ∈ {(2,−3, 2), (2,−2, 1), (1,−2, 2), (2,−1, 0), (1,−1, 1), (0,−1, 2),

(2, 0,−1), (1, 0, 0), (0, 0, 1), (−1, 0, 2), (2, 1,−2), (1, 1,−1),

(0, 1, 0), (−1, 1, 1), (−2, 1, 2), (2, 2,−3), (1, 2,−2), (0, 2,−1),

(−1, 2, 0), (−2, 2, 1), (−3, 2, 2)}.

Consequently, we obtain the following result:

Corollary 1.1. The Prime graph question is true for the integral group ring of

the automorphism group of the group PSL(2, 13).

Let u =
∑

agg be a torsion unit of V (ZG). Then the sum
∑

g∈XG

ag satisfies

∑
g∈XG

ag ∈ Z which is the partial augmentation (denoted by εC(u)) of u with respect

to its conjugacy classes XG in G. Let νi = εCi
(u) be the i-th partial augmentation

of u. It was proved that ν1 = 0 and νj = 0 if the conjugacy class Cj consists of

a central element by Higman and Berman [1]. Therefore ν2 + ν3 + . . .+ νl = 1 where

l denotes the number of non-central conjugacy classes of G.

Proposition 1.1 ([19]). Let u be a torsion unit of V (ZG). The order of u divides

the exponent of G.

The following propositions provide relationships between the partial augmenta-

tions and the order of a torsion unit.

Proposition 1.2 ([23], Proposition 3.1). Let u be a torsion unit of V (ZG). Let

C be a conjugacy class of G. If p is a prime dividing the order of a representative of

C but not the order of u then the partial augmentation satifies εC(u) = 0.

Proposition 1.3 ([22], Proposition 2.2). Let G be a finite group and let u be

a torsion unit in V (ZG).

(i) If u has order pn, then εx(u) = 0 for every x of G whose p-part is of order

strictly greater than pn.

(ii) If x is an element of G whose p-part for some prime, has order strictly greater

than the order of the p-part of u, then εx(u) = 0.
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Proposition 1.4 ([29]). Let u be a torsion unit of V (ZG) of order k. Then u is

conjugate in QG to an element g ∈ G if and only if for each d dividing k there is

precisely one conjugacy class Cid with partial augmentation εCid
(ud) 6= 0.

For any character χ of G and any torsion unit u of V (ZG), clearly χ(u) =
l∑

i=2

νiχ(hi) where hi is a representative of a non-central conjugacy class Ci.

Proposition 1.5 ([29] and [22], Theorem 1). Let p be equal to zero or a prime

divisor of |G|. Suppose that u is an element of V (ZG) of order k. Let z be a primitive

k-th root of unity. Then for every integer l and any character χ of G, the number

µl(u, χ, p) =
1

k

∑

d|k

TrQ(zd)/Q{χ(u
d)z−dl}

is a nonnegative integer.

We will use the notation µl(u, χ, ∗) when p = 0. The LAGUNA package [16] for

the GAP system [35] is a very useful tool when calculating µl(u, χ, p).

2. Proof of Theorem 1

Let G = Aut(PSL(2, 11)). Clearly |G| = 1320 = 23 · 3 · 5 · 11 and exp(G) = 660 =

22 · 3 · 5 · 11. Initially for any torsion unit of V (ZG) of order k we have that

ν2a + ν3a + ν5a + ν5b + ν6a + ν11a + ν2b + ν4a + ν10a + ν10b + ν12a + ν12b = 1.

By Proposition 1.1, we need only to consider torsion units of V (ZG) of order 2, 3,

4, 5, 6, 10, 11, 12, 15, 20, 22, 33 and 55. We will now consider each case separately.

Case 1 : Let u ∈ V (ZG) where |u| = 2. Using Propositions 1.2 and 1.3,

ν2a + ν2b = 1. Applying Proposition 1.5, we obtain:

µ0(u, χ2, ∗) =
1
2 (γ + 1) > 0; µ1(u, χ2, ∗) =

1
2 (−γ + 1) > 0

where γ = ν2a − ν2b. Clearly, γ ∈ {1,−1}. It follows that the only possible integer

solutions for (ν2a, ν2b) are (0, 1) and (1, 0). Therefore, u is rationally conjugated to

some element g ∈ G by Proposition 1.4.

Case 2 : Let u ∈ V (ZG) where |u| = 3. By Proposition 1.2, νkx = 0 for all

kx ∈ {2a, 5a, 5b, 6a, 11a, 2b, 4a, 10a, 10b, 12a, 12b}.

Therefore, u is rationally conjugated to some element g ∈ G by Proposition 1.4.
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Case 3 : Let u ∈ V (ZG) where |u| = 4. Using Propositions 1.2 and 1.3, ν2a+ν2b+

ν4a = 1. Clearly, χ(u2) = χ(2a). Applying Proposition 1.5, we obtain:

µ0(u, χ2, ∗) =
1
4 (γ1 + 2) > 0; µ2(u, χ2, ∗) =

1
4 (−γ1 + 2) > 0;

µ0(u, χ4, ∗) =
1
4 (−γ2 + 8) > 0; µ2(u, χ4, ∗) =

1
4 (γ2 + 8) > 0;

µ0(u, χ3, 11) =
1
4 (γ3 + 2) > 0; µ0(u, χ4, 11) =

1
4 (γ4 + 2) > 0

where γ1 = 2ν2a − 2ν2b − 2ν4a, γ2 = 4ν2a − 4ν4a, γ3 = −2ν2a − 2ν2b + 2ν4a and

γ4 = −2ν2a + 2ν2b − 2ν4a. It follows that the only possible integer solutions for

(ν2a, ν2b, ν4a) are (0, 1, 0), (1, 0, 0) and (0, 0, 1). Therefore, u is rationally conjugated

to some element g ∈ G by Proposition 1.4.

Case 4 : Let u ∈ V (ZG) where |u| = 5. Using Propositions 1.2 and 1.3,

ν5a + ν5b = 1. Applying Proposition 1.5, we obtain

µ1(u, χ7, 11) =
1
5 (γ1 + 7) > 0; µ1(u, χ3, 11) =

1
5 (−γ1 + 3) > 0;

µ2(u, χ3, 11) =
1
5 (γ2 + 3) > 0

where γ1 = 3ν5a−2ν5b and γ2 = 2ν5a−3ν5b. It follows that the only possible integer

solutions for (ν5a, ν5b) are (0, 1) and (1, 0). Therefore, u is rationally conjugated to

some element g ∈ G by Proposition 1.4.

Case 5 : Let u ∈ V (ZG) where |u| = 6. Using Proposition 1.2 and 1.3,

ν2a + ν2b + ν3a + ν6a = 1.

Let γ1 = ν2a − ν3a + ν6a, γ2 = 2ν2a − ν3a − ν6a, γ3 = ν2a − 2ν6a + ν2b and γ4 =

2ν2a − 4ν6a − 2ν2b. We will now separately consider the following cases involving

χ(un) for n ∈ {2, 3}:

⊲ χ(u3) = χ(2a) and χ(u2) = χ(3a). Applying Proposition 1.5, we obtain:

µ0(u, χ3, ∗) =
1
6 (4γ1 + 8) > 0; µ3(u, χ3, ∗) =

1
6 (−4γ1 + 4) > 0;

µ0(u, χ4, ∗) =
1
6 (−2γ2 + 10) > 0; µ2(u, χ4, ∗) =

1
6 (γ2 + 7) > 0;

µ0(u, χ3, 11) =
1
6 (−2γ3 + 2) > 0; µ2(u, χ3, 11) =

1
6 (γ3 + 2) > 0.

Clearly γ1 ∈ {−2, 1} and γ2 ∈ {−7,−1, 5}. It follows that the only possible integer

solution for (ν2a, ν2b, ν3a, ν6a) is (0, 0, 1, 0).

⊲ χ(u3) = χ(2b) and χ(u2) = χ(3a). Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
6 (4γ1 + 6) > 0; µ3(u, χ3, ∗) =

1
6 (−4γ1 + 6) > 0;

µ0(u, χ4, ∗) =
1
6 (−γ2 + 12) > 0; µ1(u, χ4, ∗) =

1
6 (−γ2 + 9) > 0;

µ3(u, χ4, ∗) =
1
6 (2γ2 + 12) > 0; µ0(u, χ3, 11) =

1
6 (−2γ3 + 2) > 0;

µ3(u, χ4, 11) =
1
6 (γ4 + 2) > 0.
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Clearly γ1 ∈ {0} and γ2 ∈ {−6,−3, 0, 3, 6}. It follows that there are no possible

integer solutions for (ν2a, ν2b, ν3a, ν6a).

Therefore u is rationally conjugated to some element g ∈ G by Proposition 1.4.

Case 6 : Let u ∈ V (ZG) where |u| = 10. Using Propositions 1.2 and 1.3,

ν2a + ν5a + ν5b + ν2b + ν10a + ν10b = 1.

Let γ1 = ν5a + ν5b − 4ν2b + ν10a + ν10b, γ2 = 2ν5a − 3ν5b + 2ν2b + 2ν10a − 3ν10b,

γ3 = 3ν5a−2ν5b−2ν2b+3ν10a−2ν10b, γ4 = −4ν2a+2ν5a+2ν5b−4ν2b+6ν10a+6ν10b
and γ5 = −4ν2a+2ν5a+2ν5b+4ν2b−6ν10a−6ν10b. We will now separately consider

the following cases involving χ(un) for n ∈ {2, 5}:

⊲ χ(u5) = χ(2a) and χ(u2) = χ(5a). Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
10 (8ν2a + 12) > 0; µ5(u, χ3, ∗) =

1
10 (−8ν2a + 8) > 0;

µ5(u, χ10, ∗) =
1
10 (2γ1 + 10) > 0; µ0(u, χ10, ∗) =

1
10 (−2γ1 + 10) > 0;

µ1(u, χ10, ∗) =
1
10 (γ2 + 15) > 0; µ0(u, χ3, 11) =

1
10 (γ4 + 4) > 0;

µ0(u, χ4, 11) =
1
10 (γ5 + 4) > 0.

Clearly, ν2a ∈ {1} and γ2 ∈ {−5, 0, 5}. It follows that there are no possible integer

solutions for (ν2a, ν5a, ν5b, ν2b, ν10a, ν10b).

⊲ χ(u5) = χ(2a) and χ(u2) = χ(5b). Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
10 (8ν2a + 12) > 0; µ5(u, χ3, ∗) =

1
10 (−8ν2a + 8) > 0;

µ5(u, χ10, ∗) =
1
10 (2γ1 + 10) > 0; µ0(u, χ10, ∗) =

1
10 (−2γ1 + 10) > 0;

µ2(u, χ10, ∗) =
1
10 (γ3 + 15) > 0; µ0(u, χ3, 11) =

1
10 (γ4 + 4) > 0;

µ0(u, χ4, 11) =
1
10 (γ5 + 4) > 0.

Clearly, ν2a ∈ {1} and γ2 ∈ {−5, 0, 5}. It follows that there are no possible integer

solutions for (ν2a, ν5a, ν5b, ν2b, ν10a, ν10b).

⊲ χ(u5) = χ(2b) and χ(u2) = χ(5a). Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
10 (8ν2a + 10) > 0; µ5(u, χ3, ∗) =

1
10 (−8ν2a + 10) > 0;

µ5(u, χ10, ∗) =
1
10 (2γ1 + 8) > 0; µ0(u, χ10, ∗) =

1
10 (−2γ1 + 12) > 0;

µ1(u, χ10, ∗) =
1
10 (γ2 + 13) > 0.

Clearly, ν2a ∈ {0} and γ2 ∈ {−4, 1, 6}. It follows that the only possible integer

solution for (ν2a, ν5a, ν5b, ν2b, ν10a, ν10b) is (0, 0, 0, 0, 0, 1).
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⊲ χ(u5) = χ(2b) and χ(u2) = χ(5b). Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
10 (8ν2a + 10) > 0; µ5(u, χ3, ∗) =

1
10 (−8ν2a + 10) > 0;

µ5(u, χ10, ∗) =
1
10 (2γ1 + 8) > 0; µ0(u, χ10, ∗) =

1
10 (−2γ1 + 12) > 0;

µ2(u, χ10, ∗) =
1
10 (γ3 + 17) > 0.

Clearly, ν2a ∈ {0} and γ2 ∈ {−4, 1, 6}. It follows that the only possible integer

solution for (ν2a, ν5a, ν5b, ν2b, ν10a, ν10b) is (0, 0, 0, 0, 1, 0).

Therefore (in all cases), u is rationally conjugated to some element g ∈ G by

Proposition 1.4.

Case 7 : Let u ∈ V (ZG) where |u| = 11. By Proposition 1.2, νkx = 0 for all kx ∈

{2a, 3a, 5a, 5b, 6a, 2b, 4a, 10a, 10b, 12a, 12b}. Therefore, u is rationally conjugated to

some element g ∈ G by Proposition 1.4.

Case 8 : Let u ∈ V (ZG) where |u| = 12. Using Propositions 1.2 and 1.3,

ν2a + ν3a + ν6a + ν2b + ν4a + ν12a + ν12b = 1.

Consider the cases χ(u6) = χ(2k) where k ∈ {a, b}. Applying Proposition 1.5 (when

k = a), we obtain

µ0(u, χ3, ∗) =
1
12 (8γ1 + 12) > 0; µ6(u, χ3, ∗) =

1
12 (−8γ1 + 12) > 0;

µ2(u, χ4, ∗) =
1
12 (−2γ2 + 2) > 0; µ6(u, χ4, ∗) =

1
12 (4γ2 + 8) > 0;

µ1(u, χ6, ∗) =
1
12 (6γ3 + 6) > 0; µ5(u, χ6, ∗) =

1
12 (−6γ3 + 6) > 0

where γ1 = ν2a−ν3a+ν6a, γ2 = 2ν2a−ν3a−ν6a−2ν4a+ν12a+ν12b and γ3 = ν12a−ν12b.

Clearly γ1 ∈ {0}, γ2 ∈ {1} and γ3 ∈ {−1, 1}. It follows that the only poss-

ible integer solutions for (ν2a, ν3a, ν6a, ν2b, ν4a, ν12a, ν12b) are (0, 0, 0, 0, 0, 0, 1) and

(0, 0, 0, 0, 0, 1, 0). Therefore, u is rationally conjugated to some element g ∈ G by

Proposition 1.4.

When k = b, it follows that there are no possible integer solutions for (ν2a, ν3a,

ν6a, ν2b, ν4a, ν12a,ν12b) since µ1(u, χ2, ∗) = 1/6.

Case 9 : Let u ∈ V (ZG) where |u| = 15. Using Propositions 1.2 and 1.3, ν3a +

ν5a + ν5b = 1. Consider the cases χ(u3) = χ(5k) where k ∈ {a, b}. Applying

Proposition 1.5, we obtain the following system of inequalities:

µ3(u, χ3, ∗) =
1
15 (4ν3a + 6) > 0; µ0(u, χ3, ∗) =

1
15 (−16ν3a + 6) > 0.

Clearly, there are no possible integer solutions for (ν3a, ν5a, ν5b).
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Case 10 : Let u ∈ V (ZG) where |u| = 20. Using Propositions 1.2 and 1.3, ν2a +

ν5a + ν5b + ν2b + ν4a + ν10a + ν10b = 1. Consider the cases χ(u10) = χ(2m1) and

χ(u5) = χ(4m2) and χ(u4) = χ(5m3) and χ(u2) = χ(10m4), where

(m1,m2,m3,m4) ∈ {(a, a, a, a), (a, a, a, b), (a, a, b, a), (a, a, b, b),

(b, a, a, a), (b, a, a, b), (b, a, b, a), (b, a, b, b)}.

Now

µ1(u, χ2, ∗) = − 1
10

when (m1,m2,m3,m4) ∈ {(a, a, a, a), (a, a, a, b), (a, a, b, a), (a, a, b, b)}. Also,

µ5(u, χ2, ∗) =
1
2

when (m1,m2,m3,m4) ∈ {(b, a, a, a), (b, a, a, b), (b, a, b, a), (b, a, b, b)}. Therefore,

there are no possible integer solutions for (ν2a, ν5a, ν5b, ν2b, ν4a, ν10a, ν10b).

Case 11 : Let u ∈ V (ZG) where |u| = 22. Using Propositions 1.2 and 1.3, ν2a +

ν11a + ν2b = 1. Let γ1 = ν2a + ν11a − ν2b, γ2 = 2ν2a − ν11a and γ3 = −2ν2a − ν11a.

We will now separately consider the following cases involving χ(un) for n ∈ {2, 11}:

⊲ χ(u11) = χ(2a) and χ(u2) = χ(11a). Applying Proposition 1.5, we obtain

µ1(u, χ2, ∗) =
1
22 (γ1 − 1) > 0; µ2(u, χ2, ∗) =

1
22 (−γ1 + 1) > 0;

µ0(u, χ3, ∗) =
1
22 (5γ2 + 1) > 0; µ11(u, χ3, ∗) =

1
22 (−5γ2 − 1) > 0.

It follows that there are no possible integer solutions for (ν2a, ν11a, ν2b).

⊲ χ(u11) = χ(2b) and χ(u2) = χ(11a). Applying Proposition 1.5, we obtain

µ1(u, χ2, ∗) =
1
22 (γ1 + 1) > 0; µ2(u, χ2, ∗) =

1
22 (−γ1 − 1) > 0;

µ0(u, χ3, ∗) =
1
22 (γ2) > 0; µ11(u, χ3, ∗) =

1
22 (−γ2) > 0;

µ1(u, χ3, ∗) =
1
22 (γ2 + 11) > 0; µ0(u, χ4, ∗) =

1

22
(γ3) > 0;

µ11(u, χ4, ∗) =
1
22 (−γ3) > 0.

It follows that there are no possible integer solutions for (ν2a, ν11a, ν2b).

Case 12 : Let u ∈ V (ZG) where |u| = 33. Using Propositions 1.2 and 1.3, ν3a +

ν11a = 1. Now χ(u11) = χ(3a) and χ(u3) = χ(11a). Applying Proposition 1.5, we

obtain

µ11(u, χ3, ∗) =
1
33 (γ + 2) > 0; µ0(u, χ3, ∗) =

1
33 (−2γ − 4) > 0
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where γ = 20ν3a + 10ν11a. It follows that there are no possible integer solutions for

(ν3a, ν11a).

Case 13 : Let u ∈ V (ZG) where |u| = 55. Using Propositions 1.2 and 1.3, ν5a +

ν5b + ν11a = 1. Consider the cases χ(u11) = χ(5k) where k ∈ {a, b}. Applying

Proposition 1.5, we obtain

µ11(u, χ3, ∗) =
1
55 (+10ν11a) > 0; µ0(u, χ3, ∗) =

1
55 (−40ν11a) > 0;

µ1(u, χ3, ∗) =
1
55 (−ν11a + 11) > 0.

It follows that there are no possible integer solutions for (ν5a, ν5b, ν11a) and this

completes the proof. �

3. Proof of Theorem 2

Let G = Aut(PSL(2, 13)). Clearly, |G| = 2184 = 23 ·3 ·7 ·13 and exp(G) = 1092 =

22 · 3 · 7 · 13. Initially for any torsion unit of V (ZG) of order k we have that

ν2a+ν7a+ν7b+ν7c+ν14a+ν14b+ν14c+ν2b+ν3a+ν6a+ν4a+ν12a+ν12b+ν13a = 1.

In order to prove that the Zassenhaus conjecture holds, it is necessary to consider

units of order 2, 3, 4, 6, 7, 12, 13, 14, 21, 26, 28, 39 and 91, by Proposition 1.1. We

shall now separately consider units of V (ZG) of order 2, 3, 4, 6, 7, 13, 21, 26, 39

and 91. Note that we are not considering torsion units of V (ZG) of order 12, 14 and

28 due to their complicated computations.

Case 1 : Let u ∈ V (ZG) where |u| = 2. Using Propositions 1.2 and 1.3, ν2a +

ν2b = 1. Applying Proposition 1.5, we obtain

µ1(u, χ2, ∗) =
1
2 (γ + 1) > 0; µ0(u, χ2, ∗) =

1
2 (−γ + 1) > 0

where γ = ν2a − ν2b. Clearly, γ ∈ {1,−1}. It follows that the only possible integer

solutions for (ν2a, ν2b) are (0, 1) and (1, 0). Therefore, u is rationally conjugated to

some element g ∈ G by Proposition 1.4.

Case 2 : Let u ∈ V (ZG) where |u| = 3. By Proposition 1.2, νkx = 0 for all

kx ∈ {2a, 7a, 7b, 7c, 14a, 14b, 14c, 2b, 6a, 4a, 12a, 12b, 13a}. Therefore, u is rationally

conjugated to some element g ∈ G by Proposition 1.4.

Case 3 : Let u ∈ V (ZG) where |u| = 4. Using Propositions 1.2 and 1.3, ν2a+ν2b+

ν4a = 1. We shall now separately consider the following cases involving χ(u2):

⊲ χ(u2) = χ(2a). It follows that there are no possible integer solutions for

(ν2a, ν2b, ν4a) since, µ1(u, χ2, 0) = 1/2.
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⊲ χ(u2) = χ(2b). Applying Proposition 1.5, we obtain

µ0(u, χ2, ∗) =
1
4 (−2γ1 + 2) > 0; µ2(u, χ2, ∗) =

1
4 (2γ1 + 2) > 0;

µ0(u, χ3, ∗) =
1
4 (−4ν2a + 12) > 0; µ2(u, χ3, ∗) =

1
4 (4ν2a + 12) > 0

where γ1 = ν2a − ν2b + ν4a. Clearly γ1 ∈ {−1, 1} and ν2a ∈ {k; −3 6 k 6 3}. It

follows that the possible integer solutions for (ν2a, ν2b, ν4a) are listed in Theorem 1.2.

Case 4 : Let u ∈ V (ZG) where |u| = 6. Using Propositions 1.2 and 1.3, ν2a+ν2b+

ν3a+ν6a = 1. Let γ1 = 2ν2b−ν3a−ν6a, γ2 = ν2b−ν3a+ν6a, γ3 = −4ν2b+2ν3a+2ν6a

and γ4 = −4ν2b − 2ν3a + 2ν6a. We shall now separately consider the following cases

involving χ(un) for n ∈ {2, 3}:

⊲ χ(u3) = χ(2a) and χ(u2) = χ(3a). Applying Proposition 1.5, we obtain

µ0(u, χ11, ∗) =
1
6 (2γ1 + 12) > 0; µ1(u, χ11, ∗) =

1
6 (γ1 + 15) > 0;

µ3(u, χ13, ∗) =
1
6 (4γ2 + 18) > 0; µ0(u, χ13, ∗) =

1
6 (−4γ2 + 18) > 0;

µ3(u, χ11, ∗) =
1
6 (γ3 + 12) > 0.

Clearly, γ1 ∈ {−6,−3, 0, 3, 6} and γ2 ∈ {−3, 0, 3}. It follows that the only possible

integer solutions for (ν2a, ν2b, ν3a, ν6a) are (1,−1, 0, 1) and (1, 1, 0,−1).

⊲ χ(u3) = χ(2b) and χ(u2) = χ(3a). Applying Proposition 1.5, we obtain

µ0(u, χ11, ∗) =
1
6 (2γ1 + 14) > 0; µ1(u, χ11, ∗) =

1
6 (γ1 + 13) > 0;

µ2(u, χ13, ∗) =
1
6 (2γ2 + 10) > 0; µ0(u, χ13, ∗) =

1
6 (−4γ2 + 16) > 0;

µ3(u, χ11, ∗) =
1
6 (γ3 + 10) > 0; µ0(u, χ14, ∗) =

1
6 (γ4 + 10) > 0.

Clearly, γ1 ∈ {−7,−4,−1, 2, 5} and γ2 ∈ {−5,−2, 1, 4}. It follows that the only poss-

ible integer solutions for (ν2a, ν2b, ν3a, ν6a) are (0, 2, 0,−1), (0, 0, 0, 1), (0,−2, 0, 3),

(0, 0, 3,−2) and (0,−2, 3, 0).

Case 5 : Let u ∈ V (ZG) where |u| = 7. Using Propositions 1.2 and 1.3, ν7a+ν7b+

ν7c = 1. Applying Proposition 1.5, we obtain

µ1(u, χ3, ∗) =
1
7 (γ1 + 12) > 0; µ2(u, χ3, ∗) =

1
7 (γ2 + 12) > 0;

µ3(u, χ3, ∗) =
1
7 (γ3 + 12) > 0

where γ1 = −5ν7a + 2ν7b + 2ν7c, γ2 = 2ν7a + 2ν7b − 5ν7c and γ3 = 2ν7a − 5ν7b +

2ν7c. Clearly, γ ∈ {1,−1}. It follows that the only possible integer solutions for

(ν7a, ν7b, ν7c) are listed in Theorem 1.2.

Case 6 : Let u ∈ V (ZG) where |u| = 13. By Proposition 1.2, νkx = 0 for all

kx ∈ {2a, 7a, 7b, 7c, 14a, 14b, 14c, 2b, 3a, 6a, 4a, 12a, 12b}. Therefore, u is rationally

conjugated to some element g ∈ G by Proposition 1.4.

570



Case 7 : Let u ∈ V (ZG) where |u| = 21. Using Propositions 1.2 and 1.3, ν7a +

ν7b + ν7c + ν3a = 1. Consider the cases χ(u7) = χ(3a) and χ(u3) = m1χ(7a) +

m2χ(7a) +m3χ(7a). Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
21 (4γ1 + 14) > 0; µ7(u, χ3, ∗) =

1
21 (−2γ1 + k1) > 0;

µ6(u, χ3, ∗) =
1
21 (2γ2 + k2) > 0; µ1(u, χ3, ∗) =

1
21 (−γ2 + k3) > 0;

µ9(u, χ3, ∗) =
1
21 (2γ3 + k4) > 0; µ2(u, χ3, ∗) =

1
21 (−γ3 + k5) > 0;

µ0(u, χ9, ∗) =
1
21 (γ4 + k6) > 0

where γ1 = ν7a + ν7b + ν7c, γ2 = 2ν7a + 2ν7b − 5ν7c, γ3 = 2ν7a − 5ν7b + 2ν7c and

γ4 = −12ν7a − 12ν7b − 12ν7c + 12ν3a for all possible mi, kj . It follows that there are

no possible integer solutions for (ν7a, ν7b, ν7c, ν3a) for all possible mi, kj . Note that

all possible values for mi, kj are listed in Table 1.

(m1,m2,m3) (k1, k2, k3, k4, k5, k6) (m1,m2,m3) (k1, k2, k3, k4, k5, k6)
(1, 0, 0) (7, 14, 7, 14, 14, 9) (0, 1, 0) (14, 14, 14, 14, 14, 9)

(0, 0, 1) (14, 7, 14, 14, 7, 9) (2,−3, 2) (0, 0, 0, 14, 0, 9)

(2,−2, 1) (0, 7, 0, 14, 7, 9) (1,−2, 2) (7, 0, 7, 14, 0, 9)

(2,−1, 0) (0, 14, 0, 14, 14, 9) (1,−1, 1) (7, 7, 21, 7, 14, 7)

(0,−1, 2) (14, 0, 14, 14, 0, 9) (2, 0,−1) (0, 21, 0, 14, 21, 9)

(−1, 0, 2) (21, 0, 21, 14, 0, 9) (2, 1,−2) (0, 28, 0, 14, 28, 9)

(1, 1,−1) (7, 21, 7, 7, 14, 21) (−1, 1, 1) (21, 7, 7, 21, 14, 7)

(−2, 1, 2) (28, 0, 28, 14, 0, 9) (2, 2,−3) (0, 35, 0, 14, 35, 9)

(1, 2,−2) (7, 28, 7, 14, 28, 9) (0, 2, 1) (14, 21, 14, 14, 21, 9)

(−1, 2, 0) (21, 14, 21, 14, 14, 9) (−2, 2, 1) (28, 7, 28, 14, 7, 9)

(−3, 2, 2) (35, 0, 35, 14, 0, 9)

Table 1. Possible values for mi, kj-units of order 21.

Case 8 : Let u ∈ V (ZG) where |u| = 26. Using Propositions 1.2 and 1.3, ν2a +

ν2b + ν13a = 1. Let γ1 = −ν2a + ν2b + ν13a, γ2 = 2ν2a + ν13a and γ3 = 2ν2a − ν13a.

We shall now separately consider the following cases involving χ(un) for n ∈ {2, 13}:

⊲ χ(u13) = χ(2a) and χ(u2) = χ(13a). Applying Proposition 1.5, we obtain

µ1(u, χ2, ∗) =
1
26 (γ1 + 1) > 0; µ2(u, χ2, ∗) =

1
26 (−γ1 − 1) > 0;

µ0(u, χ3, ∗) =
1
26 (6γ2 − 1) > 0; µ13(u, χ3, ∗) =

1
26 (−6γ2 + 1) > 0.

It follows that there are no possible integer solutions for (ν2a, ν2b, ν13a).
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⊲ χ(u13) = χ(2b) and χ(u2) = χ(13a). Applying Proposition 1.5, we obtain

µ1(u, χ2, ∗) =
1
26 (γ1 − 1) > 0; µ2(u, χ2, ∗) =

1
26 (−γ1 + 1) > 0;

µ0(u, χ6, ∗) =
1
26 (γ3) > 0; µ13(u, χ6, ∗) =

1
26 (−γ3) > 0;

µ1(u, χ3, ∗) =
1
26 (−γ2 + 13) > 0.

It follows that there are no possible integer solutions for (ν2a, ν2b, ν13a).

Case 9 : Let u ∈ V (ZG) where |u| = 39. Using Propositions 1.2 and 1.3, ν3a +

ν13a = 1. Now χ(u13) = χ(3a) and χ(u3) = χ(13a). Applying Proposition 1.5, we

obtain

µ13(u, χ3, ∗) =
1
39 (+12ν13a) > 0; µ0(u, χ3, ∗) =

1
39 (−24ν13a) > 0;

µ1(u, χ3, ∗) =
1
39 (−ν13a + 13) > 0.

It follows that there are no possible integer solutions for (ν3a, ν13a).

Case 10 : Let u ∈ V (ZG) where |u| = 91. Using Propositions 1.2 and 1.3, ν7a +

ν7b+ ν7c+ ν13a = 1. Consider the cases χ(u13) = m1χ(7a)+m2χ(7b)+m3χ(7c) and

χ(u7) = χ(13a) where

(m1,m2,m3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−3, 2), (2,−2, 1), (1,−2, 2),

(2,−1, 0), (1,−1, 1), (0,−1, 2), (2,−1, 0), (−1, 0, 2), (2, 1,−2),

(1, 1,−1), (−1, 1, 1), (−2, 1, 2), (2, 2,−3), (1, 2,−2), (0, 2,−1)}.

Applying Proposition 1.5, we obtain

µ0(u, χ3, ∗) =
1
91 (24γ + 2) > 0; µ7(u, χ3, ∗) =

1
91 (−2γ + 15) > 0

where γ = ν7a + ν7b + ν7c − 3ν13a. It follows that there are no possible integer

solutions for (ν7a, ν7b, ν7c, ν13a).

We will now consider the prime graph of G = Aut(PSL(2, 13)). Clearly [2, 3] and

[2, 7] are adjacent in π(G) and consequently adjacent in π(V (ZG)). However, [2, 13],

[3, 7], [3, 13] and [7, 13] are not adjacent in π(G). Clearly π(G) = π(V (ZG)), since

there are no torsion units of order 21, 26, 39 and 91 in V (ZG). This completes the

proof. �
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