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Abstract. In this paper, we study the structure of polycyclic groups admitting an au-
tomorphism of order four on the basis of Neumann’s result, and prove that if α is an
automorphism of order four of a polycyclic group G and the map ϕ : G → G defined by
gϕ = [g,α] is surjective, then G contains a characteristic subgroup H of finite index such
that the second derived subgroup H ′′ is included in the centre of H and CH(α

2) is abelian,
both CG(α

2) and G/[G, α2] are abelian-by-finite. These results extend recent and classical
results in the literature.
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1. Introduction and main results

An automorphism α of a group G is called regular if it has no nontrivial fixed

points.

The classical result concerning a regular automorphism of order 2 in a finite group

is due to Burnside [1]: a finite group G admits a regular automorphism of order 2 if

and only if G is abelian of odd order.

For a regular automorphism of order 3 of an arbitrary group, Neumann [8] proved

the following result.

Proposition 1.1. Let G be a group and α a regular automorphism of order 3

of G. If the map ϕ : G → G (g 7→ [g, α]) is surjective, then G is nilpotent of class at

most 2.
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For a regular automorphism of prime order of a finite group, Thompson [13]

proved that if a finite group G has a regular automorphism of prime order, then

G is nilpotent. Deeper results concerning regular automorphisms can be found in [5]

and [12].

Abandoning the condition of regularity, we consider an arbitrary automorphism

of order 2 of an arbitrary group, and easily obtain the following result.

Proposition 1.2. Let G be a group and α an automorphism of order 2 of G. If

the map ϕ : G → G (g 7→ [g, α]) is surjective, then G is abelian.

P r o o f. Since ϕ is surjective, for all x ∈ G there exists some g ∈ G such that

x = [g, α] = g−1gα. Moreover,

xα = (g−1gα)α = (g−1)αgα
2

= (gα)−1g = x−1.

Thus for any g1, g2 ∈ G, we have (g−1
1 g−1

2 )α = (g−1
1 g−1

2 )−1 = g2g1 and (g−1
1 g−1

2 )α =

(g−1
1 )α(g−1

2 )α = g1g2. Obviously, g1g2 = g2g1. Hence G is abelian. �

In [11], we treat the general case, and obtain the result that if α is an automorphism

of prime order of a polycyclic group G and the map ϕ : G → G defined by gϕ = [g, α]

is surjective, then G is nilpotent-by-finite. In this paper, we are interested in an

arbitrary automorphism of order 4 of a polycyclic group, and obtain the following

result which extends Kovács’ result [6].

Theorem 1.1. Let G be a polycyclic group and α an automorphism of order 4

of G. If the map ϕ : G → G (g 7→ [g, α]) is surjective, thenG contains a characteristic

subgroup H of finite index such that

(i) the second derived subgroup H ′′ is included in the centre of H ,

(ii) CH(α2) is abelian.

Let α be an automorphism of a group G. Obviously, the centralizer CG(α) and the

commutator subgroup [G,α] = 〈g−1gα ; g ∈ G〉 are normal α-invariant subgroups

of G. It is well known that the centralizer CG(α) in some sense has consequences

on G, and in particular on G/[G,α]. For example, Endimioni and Moravec [3]

proved that if α is an automorphism of a polycyclic group G and CG(α) is finite,

then G/[G,α] is finite.

In this paper, we are interested in the case where the automorphism α is of order 4,

and decide the structure of CG(α
2) and G/[G,α2]. In Section 3, we shall see that

Lemma 3.7 in some sense generalizes Endimioni and Moravec’s result mentioned

above.
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Theorem 1.2. Let G be a polycyclic group and α an automorphism of order 4

of G. If the map ϕ : G → G (g 7→ [g, α]) is surjective, then the following hold:

(i) CG(α
2) is abelian-by-finite,

(ii) G/[G,α2] is abelian-by-finite.

2. Proof of Theorem 1.1

Lemma 2.1. Let G be a group and α an automorphism of finite order n of G.

If the map ϕ : G → G (g 7→ [g, α]) is surjective, then for all x ∈ G, we have

xxαxα2

. . . xαn−1

= 1.

P r o o f. Since the map ϕ is surjective, for all x ∈ G there exists some g ∈ G such

that x = [g, α]. Thus

xxαxα2

. . . xαn−1

= [g, α][g, α]α[g, α]α
2

. . . [g, α]α
n−1

= g−1gα
n

= g−1g = 1.

The proof is completed. �

Lemma 2.2. Let G be a polycyclic group and α an automorphism of finite order n

of G. If the map ϕ : G → G (g 7→ [g, α]) is surjective, then G contains a characteristic

subgroup H of finite index such that for each prime q ∤ n

(i)
⋂

t>0
Hqt = 1,

(ii) for any positive integer t, the automorphism αt induced by α on H/Hqt is

regular.

P r o o f. (i) By a result of Shmel’kin [10], G contains a normal subgroup N of

finite index which is a residually finite q-group for every prime q. Denote by e the

exponent of G/N . Then Ge 6 N . Put H = Ge. Then G contains a characteristic

subgroupH of finite index such thatH is a residually finite q-group for every prime q.

Thus for q ∤ n and positive integer t, H/Hqt is a finite q-group and
⋂

t>0
Hqt = 1.

(ii) Consider an element h̄ ∈ H/Hqt such that h̄αt = h̄. By Lemma 2.1, for all

h ∈ H 6 G we have hhαhα2

. . . hαn−1

= 1. In H/Hqt , the following relations hold:

h̄h̄αt h̄α2

t . . . h̄αn−1

t = h̄n = 1.

Since q ∤ n, it follows that h̄ = 1, as required. �
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P r o o f of Theorem 1.1. (i) Choose q 6= 2. According to (ii) of Lemma 2.2,

G contains a characteristic subgroup H of finite index such that H/Hqt has a regular

automorphism of order dividing 4. By Kovács’ result [6], the second derived subgroup

(H/Hqt)′′ is included in the centre ofH/Hqt . It follows that [(H/Hqt)′′, H/Hqt ] = 1.

In other words, [H ′′Hqt , H ] 6 Hqt . This implies that

[H ′′, H ] 6 [H ′′Hqt , H ] 6 Hqt .

Consequently,

[H ′′, H ] 6
⋂

t>0

Hqt = 1.

That is, H ′′ 6 Z(H).

(ii) Set ϕ = α2. It suffices to prove that CH(ϕ) is abelian. Choose q 6= 2 and

consider CH/Hqt (ϕ̄).

If CH/Hqt (ϕ) = 1, then ϕ is a regular automorphism of order 2 of H/Hqt . By

Burnside’s result [1], H/Hqt is abelian. Hence for any h̄1, h̄2 ∈ H = H/Hqt we

have [h̄1, h̄2] = 1. Namely, [h1, h2] ∈ Hqt . But
⋂

t>0
Hqt = 1, thus [h1, h2] = 1 for

any h1, h2 ∈ H . This shows that H is abelian. It follows that CH(ϕ) is abelian. If

CH/Hqt (ϕ) 6= 1, then CH/Hqt (ϕ) is α-invariant, and thus α is an automorphism of

order 1 or 2 of CH/Hqt (ϕ). Observe that

CC
H/Hqt (ϕ)(α) 6 CH/Hqt (α) = 1,

and we have that α is a regular automorphism of CH/Hqt (ϕ). Since CH/Hqt (ϕ) 6= 1,

α is a regular automorphism of order 2 of CH/Hqt (ϕ). By Burnside’s result [1],

CH/Hqt (ϕ) is abelian. Noticing that

CH(ϕ)/CH(ϕ) ∩Hqt ≃ CH(ϕ)Hqt/Hqt 6 CH/Hqt (ϕ),

we obtain that CH(ϕ)/CH(ϕ) ∩ Hqt is abelian. So, for any elements h̄1, h̄2 ∈

CH(ϕ)/CH(ϕ) ∩ Hqt we have [h̄1, h̄2] = 1. It follows that [h1, h2] ∈ CH(ϕ) ∩

Hqt 6 Hqt . But
⋂

t>0
Hqt = 1, thus [h1, h2] = 1 for any h1, h2 ∈ CH(ϕ). That is

to say, CH(ϕ) is abelian. The proof is completed. �
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3. Proof of Theorem 1.2

Lemma 3.1. Let G be a polycyclic group and α an automorphism of finite order

n of G. If the map ϕ : G → G (g 7→ [g, α]) is surjective, then CG(α) is finite.

P r o o f. By Lemma 2.1, for all x ∈ CG(α) 6 G we have

xxαxα2

. . . xαn−1

= xn = 1.

This implies that the exponent of CG(α) is finite. Hence CG(α) is finite. �

Lemma 3.2. Let α be an automorphism of a polycyclic group G and H a normal

α-invariant finite subgroup of G. If CG/H(α) is abelian-by-finite, then CG(α) is

abelian-by-finite.

P r o o f. Notice that CG(α)/CG(α) ∩H ≃ CG(α)H/H 6 CG/H(α), and we have

CG(α) is finite-by-abelian-by-finite. We may assume that B is a normal finite-by-

abelian subgroup of CG(α) and CG(α)/B is finite. By Theorem 1.3.4 of [7], CG(α)

has a normal torsion-free subgroup A of finite index. Hence

CG(α)/A ∩B 6 CG(α)/A× CG(α)/B

is finite. Since A is torsion-free, A ∩B is abelian. Thus CG(α) is abelian-by-finite.

�

P r o o f of (i) of Theorem 1.2. Set ϕ = α2. It suffices to prove that CG(ϕ) is

abelian-by-finite. Denote by T the torsion subgroup of G. If CG/T (ϕ) = 1, then

ϕ is a regular automorphism of order 2 of G/T . By Theorem 1.1 of [2], G/T is

abelian-by-finite. Hence CG/T (ϕ) is abelian-by-finite. Since T is finite, it follows

from Lemma 3.2 that CG(ϕ) is abelian-by-finite. If CG/T (ϕ) 6= 1, then CG/T (ϕ)

is α-invariant, and thus α is an automorphism of order 1 or 2 of CG/T (ϕ). By

Lemma 3.1 and (ii) of Lemma 2.4 of [2], CG/T (α) is finite. Since

CCG/T (ϕ)(α) 6 CG/T (α),

CCG/T (ϕ)(α) is finite. If α is an automorphism of order 1 of CG/T (ϕ), then CG/T (ϕ)

is finite. By Theorem 1.1 of [2], G/T is abelian-by-finite. Hence CG/T (ϕ) is abelian-

by-finite. By Lemma 3.2, CG(ϕ) is abelian-by-finite. If α is an automorphism of

order 2 of CG/T (ϕ), it follows from Theorem 1.1 of [2] that CG/T (ϕ) is abelian-by-

finite. By Lemma 3.2, CG(ϕ) is abelian-by-finite. �
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Lemma 3.3. Let α be an automorphism of a polycyclic group G and H a normal

α-invariant finite subgroup of G. If CG(α) is abelian-by-finite, then CG/H(α) is

abelian-by-finite.

P r o o f. Set C/H = CG/H(α) and consider the map ϕ : C → H defined by

gϕ = g−1gα. On the one hand, for any x ∈ CG(α), we have

(xg)ϕ = (xg)−1(xg)α = g−1x−1xαgα = g−1gα.

This shows that ϕ maps all elements of the coset CG(α)g to g−1gα. On the other

hand, if g−1
1 gα1 = g−1

2 gα2 , then

(g1g
−1
2 )α = g1g

−1
2 ,

and thus g1g
−1
2 ∈ CG(α). This implies that CG(α)g1 = CG(α)g2. It follows that

|C : CG(α)| 6 |H | < ∞.

We may assume that A is a characteristic abelian subgroup of CG(α) of finite

index without loss of generality. Since C/A
/

CG(α)/A ≃ C/CG(α) and CG(α)/A is

finite, one has that C/A is finite. Noticing that

CG/H(α)
/

AH/H = C/H
/

AH/H ≃ C/AH 6 C/A,

we have that CG/H(α)
/

AH/H is finite. Since AH/H ≃ A/A∩H is abelian, CG/H(α)

is abelian-by-finite. �

Lemma 3.4. Let α be an automorphism of order 2 of an abelian group A. Then

for any x ∈ A, the element x2 can be written in the form x2 = ay−1yα, where

a ∈ CA(α) and y ∈ A.

P r o o f. Consider an element x ∈ A and put a = xxα. Then a ∈ CA(α). Obvi-

ously, x−2a = x−1xα ∈ [A,α]. Set u = x−2a. Then x2 = au−1, with a ∈ CA(α) and

u−1 ∈ [A,α]. Since A is abelian, u−1 is of the form y−1yα. The proof is completed.

�

Lemma 3.5. Let α be an automorphism of order 2 of a polycyclic group G and

A a torsion-free normal α-invariant abelian subgroup of G. If CG(α) is abelian-by-

finite, then CG/A(α) is abelian-by-finite.

P r o o f. Put A0 = A2 and denote by α0 the automorphism induced by α onG/A0.

Consider an element x ∈ G such that xA0 ∈ CG/A0
(α0). Then xα = xh for some

h ∈ A0. By Lemma 3.4, h = ay−1yα, where a ∈ CA(α) and y ∈ A. Thus xα =
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xay−1yα. Note that xα2

= xa2y−1yα
2

, and we have a2 = 1. Since A is torsion-free,

a = 1. Clearly, xα = xy−1yα. It follows that (xy−1)α = xy−1, hence v = xy−1 ∈

CG(α) and so x = vy ∈ CG(α)A. This implies that

CG/A0
(α0) 6 CG(α)A/A0 = CG(α)A0/A0 · A/A0.

Set B = CG(α) ∩ A0. Then CG(α)/B ≃ CG(α)A0/A0. We can assume A1 is

a characteristic abelian subgroup of CG(α) of finite index. Observe that

(CG(α)/B)
/

(A1/A1 ∩B) ≃ (CG(α)/B)
/

(A1B/B) ≃ CG(α)/A1B 6 CG(α)/A1,

and we have that CG(α)/B is abelian-by-finite. It is easy to see that CG/A0
(α0) is

abelian-by-finite. But α0 induces the automorphism α on G/A and A/A0 is finite.

Consequently, it follows from Lemma 3.3 that CG/A(α) is abelian-by-finite. �

Lemma 3.6. Let α be an automorphism of a group G. If [G,α] is finite, then

the index of CG(α) in G is finite.

P r o o f. Denote by n the order of [G,α] and consider n+1 elements g1, g2, . . . , gn+1

in G. Therefore, among the elements

g−1
1 gα1 , g

−1
2 gα2 , . . . , g

−1
n+1g

α
n+1

at least two coincide. If g−1
i gαi = g−1

j gαj (i, j ∈ {1, 2, . . . , n + 1}, i 6= j), then

(gig
−1
j )α = gig

−1
j , and so gig

−1
j ∈ CG(α). Hence |G : CG(α)| 6 n. �

Lemma 3.7. Let α be an automorphism of order 2 of a polycyclic group G. If

CG(α) is abelian-by-finite, then G/[G,α] is abelian-by-finite.

P r o o f. We proceed by induction on the Hirsch length h(G) of G. The re-

sult is obvious when h(G) = 0, so suppose that h(G) > 0. By Lemma 3.6, if

[G,α] is finite, then G/CG(α) is finite. It follows that G/CG(α)[G,α] is finite.

Since CG(α) is abelian-by-finite, G/[G,α] is abelian-by-finite. Therefore, we can

assume that [G,α] is infinite. By Theorem 5.4.15 of [9], [G,α] contains a non-

trivial torsion-free characteristic abelian subgroup A. It follows from Lemma 3.5

that CG/A(α) is abelian-by-finite. Since h(G/A) < h(G), we deduce from the induc-

tive hypothesis that G/A
/

[G/A,α] is abelian-by-finite. But [G/A,α] = [G,α]/A and

(G/A)
/

([G,α]/A) ≃ G/[G,α], hence G/[G,α] is abelian-by-finite. �

P r o o f of (ii) of Theorem 1.2. Set ϕ = α2. By Part (i) of Theorem 1.2, CG(ϕ) is

abelian-by-finite. Thus the second part of Theorem 1.2 follows from Lemma 3.7. �
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