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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 2 , P AGES 2 4 1 – 2 5 7

IMPULSIVE STABILIZATION AND SYNCHRONIZATION
OF UNCERTAIN FINANCIAL HYPERCHAOTIC SYSTEMS

Song Zheng

In this paper the issue of impulsive stabilization and synchronization of uncertain financial
hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive
control theory, some less conservative and easily verified criteria for the stabilization and syn-
chronization of financial hyperchaotic systems are derived. The control gains and impulsive
intervals can be variable. Moreover, the boundaries of the stable region are also estimated
according to the equidistant impulse interval. Theoretical analysis and numerical simulations
are shown to demonstrate the validity and feasibility of the proposed method.
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Classification: 34D06, 34D35, 34C15

1. INTRODUCTION

Since Pecora and Carrol ([18]) introduced a method to synchronize two identical chaotic
systems with different initial conditions, synchronization in chaotic dynamic systems
has received particularly attention in various fields including secure communication,
chemical reactions, biological systems, information science, plasma technologies, ([2, 5,
15, 19]) etc. In the past two decades, many effective control techniques have also been
developed for synchronization of chaotic systems, such as linear feedback control ([16]),
nonlinear feedback control ([17]), time-delay feedback control ([10]), adaptive control
([22]), impulsive control ([29]), and intermittent control ([7]), the cited references therein.

In comparison with continuous control of chaos, the discontinuous control method,
which includes impulsive control, occasional bang-bang control, occasional proportional
feedback and intermittent control, has attracted more interest recently due to its easy
implementation in engineering control. The main idea of impulsive control ([13, 23, 24])
is to change the states of a system by the sudden jumps instantaneously. Impulsive
control may provide a relatively highly efficient method for some cases in which the sys-
tems can not endure continuous disturbance. As a matter of fact, impulsive phenomena
exist in many biological science and mechanics fields in practice. What is more impor-
tant, impulsive control allows synchronization between chaotic systems only by small
impulses being sent to the received systems at the discrete impulsive instances and

DOI: 10.14736/kyb-2016-2-0241

http://doi.org/10.14736/kyb-2016-2-0241


242 S. ZHENG

which can reduce the information redundancy in the transmitted signal and increase
robustness against the disturbances. Recently, impulsive control and synchronization
of chaotic systems have been deeply studied, and many valuable results have been ob-
tained ([6, 11, 12, 25, 26, 27, 31]). Yang and Chua ([25]) presented a theory of impulsive
synchronization of two chaotic systems and a promising application of impulsive syn-
chronization of chaotic systems to a secure digital communication scheme. Yang et
al. used the theory of comparison system and impulsive differential equations to study
the stabilization and synchronization of Lorenz system in ([26]) and ([27]), respectively.
Itoh et al. ([11]) presented some experimental results on impulsive synchronization of
chaotic circuits, which suggests that various applications of impulsive control and syn-
chronization of chaotic system are feasible. Furthermore, they studied the impulsive
control for synchronization of some continuous systems under the assumption that the
synchronization errors are sufficiently small ([12]). Impulsive synchronization of uncer-
tain chaotic systems was studied via adaptive strategy, which can relax the restrictions
on the impulsive interval ([6, 31]).

As we all know, in nonlinear areas, researchers are striving to utilize the theory of
nonlinear dynamics, especially the chaos theory, to study the complexity of economic
and financial systems in recent years ([1, 3, 4, 8, 9, 14, 20, 21, 28, 30, 32]). Since Strotz
et al. ([21]). has done the pioneering work in this area, various economics chaotic
models have been proposed, such as the Kaldorian model ([20]), the IS-LM model ([9]),
the hyperchaotic finance systems ([8, 28]). Economic chaotic systems are inevitably
influenced by external disturbances stemmed from environmental interference ([30]),
external disturbances may lead to the destabilization of economic and financial chaotic
systems and cause undesirable results. So, control and synchronization ([1, 3, 4, 14, 32])
of the financial chaotic or hyperchaotic system have more significance. To the best of
our knowledge, the stabilization and synchronization of uncertain financial hyperchaotic
system with parameters perturbation is seldom discussed via impulsive control, where
both control gains and impulsive intervals are variable. Therefore, it is necessary to study
the global stabilization of economic and financial chaotic systems under the presence of
external disturbance.

Motivated by the above discussions, the aim of this paper is to discuss the asymp-
totical stabilization and synchronization of uncertain financial hyperchaotic system with
parameters perturbation. Based on the comparison theorem, we propose an impulsive
law with variable control gains and impulsive intervals to achieve the stabilization and
synchronization of uncertain financial hyperchaotic system. Furthermore, simulations
are given to illustrate the effectiveness of the proposed method. The main contribu-
tions of this paper can be listed as follows: (a) based on the comparison theorem, the
asymptotical stability of the uncertain financial hyperchaotic system is obtained, the
method can be extended to other financial chaotic (hyperchaotic) systems. (b) Based on
the novel financial hyperchaotic system, the synchronization of two uncertain financial
chaotic systems is investigated, which can be employed in some other financial chaotic
(hyperchaotic) systems.

The organization of this paper is as follows: In section 2, the theoretical model, some
definitions and lemmas are presented. In section 3, the asymptotical stabilization of
the financial chaotic system is analyzed, moreover, impulsive synchronization of two
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financial chaotic systems is also investigated. Two examples are provided to illustrate
the effectiveness of the obtained scheme in section 4. Conclusion is given in the final
section.

2. PRELIMINARIES

In this section, some preliminaries including the novel hyperchaotic system model ([28]),
some necessary definitions and lemmas are presented, which are used throughout this
paper.

Consider the following impulsive system:
ẋ(t) = f(t, x), t 6= tk,

∆x = Ik(x), t = tk,

x(t+0 ) = x(t0), t0 ≥ 0, k = 1, 2, . . . ,

(1)

where x(t) ∈ Rn is the state variable, f : I × Ω → Rn is right continuous function.
x(t−k ) = limt→t−k

x(t) and x(t+k ) = x(tk). The instant sequence tk satisfies 0 < t1 <

t2 < · · · < tk < · · · , tk → ∞ as k → ∞. Ik : Rn → Rn are continuous functions,
∆x(tk) = x(t+k )− x(t−k ).

Definition 2.1. Let V : Rn ×R+ → R+, then V is said to belong to class υ0 if

(i) V is continuous in each of the sets Rn×[tk−1, tk), and for each x ∈ Rn, k = 1, 2, . . . ,
lim

(y,t)→(x,t−k )
V (y, t) = V (x, t−k ) exists,

(ii) V is locally Lipschitzian in x ∈ Rn, and V (x, t) = 0 if and only if x = 0.

From this definition, one can see that a function V associated with the impulsive
system (1) is similar to a Lyapunov function for the stability analysis of an ordinary
differential equation.

Definition 2.2. For (x, t) ∈ Rn × [tk−1, tk), the right and upper Dini’s derivative of
V (x, t0) ∈ V0 is defined as follows:

D+V (x, t) = lim
h→0

sup
1
h

[V (x+ hf(x, t), t+ h)− V (x, t)].

Definition 2.3. Let V ∈ υ0 and assume that{
D+V (x, t) ≤ g(t, V (x, t)), t 6= tk,

V (x+ ∆x, t) ≤ Ψk(V (x, t)), t = tk,
(2)

where g : R+ × R+ → R is continuous and Ψk : R+ → R+ is nondecreasing. Then the
following system: 

ω̇ = g(ω, t), t 6= tk,

ω(t+k ) ≤ Ψk(ω(tk)), t = tk,

ω(t+0 ) = ω0 ≥ 0,

(3)

is the comparison system of system (1).
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Definition 2.4. S(ρ) = {x ∈n |‖x‖} where ‖ · ‖ denotes the Euclidean norm on Rn.

Lemma 2.5. (Yang [23]) Assume that the following conditions are satisfied

(i) V : S(ρ) × R+ → R+, ρ > 0, V ∈ υ0, D
+V (x, t) ≤ g(V (x, t), t), t 6= tk. Where

g : R+ × R+ → R, g(0, t) = 0 and g(·) is continuous function in R+ × [tk−1, tk)
and for each x ∈ Rn, k = 1, 2, . . . .

(ii) there exists a ρ0 > 0 such that X ∈ S(ρ0) implies that X + Ik(X) ∈ S(ρ0) for all
k, V (X + Ik(X), t) ≤ Ψk[V (x, t)], t = tk, X ∈ S(ρ0).

(iii) β(‖X‖) ≤ V (X, t) ≤ α(‖X‖) on S(ρ0)×R+ where α(·), β(·) ∈ K ( K is the class
of continuous functions a : R+ → R+ such that a(0) = 0 ).

Then the stability properties of the trivial solution of comparison system (3) imply the
corresponding stability properties of the trivial solution of (1).

Lemma 2.6. (Yang [23]) Let g(ω, t) = λ̇(t)ω, λ ∈ C1[R+, R+], λ̇(t) ≥ 0, Ψk(ω) =
dkω, dk > 0 for all k ∈ N, then the origin of system (1) is asymptotically stable if
λ(tk+1) + ln(γdk) ≤ λ(tk), for all N, where γ > 1 is satisfied.

Lemma 2.7. Given any real matrices A,B of appropriate dimensions and a positive
scalar c > 0 the following inequality is satisfied:

ATB +BTA ≤ cATA+ c−1BTB.

P r o o f . For any real a 6= 0 , it is clear that we have

(aA− a−1B)T (aA− a−1B) = a2ATA−ATB −BTA+ a−2BTB ≥ 0.

Let a2 = c, the inequality is true. This completes the proof. �

The novel financial hyperchaotic system ([28]) can be described by the following
differential equations: 

ẋ1 = x3 + (x2 − a)x1 + x4

ẋ2 = 1− bx2 − x2
1

ẋ3 = −x1 − cx3

ẋ4 = −dx1x2 − kx4

(4)

in which a, b, c, d and k are constant parameters. The system (4) has three equilib-

rium points p0

(
0,

1
b
, 0, 0

)
and P1,2(±θ, k + ack

c(k − d)
,
∓θ
c
,

dθ(1 + ac)
cd− ck

) when the parame-

ters a, b, c, d and k satisfy
kb+ cd+ abck − ck

c(d− k)
> 0 and θ =

√
kb+ abck

c(d− k)
+ 1. When

a = 0.9, b = 0.2, c = 1.5, d = 0.2 and k = 0.17, the novel financial system (4) has hy-
perchaotic behavior, as shown in Figure 1. More dynamic behaviors have been analyzed
about the financial system (4) in ([28]).
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Fig. 1. The financial hyperchaotic attractor.
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3. MAIN RESULTS

In this section, simple but effective impulsive control is designed to control hyperchaos
to the three unstable equilibrium points p0 and p1,2. Since these equilibrium points are
not original, to analyze the asymptotical stabilization of system, we will transform these
equilibrium points to zero.

For the equilibrium point p0, we have a the following transformation:

X1 = x1

X2 = x2 −
1
b

X3 = x3

X4 = x4.

(5)

Then financial hyperchaotic system (4) is rewritten as follows:

Ẋ1 = X3 +
(
X2 +

1
b
− a
)
X1 +X4

Ẋ2 = −bX2 −X2
1

Ẋ3 = −X1 − cX3

Ẋ4 = −d
b
x1 − dX1X2 − kX4.

(6)

By decomposing the linear and nonlinear parts of the uncertain financial hyperchaotic
system in (6), we can rewrite it as

Ẋ = (A+ ∆A(t))X + f(X) (7)

where X = (X1, X2, X3, X4)T , ∆A(t) ∈ Rn×n parameters perturbation matrix bounded
by ∆AT (t)∆A(t) ≤ γ2In , A ∈ Rn×n is a system matrix, and f(X) is a continuous
nonlinear function,

A =


−1
b
− a 0 1 1

0 −b 0 0
−1 0 −c 0

−d
b

0 0 −k

 and f(x) =


X1X2

−X2
1

0
−dX1X2

 . (8)

The impulsively controlled financial hyperchaotic system is then given by{
Ẋ = (A+ ∆A(t))X + f(X), t 6= tk,

∆X = Ik(X) = BkX, t = tk, k ∈ N,
(9)

where Bk ∈ Rn×n is the impulses gain matrix, the impulses be separated by interval
tk+1−tk = δk. Since chaotic (hyperchaotic) signals are bounded, so there exists a positive
number M such that |X4| ≤M for all t.
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Remark 3.1. The implementation of the nonlinear controller in practical systems is
difficult due to the results of physical limitations. However, impulsive controller has a
relatively simple structure and is easy to stabilize the financial system. In an impulsive
control scheme, only the impulses are sent to the controlled system at the discrete
impulsive instance, which can reduce the information redundancy in the transmitted
signal, and increase the robustness against the disturbances and decrease the control
cost.

To establish the sufficient conditions for stability of impulsive differential systems, we
use the following theorem to guarantee that the uncertain financial hyperchaotic system
is asymptotically stabilized. Then, we have the following results.

Theorem 3.2. Let λ1 be the largest eigenvalue of AT +A, λk be the largest eigenvalue
of (I +Bk)T (I +Bk), λ = max(λk). If the following inequality holds

ln(ξλ) + (λ1 + ε1γ
2 + ε−1

1 + dM)δk ≤ 0, ξ > 1, (10)

then the origin of the impulsive controlled system (9) is asymptotically stable.

P r o o f . Select the following Lyapunov type function defined as

V (t, x) = XTX.

From the equality (9), for t 6= tk, we have

D+V (t,X) = ẊTX +XT Ẋ

= [(A+ ∆A(t))X + f(X)]TX +XT [(A+ ∆A(t))X + f(X)]

= XT (AT +A+ ∆AT (t) + ∆A(t))X + f(X)TX +XT f(X).

By using lemma 2.7, we have

(∆AT (t))X +XT (∆A(t)) ≤ ε1XT ∆AT (t)∆A(t)X + ε−1
1 XTX

≤ ε1γ2XTX + ε−1
1 XTX.

Then, we have

D+V (t,X) ≤ XT (AT +A+ ε1γ
2I + ε−1

1 I)X + 2dX1X2X4

≤ XT (AT +A+ ε1γ
2I + ε−1

1 I)X + dM(X2
1 +X2

2 )

≤ (λ1 + ε1γ
2 + ε−1

1 )XTX + dMXTX

= (λ1 + ε1γ
2 + ε−1

1 + dM)V (X, t).

Hence, condition 1 of Lemma 2.5 is satisfied with g(ω, t) = (λ1 + ε1γ
2 + ε−1

1 + dM)ω.
Since ‖X + Ik(X)‖ = ‖X +BkX‖ ≤ ‖I +Bk‖‖X‖ and ‖I +Bk‖ is finite, ρ0 > 0 and

X ∈ S(ρ0) such that X + Ik(X) ∈ S(ρ0) .
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On the other hand, when t = tk, we have

(D+V (X +BkX, t
+
k ) = XT (tk)(I +Bk)T (I +Bk)X(tk)

≤ λkX
T (tk)X(tk)

≤ λV (X, tk).

Hence condition 2 of Lemma 2.5 is satisfied with Ψk(ω) = λω. We can see that
condition 3 of Lemma 2.5 is also satisfied. It follows from Lemma 2.5 that the asymptotic
stability of system (9) is implied by the following comparison system:

ω̇ = (λ1 + ε1γ
2 + ε−1

1 + dM)ω, t 6= tk,

ω(t+k ) = λω(tk), t = tk,

ω(t+0 ) = ω(0) ≥ 0.

(11)

From (10), we have ln(ξb) +
∫ k+1

k
(λ1 + ε1γ

2 + ε−1
1 +dM) dt ≤ 0, ξ > 1, for all k ∈ N.

It follows from Lemma 2.6 that the trivial solution of (9) is asymptotically stable. �

Remark 3.3. heorem 3.2 gives the sufficient conditions for the asymptotic stability of
controlling the systems to the origin. The results are new and comprehensive for the
impulsive control of the financial hyperchaotic system. Furthermore, we can obtain
an estimate of the upper bound of impulsive interval δk, the largest impulsive interval

δmax = − ln(ξλ)
λ1 + ε1γ2 + ε−1

1 + dM
(0 < λ, λi < 1), depends on the value ξ, the parame-

ters perturbation ∆A(t) , the largest eigenvalue of (I + Bk)T (I + Bk), and the largest
eigenvalue of AT +A.

For the equilibrium point p1 , we have a the following transformation:

X1 = x1 − θ

X2 = x2 −
k + ack

ck − cd

X3 = x3 +
θ

c

X4 = x4 −
dθ(1 + ac)
cd− ck

.

(12)

Then financial hyperchaotic system (4) is rewritten as follows:

Ẋ1 =
k + ack

ck − cd
X1 + θX2 +X4 +X1X2

Ẋ2 = −2θX1 − bX2 −X2
1

Ẋ3 = −X1 − cX3

Ẋ4 =
dθ(1 + ac)
cd− ck

x1 − dθX2 − kX4 − dX1X2

(13)
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where A =


k + ack

ck − cd
θ 1 1

−2θ −b 0 0
−1 0 −c 0

dθ(1 + ac)
cd− ck

−dθ 0 −k

 and f(x) =


X1X2

−X2
1

0
−dX1X2

 .

For the equilibrium points p1,2 , the rest of proof is the same as that of theorem 3.2,
omitted here. And we have also similar as the results of theorem1.

In order to achieve financial synchronous development of developed and developing
countries or different areas, we need to solve more problems of synchronization of finan-
cial hyperchaotic systems.

Next, we are now in a position to discuss the impulsive synchronization of two fi-
nancial hyperchaotic systems. In order to deal with impulsive synchronization, we need
to design control input for a response system so that the response system achieves syn-
chronization with the drive system, provided that the two systems start from different
initial conditions. The drive system is given by (4), the response impulsively controlled
financial hyperchaotic system is defined as:{

ẏ = (A+ ∆A(t))y + f(y), t 6= tk,

∆y = Ik(e) = Bke, t = tk, k ∈ N,
(14)

where eT = (e1, e2, e3, e4) = (y1 − x1, y2 − x2, y3 − x3, y4 − x4) is the synchronization
error.

If we define

Ψ(x, y) = f(y)− f(x) =


y1y2 − x1x2

−y2
1 + x2

1

0
−dy1y2 + dx1x2

 . (15)

Then the error system of the impulsive synchronization is given by{
ė = (A+ ∆A(t))e+ Ψ(x, y), t 6= tk,

∆e = Ik(e) = Bke, t = tk, k ∈ N.
(16)

We use the following theorem to guarantee that the origin of (16) is asymptotically
stable.

Theorem 3.4. Let λ1 be the largest eigenvalue of AT + A , let λk be the largest
eigenvalue of (I +Bk)T (I +Bk). If the following inequality holds

ln(ξλ) + (λ1 + ε1γ
2 + ε−1

1 + 3N + 2Nd)δk ≤ 0, ξ > 1, (17)

then the origin of the synchronization error system (16) is asymptotically stable.

P r o o f . It is easy to know that the state variables of system (14) are bounded. We as-
sume that N = max |x1|, |x2|, |y1|. Observe that the error system (16) is almost the same
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as the system in (9) except Ψ(x, y). Similarly, let us construct the following Lyapunov
function

V (e, t) = eT e.

For t 6= tk, we have

D+V (t, e) = ėT e+ eT ė

= [(A+ ∆A(t))e+ Ψ(x, y)]T e+ eT [(A+ ∆A(t))e+ Ψ(x, y)]

= eT (AT +A+ ∆AT (t) + ∆A(t))e+ Ψ(x, y)T e+ eT Ψ(x, y)

≤ (λ1 + ε1γ
2 + ε−1

1 )eT e+ 2e1(y1y2 − x1x2)

+ 2e2(x2
1 − y2

1)− 2de4(y1y2 − x1x2)

≤ (λ1 + ε1γ
2 + ε−1

1 )eT e+ 2N(e21 + |e1||e2|) + 2dN(|e2||e4|+ |e1||e4|)
≤ (λ1 + ε1γ

2 + ε−1
1 )eT e+N(3e21 + e22) + dN(e21 + e22 + 2e24|)

≤ (λ1 + ε1γ
2 + ε−1

1 + 3N + 2Nd)V (t, e).

Hence, condition 1 of Lemma 2.5 is satisfied with g(ω, t) = (λ1 + ε1γ
2 + ε−1

1 + 3N +
2Nd)ω. The rest of proof is the same as the corresponding proof of theorem 3.2, omitted
here. �

Remark 3.5. If we assume {tk} is equidistant, and tk − tk−1 = δ, the estimate of the

upper bound of impulsive interval δmax = − ln(ξλ)
λ1 + ε1γ2 + ε−1

1 + 3N + 2Nd
, 0 < λ, λi < 1.

Remark 3.6. From conditions (10) and (17), we note that the more uncertain the
system parameters, the shorter the impulsive intervals should be designed. If the bounds
of parametric uncertainties are unavailable, Theorems 3.2 and 3.4 still provide theoretical
bases to ensure the stabilization and synchronization if the length of impulsive interval
is chosen to be small enough. This implies that all the impulsive schemes have certain
degree of robustness and can be applicable.

4. NUMERICAL SIMULATIONS

In this section, to verify theoretical results obtained in the previous section, the corre-
sponding numerical simulations will be performed. In the following numerical simula-
tions, the fourth-order Runge-Kutta method of Matlab is applied to solve the systems
with time step 0.001. Choose a = 0.9, b = 0.2, c = 1.5, d = 0.2 and k = 0.17 to ensure the
existence of hyperchaos in system (4). For simplicity, we assume tk is equidistant, and
tk− tk−1 = δ. Let ε1 = 1. In ([28]) typical phase portraits of this system are shown. It is
also shown that in hyperchaotic region of parameters, this system is a forced dissipative
system with bounded states (M ≤ 4) as t→∞.
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Example 4.1. Consider the impulsively controlled uncertain financial hyperchaotic sys-
tem (6):

Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


4.1 + 0.4 sin t 0 1 1

0 −0.2− 0.3 cos t 0 0
−1 0 −1.5− 0.5 cos t 0
−1 0 0 −0.17− 0.1 sin t



×


X1

X2

X3

X4

+


X1X2

−X2
1

0
−dX1X2

 (18)

From Eq.(18), we can get A =


4.1 0 1 1
0 −0.2 0 0
−1 0 −1.5 0
−1 0 0 −0.17

 , f(x) =


X1X2

−X2
1

0
−dX1X2


and ∆A(t) =


0.4 sin t 0 0 0

0 −0.3 cos t 0 0
0 0 −0.5 cos t 0

−0.5 sin t 0 0 −0.1 sin t

 , it is obvious that

∆AT (t)A(t) ≤ 0.3I. Choose Bk = B =


k 0 0 0
0 k 0 0
0 0 −1 0
0 0 0 −1

 , then (I + B)T (I + B) =


(k + 1)2 0 0 0

0 (k + 1)2 0 0
0 0 0 0
0 0 0 0

 , with the largest eigenvalue λ = (k + 1)2. Then estima-

tions of the boundaries of stable regions are given by

0 < δ < − ln ξ + lnλ
λ1 + ε1γ2 + ε−1

1 + dM
, − 2 < k < 0, (19)

where M = 4. By computing, we obtain easily λ1 = 8.2.
It is easy to find that the stable regions for different ξ are different, as shown in

Figure 2. The entire region below the curve corresponding to ξ = 1 is the predicted
stable region. When ξ →∞, the stable region shrinks to a line k = −1. For any selected
in the stable region, system (6) will be stabilized at the origin. For simulation, we take
the initial conditions (x1(0), x2(0), x3(0), x4(0)) = (−0.2, 0.1,−0.5, 0.3) and k = −1.5.
The simulation result is shown in Figure 3. There result shows that the stability has
been achieved via impulse.

Remark 4.2. Furthermore, we can observe two facts about the stabilizations via im-
pulse compared to the stabilizations of feedback control method ([28]): on the one hand,
they converge to zero faster; on the other hand, their fluctuation is smaller. If we adopt
the feedback control strategy, the other conditions are chosen as the mentioned above,
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Fig. 2. Estimate of the boundaries of stable region with different ξ

used in (19).

the state trajectories are shown in Figure 4. Clearly, from Figures 3 and 4, it is easy to
find that the stabilization with impulse have smaller fluctuation than those of feedback
control method. This proved that the impulsive control method is better than the feed-
back control method. To further explain the advantages of impulsive control method,
it is obvious that the stable time under the impulse control is shorter than that of the
feedback method. Those above results show the correctness and effectiveness of our
methods via impulse.

Example 4.3. Similarly, in this example the same parameters as those in example 4.1
are used. We choose the impulse matrix Bk as

Bk =


−0.5 −0.5 0 0

0 −0.5 0 0
0 0 −0.5 0
0 0 0 −0.5

 ,

then (I +B)T (I +B) =


0.25 −0.25 0 0
−0.25 0.5 0 0

0 0 0.25 0
0 0 0 0.25

 .
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Fig. 3. The trajectories of financial hyperchaotic system (6) under

impulsive control with δ = 0.01 and k = −1.5.

The initial conditions are given by (x1(0), x2(0), x3(0), x4(0)) = (−0.2, 0.1,−0.5, 0.3),
(y1(0), y2(0), y3(0), y4(0)) = (0.3,−0.2, 0.5,−0.3) and δ = 0.01. By computing λ =
0.6546, the other constants are the same as example 4.1. The simulation result is shown
in Figure 5. Figure 5 displays the synchronization error of the drive system and the
response system. Since the stability boundary estimates are the same as those in exam-
ple 4.1, we do not repeat them here. We can find that impulsive synchronization was
achieved rapidly.

Remark 4.4. Based on similar reasons as in example 4.1, we can get the same stability
boundary estimates of impulsive intervals. When the other parameters are the same
as those used in example 4.1, and the initial conditions of two financial hyperchaotic
systems are not the same, it is easy to see that impulsive synchronization is achieved
rapidly.

Remark 4.5. We have investigated the issue on the stabilization and synchronization
of financial hyperchaotic system via an impulsive method. In comparison with the
schemes reported in the literature ([3, 4, 28, 32]), our method does not require complex
mathematical analysis. Moreover, we can see that the stable conditions in this paper are
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Fig. 4. The trajectories of financial hyperchaotic system (6) under

feedback control.

simpler and less conservative. Simulation results in this paper show that the proposed
method is effective and less conservative.

5. CONCLUSION

In this paper, we have studied the stabilization and synchronization of uncertain financial
hyprechaotic systems with parameters perturbation. The control gains and impulsive
intervals are both variable. The conditions for global asymptotic stability have been de-
rived, and the upper bound of impulsive interval is also given. Some examples have been
shown, to verify the theoretical results and the effectiveness of the proposed synchroniza-
tion scheme. It is believed that the conditions are practical and the designed method
is effective. The main advantage of our results exists in the convenience of determining
the control gain from the criteria. The results obtained are helpful for stabilization
development of financial systems and financial markets. However, in the real world, we
will not only meet synchronization of two identical hyperchaotic financial systems, but
also encounter more often the one of two different hyperchaotic financial systems. So in
the future we will extend the proposed method to two different uncertain hyperchaotic
financial systems.
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Fig. 5. Time response of the synchronization of error system.
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[2] H. N. Agiza: Chaos synchronization of Lü dynamical system. Nonlinear Anal. 58 (2004),
11–20. DOI:10.1016/j.na.2004.04.002

[3] G. Cai, L. Yao, P. Hu, and X. Fang: Adaptive full state hybrid function pro-
jective synchronization of financial hyperchaotic systems with uncertain parame-
ters. Discrete and Continuous Dynamical Systems – Ser. B 18 (2013), 2019–2028.
DOI:10.3934/dcdsb.2013.18.2019

http://dx.doi.org/10.1155/2010/270646
http://dx.doi.org/10.1016/j.na.2004.04.002
http://dx.doi.org/10.3934/dcdsb.2013.18.2019


256 S. ZHENG

[4] G. Cai, L. Zhang, L. Yao. and X. Fang: Modified function projective synchronization of fi-
nancial hyperchaotic systems via adaptive impulsive controller with unknown parameters.
Discrete Dynamics in Nature and Society 2015 (2015), 1–11. DOI:10.1155/2015/572735

[5] T. L. Carroll and L. M. Pecora: Synchronizing chaotic circuits. IEEE Trans. Circuits
Syst. I 38 (1991), 453–456. DOI:10.1109/31.75404

[6] Y. S. Chen, R. R. Hwang, and C. C. Chang: Adaptive impulsive synchro-
nization of uncertain chaotic systems. Phys. Lett. A 374 (2010), 2254–2258.
DOI:10.1016/j.physleta.2010.03.046

[7] C. Deissenberg: Optimal control of linear econometric models with intermittent controls.
Econ. Plan. 16 (1980), 49–56. DOI:10.1007/bf00351465

[8] J. Ding, W. Yang, and H. Yao: A new modified hyperchaotic finance system and its
control. Int. J. Nonlinear Sci. 8 (2009), 59–66.

[9] L. Fanti and P. Manfredi: Chaotic business cycles and fiscal policy: an IS-LM
model with distributed tax collection lags. Chaos Solitons Fractals 32 (2007), 736–744.
DOI:10.1016/j.chaos.2005.11.024

[10] Q. L. Han: New delay-dependent synchronization criteria for Lur’e systems
using time delay feedback control. Phys. Lett. A 360 (2007), 563–569.
DOI:10.1016/j.physleta.2006.08.076

[11] M. Itoh, T. Yang, and L. O. Chua: Experimental study of impulsive synchroniza-
tion of chaotic and hyperchaotic circuits. Int. J. Bifurc. Chaos 9 (1999), 1393–1424.
DOI:10.1142/s0218127499000961

[12] M. Itoh, T. Yang, and L.,O. Chua: Conditions for impulsive synchronization
of chaotic and hyperchaotic systems. Int. J. Bifurc. Chaos 11 (2001), 551–560.
DOI:10.1142/s0218127401002262

[13] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov: Theory of Impulsive Differential
Equations. World Scientific, Singapore 1989. DOI:10.1142/0906

[14] J. Ma, Q. Zhang, and Q. Gao: Stability of a three-species symbiosis model with delays.
Nonlinear Dynam. 67 (2012), 567–572. DOI:10.1007/s11071-011-0009-3

[15] R. Mainieri and J. Rehacek: Projective synchronization in three-dimensioned chaotic
systems. Phys. Rev. Lett. 82 (1999), 3042–3045. DOI:10.1103/physrevlett.82.3042

[16] H. S. Nik, P. He, and S. T. Talebian: Optimal, adaptive and single state feedback control
for a 3D chaotic system with golden proportion equilibria. Kybernetika 50 (2014), 596–
615. DOI:10.14736/kyb-2014-4-0596

[17] Ju. H. Park: Chaos synchronization of a chaotic system via nonlinear control. Chaos
Solitons Fractals 25 (2005), 579–584. DOI:10.1016/j.chaos.2004.11.038

[18] L. M. Pecora and T. L. Carroll: Synchronization in chaotic systems. Phys. Rev. Lett. 64
(1990), 821–824. DOI:10.1103/physrevlett.64.821

[19] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths: Phase synchronization of chaotic oscil-
lators. Phys. Rev. Lett. 76 (1996), 1804–1807. DOI:10.1103/physrevlett.76.1804

[20] K. Sasakura: On the dynamic behavior of Schinasi’s business cycle model. J. Macroe-
conom. 16 (1994), 423–444. DOI:10.1016/0164-0704(94)90015-9

[21] R. Strotz, J. McAnulty, and J. Naines: Goodwin’s nonlinear theory of the business cycle:
an electro-analog solution. Econometrica 21 (1953), 390–411. DOI:10.2307/1905446

http://dx.doi.org/10.1155/2015/572735
http://dx.doi.org/10.1109/31.75404
http://dx.doi.org/10.1016/j.physleta.2010.03.046
http://dx.doi.org/10.1007/bf00351465
http://dx.doi.org/10.1016/j.chaos.2005.11.024
http://dx.doi.org/10.1016/j.physleta.2006.08.076
http://dx.doi.org/10.1142/s0218127499000961
http://dx.doi.org/10.1142/s0218127401002262
http://dx.doi.org/10.1142/0906
http://dx.doi.org/10.1007/s11071-011-0009-3
http://dx.doi.org/10.1103/physrevlett.82.3042
http://dx.doi.org/10.14736/kyb-2014-4-0596
http://dx.doi.org/10.1016/j.chaos.2004.11.038
http://dx.doi.org/10.1103/physrevlett.64.821
http://dx.doi.org/10.1103/physrevlett.76.1804
http://dx.doi.org/10.1016/0164-0704(94)90015-9
http://dx.doi.org/10.2307/1905446


Impulsive stabilization and synchronization of uncertain financial,. . . 257

[22] Z. L. Wang: Anti-synchronization in two non-identical hyperchaotic systems with known
or unknown parameters. Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 2366–2372.
DOI:10.1016/j.cnsns.2008.06.027

[23] T. Yang: Impulsive Control Theory. Springer–Verlag, Berlin 2001. DOI:10.1007/3-540-
47710-1

[24] T. Yang: Impulsive control. IEEE Trans. Automat. Control 44 (1999), 1081–1083.
DOI:10.1109/9.763234

[25] T. Yang and L. O. Chua: Impulsive stabilization for control and synchronization of chaotic
systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I
44 (1997), 976–988. DOI:10.1109/81.633887

[26] T. Yang, L. B. Yang, and C. M. Yang: Impulsive control of Lorenz system. Physica D
110 (1997), 18–24. DOI:10.1016/s0167-2789(97)00116-4

[27] T. Yang, L. B. Yang, and C. M. Yang: Impulsive synchronization of Lorenz systems.
Phys. Lett. A 226 (1997), 349–354. DOI:10.1016/s0375-9601(97)00004-2

[28] H. Yu, G. Cai, and Y. Li: Dynamic analysis and control of a new hyperchaotic finance
system. Nonlinear Dynam. 67 (2012), 2171–2182. DOI:10.1007/s11071-011-0137-9

[29] M. Ma, H. Zhang, J. Cai, and J. Zhou: Impulsive practical synchronization of n-
dimensional nonautonomous systems. Kybernetika 49 (2013), 539–553.

[30] M. Zhao and J. Wang: H∞ control of a chaotic finance system in the presence of ex-
ternal disturbance and input time-delay. Appl. Math. Comput. 233 (2014), 320–327.
DOI:10.1016/j.amc.2013.12.085

[31] S. Zheng: Parameter identification and adaptive impulsive synchronization of un-
certain complex-variable chaotic systems. Nonlinear Dynam. 74 (2013), 957–967.
DOI:10.1007/s11071-013-1015-4

[32] J. Zheng and B. Du: Projective synchronization of hyperchaotic financial systems. Dis-
crete Dynamics in Nature and Society 2015 (2015), 1–9. DOI:10.1155/2015/782630

Song Zheng, School of Mathematics and Statistics, Zhejiang University of Finance and
Economics, Hangzhou Zhejiang 310018. P.R. China.

e-mail: zhengs02012@gmail.com

http://dx.doi.org/10.1016/j.cnsns.2008.06.027
http://dx.doi.org/10.1007/3-540-47710-1
http://dx.doi.org/10.1007/3-540-47710-1
http://dx.doi.org/10.1109/9.763234
http://dx.doi.org/10.1109/81.633887
http://dx.doi.org/10.1016/s0167-2789(97)00116-4
http://dx.doi.org/10.1016/s0375-9601(97)00004-2
http://dx.doi.org/10.1007/s11071-011-0137-9
http://dx.doi.org/10.1016/j.amc.2013.12.085
http://dx.doi.org/10.1007/s11071-013-1015-4
http://dx.doi.org/10.1155/2015/782630

		webmaster@dml.cz
	2018-01-10T13:41:38+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




