
Applications of Mathematics

Kateřina Helisová; Jakub Staněk
Quermass-interaction process with convex compact grains

Applications of Mathematics, Vol. 61 (2016), No. 4, 463–487

Persistent URL: http://dml.cz/dmlcz/145796

Terms of use:
© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/145796
http://dml.cz


61 (2016) APPLICATIONS OF MATHEMATICS No. 4, 463–487

QUERMASS-INTERACTION PROCESS WITH

CONVEX COMPACT GRAINS

Kateřina Helisová, Jakub Staněk, Praha

(Received October 19, 2015)

Abstract. The paper concerns an extension of random disc Quermass-interaction process,
i.e. the model of discs with mutual interactions, to the process of interacting objects of
more general shapes. Based on the results for the random disc process and the process
with polygonal grains, theoretical results for the generalized process are derived. Further,
a simulation method, its advantages and the corresponding complications are described,
and some examples are introduced. Finally, a short comparison to the random disc process
is given.
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1. Introduction

In the last years, planar random sets given by unions of objects, the so-called

germ-grain models (see e.g. [2]), have been studied because of their applications in

biology, material sciences, medicine, etc. Such models can describe and explain many

events, e.g., the behaviour of cells in organisms (see e.g. [8]), particles in materials

(see e.g. [7]) or presence of different plants (see e.g. [5]). Even when these objects

are three-dimensional, we often concentrate on two-dimensional modelling, because

usually, we are either interested only in the projection of the objects to the plane

(e.g. ground area of plants or trees) or we study only cross-sections of a mass which

create planar formations, and suppose that the behaviour of the studied object is

stationary in the third dimension (e.g. organic cells or material particles).

The research was supported by Czech Science Foundation, grant No. 13-05466P.
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The basic model of such a random set is the Boolean model described theoretically

e.g. in [11]. It is the random set given by the union of compact sets whose positions

and shapes are independent of each other. Its special type—the random disc Boolean

model, i.e., the Boolean model formed by the union of discs without any interaction—

is very popular. Examples of its applications to real data can be found e.g. in [5]

or [15]. However, as shown in both the publications mentioned, this model is not

suitable for many situations. For example in [5], where presence of heather bushes

is studied, it is realized that in the data image, the plants are more connected than

the discs in realizations of the fitted Boolean model. In [15], where tumour cells are

modelled, the authors apply the random disc Boolean model even when some of the

cells in the data are not circular. Both these situations show that extensions of this

model may be useful.

One extension consists in adding some interactions among the discs. This topic

is quite well explored. For example in [9], the Quermass-interaction process is

studied. In the finite case, it is the model from an exponential family, where the

canonical sufficient statistic is given by Minkowski functionals of the union of discs

within a bounded observation window. In [3], the proof of existence of a station-

ary Quermass-interaction model in R2 is given. The authors of [9] provide many

theoretical results for this model, too, however, a discussion of simulations and sta-

tistical inference methods are missing in this paper, possibly because such methods

are computationally difficult. The Quermass-interaction model is extended, theo-

retically analyzed and simulated by Markov Chain Monte Carlo method (MCMC),

namely by birth-death Metropolis-Hastings algorithm, in [12]. Maximum likelihood-

based inference using MCMC techniques (MCMC MLE, see [14]) for this process are

discussed in [13]. Further procedures of statistical inference for this model are estab-

lished in [20], where the dimension of the model is reduced by the classical principal

component method in order to make the estimating method faster, and in [4], where

the authors apply Takacs-Fiksel procedure which allows to estimate the intensity of

the process. Further in [21] and [22], the random disc Boolean model is extended by

considering its time evolution, and other statistical methods for estimating the pa-

rameters, namely particle filter and MCMC particle filter, are applied and compared

to MCMC MLE.

Another extension of the random disc Boolean model is given by considering dif-

ferently shaped grains instead of discs. Such a model is not well explored. In [9],

the authors derive some theoretical results for the Quermass-interaction process with

non circular grains. They focus mainly on stability properties while simulation and

statistical inference procedures are not studied.

In this paper, we consider also the Quermass-interaction process with grains which

may be non circular. The paper is organized as follows. In Section 2, we describe the
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model. Then in Section 3, we derive some theoretical results, which are not mentioned

in [9]. Particularly, we focus on Ruelle stability, while we correct the conditions

introduced in [9] for a special type of the process, the so-called χ-interaction process,

with polygonal grains in order for it to be Ruelle stable, and then we formulate

conditions for the process with grains having smooth border and some other special

properties in order for it to be Ruelle stable, too. Further, we define conditions for

attractiveness and repulsiveness of the process, which are important for simulations

since they control the behaviour of the simulated realizations. Section 4 concerns

the simulation procedure of the process. Here, we mention various possibilities and

discuss their advantages and disadvantages, and we show some examples. All plots

in this section are produced by R (see [19]). At the end of Section 4, we provide

a short comparison to the simulation method introduced in [12] developed for the

random disc model.

2. Model description

The Quermass-interaction process is a random planar set which belongs to the

class of random sets called germ-grain models (see [2]). These sets are given by the

union of objects with random shapes (so-called grains) which are randomly scattered

in the plane and their locations are given by reference points (so-called germs).

More precisely, consider a planar geometrical object x = u + x0 with reference

point u ∈ R2 (germ) and shape x0 ⊂ R2 (grain) which is a realization of a random

planar convex compact set X (so-called typical grain) with distribution Q. Denote

by x = {x1, . . . , xn} a finite configuration of n such geometrical objects and by Ux

the union of the objects from the configuration x.

Further, consider a Boolean model Y (i.e. the germ-grain model whose germs

form a Poisson process, the grains are independent identically distributed, and their

distribution is independent of the distribution of the germs) with an intensity function

of the germs ̺(u) = ̺ > 0 on a bounded set S ⊂ R2 and ̺(u) = 0 otherwise, with

the distributions of its grains given by the distribution of X.

Then consider a random set Z which is absolutely continuous with respect to

the process Y, its realizations are formed by unions of finite configurations x =

{x1, . . . , xn} of the objects x1, . . . , xn, and the set Z is described by a density fθ(x)

with respect to the probability measure of Y.

The Quermass-interaction process with convex compact grains is the random set

Z whose density with respect to Y is of the form

(2.1) fθ(x) = c−1
θ

exp{θ1A(Ux) + θ2L(Ux) + θ3χ(Ux)},
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where A(Ux) is the total area, L(Ux) the perimeter and χ(Ux) the Euler-Poincaré

characteristic (the number of connected components minus the number of holes)

of the union Ux, θ = (θ1, θ2, θ3) is a vector of parameters, and cθ is a normalizing

constant.

The interpretation of the parameters θi, i = 1, 2, 3, is such that positive values of θi
force the process to produce realizations with larger i-th characteristic comparing to

the reference process while the realizations from the density with negative θi have

the i-th characteristic mostly smaller. Note that the process with θ1 = θ2 = θ3 = 0

is the reference Boolean model.

3. Theoretical properties

In [9], the authors study in detail the random disc Quermass-interaction process

(i.e. the process defined above, where the typical grain X is a disc with random ra-

dius) and the process with polygonal grains, and provide the first theoretical results.

Later in [12] and [13], random disc Quermass-interaction process is extended by con-

sidering more geometrical characteristics, e.g. the number of isolated discs, or the

number of connected components and the number of holes considered separately. In

addition to some new theoretical results, these two papers describe also simulations

and statistical analysis, respectively. All these studies form the base for the research

in this paper.

The results presented in this section are mainly based on geometrical characteris-

tics of the objects or their parts. Therefore, let us first define two basic terms used

often in the sequel.

Let Z be a (random) planar set. Then the hole of the set Z is an open bounded

planar set h such that for all u ∈ h we have that u /∈ Z, and the boundary of its

closure h̄ is a part of the boundary of Z, i.e. ∂h̄ ⊂ ∂Z.

Assume that Z =
n
⋃

i=1

xi, xi are convex compact sets (grains). By a vertex of the

hole h we mean a point v ∈ ∂h̄ such that there exist two grains xi and xj satisfying

v ∈ ∂xi ∩ ∂xj .

3.1. Measurability and integrability of the density. The first theoretical

question is whether the Quermass-interaction process given by (2.1) is well defined,

i.e. whether the density fθ is measurable and integrable.

Following the definition of the Quermass-interaction process in [9], denote by

W 2
j (·), j = 0, 1, 2, the Minkowski functionals (Quermass integrals) in R2. Due to

the fact that (A(Ux), L(Ux), χ(Ux)) = (W 2
0 (Ux), 2W

2
1 (Ux),W

2
2 (Ux)/π), the results
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for the general model from [9] hold for our model as well. Hence, the measurability

of density fθ follows directly from Lemma 2.2 in [9].

Further, we focus on the Ruelle stability of the process, since it is a sufficient

condition for integrability of the density fθ (see [9]). The density fθ is called to

be Ruelle stable if there exist positive constants α and β such that fθ(x) 6 αβn(x)

holds for all configurations x, where n(x) denotes the number of objects xi in the

configuration x. Hence, the stability condition holds if and only if the energy

E(x) = − log
(fθ(x)

fθ(∅)
)

is bounded below by a bound which is linear with respect to the number of points

n(x), i.e.

E(x) > −A−Bn(x)

holds for some positive constants A and B.

In the following proposition, we reformulate the results from [9] for our model.

While the reformulations of the first two parts are straightforward, the last part uses

conditions different from the ones introduced in [9], and so it requires more detailed

discussion.

Proposition 3.1. (1) Consider the (A,L)-interaction process, i.e. the Quermass-

interaction process with the density fθ given by

fθ(x) = c−1
θ

exp{θ1A(Ux) + θ2L(Ux)}.

Then the density fθ is Ruelle stable if one of the following conditions holds:

(a) θ1 6 0 and θ2 6 0,

(b) θ1 > 0, θ2 > 0, and A(x) and L(x) are bounded above for all x in the support

of the distribution Q of X.

(2) Consider the χ-interaction process, i.e. the Quermass-interaction process with

the density fθ given by

fθ(x) = c−1
θ

exp{θ3χ(Ux)},

whose grains are random discs. Then the density fθ is Ruelle stable for all θ3 ∈ R.

(3) Consider the χ-interaction process, i.e. the Quermass-interaction process with

the density fθ given by

fθ(x) = c−1
θ

exp{θ3χ(Ux)},

whose grains are random polygons X satisfying the following conditions:
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(a) There exist an angle ϕ > 0 and radius r > 0 such that for all realizations x and

all vertices vx of x, the intersection b(vx, r) ∩ x is a circular sector of angle at

least ϕ, where b(v, r) is a disc with centre at v and radius r.

(b) There exists a constant K ∈ R such that x ⊂ [−K,K]2 for all realizations x.

Then the density fθ is Ruelle stable.

P r o o f. The major part of the proof of this proposition can be found in [9],

however there are some points which require comments and corrections. Therefore,

let us give here a few remarks to the proof:

(1) The first part of the proposition follows directly from Lemma 2.3 in [9] and

the fact that W
2

j(·) = W 2
j (·) for j = 0, 1, where W

2

j denote the positive extension of

the Minkowski functional used in the mentioned lemma.

(2) This part is the straightforward reformulation of Corollary 4.4 in [9].

(3) This part follows from Theorem 5.2 in [9] which introduces a sufficient condition

for Euler-Poincaré characteristic to be bounded above and below by C1n(x) and

C2n(x), respectively, where C1 and C2 are constants. The theorem is formulated for

grains x satisfying the so-called uniform wedge condition of angle ϕ > 0 and radius

r > 0, which means that for any point y ∈ ∂x, the intersection b(y, r)∩x is a circular

sector. In part A of the proof of Theorem 5.2 in [9], it is shown that it is a sufficient

condition for bounding the number of holes in Ux. In part B, where the uniform

wedge condition is used, it is shown that it is enough to consider the case where

grains are infinite convex random planar wedges of angle at least ϕ.

However, no polygon satisfies the uniform wedge condition as defined in [9]. There-

fore, we formulate new conditions (a) and (b) which give us the same result and allow

us to follow the idea of the original proof. Condition (b) together with boundedness

of S ensure that Ux lies in a bounded window S⊕ [−K,K]2 which can be covered by

a finite number of discs with radius r/2. Hence it suffices to show that the number

of holes of Ux lying in arbitrary disc with radius r/2 is bounded above by C3n(x),

where C3 is a constant. Finally, as each admissible polygon has no more than one

vertex in each disc with such radius, we can focus only on the case where grains are

infinite convex random planar wedges of angle at least ϕ.

The remaining part of the proof is identical to the one introduced in [9].

Note that the condition (b) in part (3) is required, even if it is not used in the

original result. Only boundedness of S is not sufficient, because the counterexample

presented in [9] can be interpreted as shown in Fig. 1. There are two realizations of

germ-grain process with polygonal grains where in the first case, the germs form the

centres of gravity, while in the second case, the germs may lie outside the interior

of the grains. In general, we can assume an arbitrary distribution of the distance

of the grains from their germs. Then although the germs are scattered in the same
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bounded window S, the grains may be arbitrarily far from the germs. Therefore,

the lower limit for the length of the side of the polygon, which is in [9] considered to

be a sufficient condition for keeping the Ruelle stability, is irrelevant because a shift

of the grains further from their germs has the same effect as shrinking the length

side (in the sense that we can enlarge the number of sides of the polygon even when

the lengths of the sides are the same). Thus, as introduced in [9] and shown in

Fig. 1, n polygons may build configurations with O(n2) holes, so there is no linear

boundedness of the number of holes with respect to the number of grains. �

∂x1

∂x2

∂x3

∂x4

∂x5

∂x6

∂x7

∂x8

u1=u2=u3=u4

u5

u6

u8

u7

∂x1

∂x2

∂x3

∂x4

∂x5

∂x6

∂x7

∂x8

u1=u2=u3=u4

u8

u7

u6

u5

Figure 1. Two realizations of the germ-grain model with polygonal grains, where germs
are scattered in the same bounded window S, where in the left figure, the germs
form the centres of gravity, while in the right figure, the germs may lie outside
the grains.

Recall that the introduced proposition mentioned Ruelle stability for A-interaction

and L-interaction process with general convex compact grains, and for χ-interaction

process of discs or polygons. In the following paragraphs, we formulate a new result

describing the conditions for Ruelle stability of χ-interaction process with another

shape of grains. Namely, we focus on grains having smooth boundary with bounded

curvature such as ellipses with bounded ratios of the main axes, several ovoid shapes

etc. More precisely, we will consider convex compact grains x satisfying the following

conditions:

(1) There exists a constant K > 0 such that x ⊂ [−K,K]2.

(2) For each x, we have ∂x ∈ C1, i.e. there exists a tangent of the grain at each

point on its boundary.

(3) Denote by T x
v , T

x
w the tangents of ∂x at the points v, w ∈ ∂x and by αx

v,w the

smaller angle between T x
v and T x

w. Then there exists a constant L such that

αx
v,w 6 L‖v − w‖.
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Just note that for grains x such that ∂x ∈ C2 it means that the curvature of

∂x is bounded.

(4) There exists r̃ > 0 such that any two grains xi, xj , i 6= j, satisfy

♯(∂xi ∩ ∂xj ∩ b(u, r̃)) 6 2 ∀u ∈ R
2,

i.e. that the boundaries of arbitrary grains have at most two intersections in an

arbitrary disc with radius r̃.

Note that the assumptions (1)–(3) are not very restrictive while the assumption

(4) is stronger. However, there exist shapes satisfying these conditions, e.g. the

ellipses with bounded ratios of the axes as mentioned above having moreover limited

orientation.

Further note that all the assumptions (1)–(4) may be satisfied also by some non-

convex grains, but the following proposition holds only for the convex compact ones.

Proposition 3.2. Every χ-interaction process with convex compact grains satis-

fying the above conditions (1)–(4) is Ruelle stable.

To prove this proposition, we need the following lemma.

Lemma 3.1. Let b(u, r) be a ball with the centre u ∈ R2 and the radius r 6

π/24L, and let h be an arbitrary hole of Ux. Denote by

Sh = {v ∈ ∂h : i, j ∈ I (index set), i 6= j, v ∈ ∂xi ∩ ∂xj ∩ b(u, r)}

the set of all vertices of the hole h lying in the ball b(u, r). Further, for each v ∈ Sh,

denote by αv the angle between the tangents T
xi
v and T

xj

v , where v ∈ ∂xi ∩ ∂xj .

Then for each v ∈ Sh there are at most two angles αv such that αv < π/6.

P r o o f. Note that r 6 π/(24L) implies that αxi
u,v 6 π/12 for all u, v ∈ Sh.

Hence, if we denote by V h
v the wedge of the angle αv + π/6 with the vertex v

and the bisector coinciding with the bisector of the angle αv, where the wedge V
h
v is

pointing into the hole h (see Fig. 2), then h ∩ b(u, r) ⊂ V h
v ∩ b(u, r).

For a fixed hole h, consider the vertices vi, i = 1, 2, 3, such that αvi < π/6. Then

the triangle given by these three vertices has to be a subset of V h
vi
∩ b(u, r), because

h ∩ b(u, r) ⊂ V h
vi
∩ b(u, r) and vi ∈ ∂h. Denoting by βvi , i = 1, 2, 3, the angles of the

triangle, then βvi 6 αvi + π/6, and so we get

π =

3
∑

i=1

βvi 6

3
∑

i=1

αvi + π/2 < π.

Therefore, there cannot exist three angles αvi , i = 1, 2, 3, such that αvi < π/6. �
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αv

1

12
π

1

12
π

v

h

V h
v

∂xi

∂xj

T xi
v

T
xj

v

Figure 2. The disc b(u, r) (circular dashed line), two grains xi and xj with their boundaries
∂xi and ∂xj (solid line), one of their intersections, the point v, being one of
the vertices of the hole h, the corresponding angle αv and wedge V h

v , and the
sector of the angle αv+ π/6 (straight dashed lines) forming the restriction for the
placement of the hole h.

Now let us prove the proposition.

P r o o f. From the definition of Ruelle stability, it is clear that we need to find

linear boundaries for χ(Ux), i.e. constants K1, K2, K3, and K4 such that all realiza-

tions x, satisfy

K1n(x) +K2 6 χ(Ux) 6 K3n(x) +K4.

Since χ(Ux) = Ncc(Ux) − Nh(Ux), where Ncc denotes the number of connected

components and Nh the number of holes, and Ncc(Ux) 6 n(x), where n(x) is the

(finite) number of grains, we only need to prove that Nh(Ux) 6 K5n(x) +K6.

The structure of the proof is the following:

(1) We focus on a specific part of the observation window given by a ball (denoted

as b(u, r)) with specific radius, and show that it is enough to bound the number

of holes in this ball.

(2) Using Lemma 3.1, we show that for each hole h, there exist at most two wedges,

denoted as V hc

v and V hc

w , such that each other hole h
′ lying (at least partially)

in the ball b(u, r) is contained in V hc

v or V hc

w , i.e. (h
′ ∩ b(u, r)) ⊂ (V hc

v ∪ V hc

w ).

(3) Based on the step (2), we order the holes lying in the ball b(u, r) to a sequence.

(4) We show that we can uniquely select two vertices from each hole and order

them, so we can form the corresponding sequence of such vertices.

(5) The sequence of the vertices uniquely divides the group of the grains forming

holes into two parts which form sequences {am} and {bm}. We can uniquely
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form their subsequences {âm} and {b̂m} (so that the elements repeated adja-
cently in the sequences {am} and {bm} are represented only once) with the
property that the number of elements in the larger one is bounded below.

(6) We prove that {âm} and {b̂m} satisfy the conditions of the Davenport-Schinzel
sequence of the order s (see [10]).

(7) The properties of the Davenport-Schinzel sequence are used to prove that the

numbers of elements in {âm} and {b̂m} are bounded, and thus the number of
holes in the considered ball must be bounded, too.

Now let us go through the proof step by step in details:

(1) Denote

r = min
{

r̃,
π

24L

}

,

where r̃ is defined above by the property (4) of the grains. From the property (1) of

the grains, we know that the whole union Ux lies in a bounded window S⊕ [−K,K]2

which can be covered by a finite number of discs with radius r. Therefore, it is enough

to prove that the number of holes in an arbitrary disc b(u, r) with radius r is bounded

above, where the hole h is considered to lie in the disc b(u, r) if A(h ∩ b(u, r)) > 0,

which means that we count also the holes which are only partially obtained in the

considered disc.

The chosen r ensures that

⊲ for arbitrary grains xi and xj , there are at most two intersections ∂xi ∩ ∂xj of

their boundaries (property (4) of the grains),

⊲ for any grain x and arbitrary points v, w ∈ ∂x ∩ b(u, r), the angle α between the

tangents T x
v and T x

w is less then or equal to π/12 (property (3) of the grains).

(2) Consider now the disc b(u, r) for the given u and r defined above, and let h be

a hole of Ux such that A(h ∩ b(u, r)) > 0. Let v ∈ Sh be the vertex formed by the

grains xi and xj . If αv < π/6, denote by V hc

v the wedge of the angle π/6− αv with

vertex v and the bisector coinciding with the bisector of the angle αv but pointing

out of the hole h (see Fig. 3 (a)). Further, denote by V xi
v the wedge of the angle

5π/6 with vertex v, the bisector given by the normal vector with respect to T xi
v and

pointed into the set xi (see Fig. 3 (a), too).

Since for arbitrary points v, w ∈ ∂xi ∩ b(u, r), the maximal angle between the

tangents T xi
v and T xi

w is π/12 (see the first step of this proof), ∂xi cannot cross the

boundary of the wedge V xi
v in the ball b(u, r). Thus, V xi

v ∩ b(u, r) ⊂ xi, and so for

an arbitrary hole h′ of Ux, we have h
′ ∩ b(u, r) ⊂ (V h

v ∪ V hc

v )∩ b(u, r). As only h can

be in
⋂

v∈Sh

V h
v , hence for an arbitrary hole h

′ 6= h we have h′ ∩ b(u, r) ⊂ ⋃

v∈Sh

V hc

v .

From Lemma 3.1 we know that there are at most two vertices v1, v2 ∈ Sh such that

V hc

v1
6= ∅ and V hc

v2
6= ∅.

472



(a)

1

6
π − αv

v
h

V h
c

v

αv

T x1

v

T x2

v

V h
v

1

12
π

1

12
π

∂x1

∂x2

V x1

v

V x2

v

5

6
π

(b)

1

6
π − αv

v

h

V hc

v

hi

hj

wi

wj
b(v, |v − wi|)

x1

x2

x3

(c)

∂x1

∂x2

h1

h3

h4
h2v2

1
v1
2

v2
2

v1
3 v2

3

v1
4

~v2

~v3

∂x3

∂x4

Figure 3. In (a) and (c), the disc b(u, r) is denoted by dashed line. Figure (a), illustrates two
grains with their boundaries (solid line), the corresponding angles, their wedges
and boundedness. Figure (b) shows that the distance of two vertices of holes
in the disc b(u, r) is unique. Figure (c) illustrates an example of holes with
the corresponding vertices v1k and v2k, vectors ~vk, while the grain boundaries are
denoted by solid or dot-dashed lines according to their position with respect to
the direction of ~vk. The sequences {am}, {bm}, {âm} and {b̂m} are {am} =
{x2, x2, x2, x3}, {bm} = {x1, x4, x4, x4}, {âm} = {x2, x3} and {b̂m} = {x1, x4}.
(Just note that for greater clarity, the curvature of the grains in this figure is larger
than allows the property (3) of the grains and the angles do not correspond to
the introduced values. However, in the real case, the holes would be too flat so
the graphical illustration would not be apt enough.)
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(3) Now suppose N > 2 is the number of holes in b(u, r).

First, we show that the distance between the holes is given by the distance between

their vertices v such that αv < π/6. Denote h̃ = h ∩ b(u, r) and assume that h̃ 6= ∅.
Consider v ∈ Sh with αv < π/6. Then the angles of both the wedges V h

v and V
hc

v are

less than π/2. Therefore, for all x ∈ V hc

v we have d(x, V h
v ) = inf

y∈V h
v

d(x, y) = d(x, v)

and analogously, for all y ∈ V h
v we have d(y, V

hc

v ) = d(y, v) (see Fig. 3 (a)). Now

consider a hole hj ⊂ V hc

v . From the above it follows that if v ∈ Sh, w ∈ Shj
, h̃ ⊂ V

hc
j

w

and h̃j ⊂ V hc

v , then d(h̃, h̃j) = d(v, w).

Secondly, we show that for a hole h such that h̃ is nonempty, there cannot exist

two holes hi and hj lying in the same wedge V
hc

v and having nonempty h̃i and h̃j ,

respectively, so that d(h̃, h̃i) = d(h̃, h̃j). Denote by wi and wj the vertices of h̃i

and h̃j , respectively, so that d(h̃, h̃i) = d(h̃, wi) and d(h̃, h̃j) = d(h̃, wj). If we

suppose that d(h̃, h̃i) = d(h̃, h̃j), then wj lies on the circle ∂b(v, |v−wi|). But due to
the bounded curvature of the grains, no other vertex of a hole can lie on this circle

in V hc

v , because ∂b(v, |v − wi|) ∩ V hc

v ⊂ xk ∪ xl, where xk and xl are the grains for

which wi ∈ ∂xk∪∂xl. Thus the hole hi with d(h̃, h̃i) = minj d(h̃, h̃j) is unique in V
hc

v

(see Fig. 3 (b)).

Thus, we can form a sequence {h1, h2, . . . , hN} of all holes lying in b(u, r) so that

hk, k = 2, . . . , N−1, have exactly two vertices v1k, v
2
k such that αv1

k
< π/6, αv2

k
< π/6

and d(hk, hk+1) = d(v2k, v
1
k+1) < d(hk, hl) for all l > k+1. We do it so that we choose

an arbitrary hole with two vertices v1k, v
2
k such that αv1

k
< π/6 and αv2

k
< π/6 (there

must exist such a hole because N > 2), and denote it hk, k ∈ Z arbitrary. We know

that all holes in b(u, r) must lie in V hc

v1

k

∪V hc

v2

k

. So without loss of generality, denote the

closest hole lying in V hc

v1

k

as hk−1 and the closest hole lying in V hc

v2

k

as hk+1. Repeat

the procedure for hk−1 and hk+1 and then for further holes in the sequence until

there are no non-indexed holes with two vertices with α < π/6. If there are no such

holes, then the holes in b(u, r) (including the ones with one vertex with α < π/6 if

there are some) have N consecutive indices, so it remains to shift the indices of the

holes in order to obtain {h1, h2, . . . , hN}.
(4) According to the above, we can form the sequence of vertices {v12 , v22 , v13 ,

v23 , . . . v
1
N−1, v

2
N−1}. For each couple of vertices v1i , v2i , denote

~vi = (v2i − v1i )

(

0 −1

1 0

)

.

Its usage is the following. We say that the grain x lies in the direction ~v from the

vertex v iff there exists ε > 0 such that v + ε~v ∈ x. Then each of the vertices vlk,

l = 1, 2, is given by the intersection of two grains such that one of the grains lies in
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the direction ~vk from the vertex v
l
k and the other lies in the opposite direction (see

Fig. 3 (c)).

(5) Recall that we have the sequence {v12 , . . . , v2N−1} of 2N − 4 vertices. To each

vertex v in the sequence, we can assign a uniquely defined vector ~v (so that to the

vertex vlk, l = 1, 2, the ~vk is assigned for all k = 2, . . . , N − 1). Each vertex v is an

intersection of two grains, where one of them lies in the direction ~v from v and the

other lies in the opposite direction, so we can construct two corresponding sequences

of grains, the first lying in the directions of the vectors ~v and the other formed by

the grains lying in the opposite directions.

Denote these sequences as {am}2N−4
m=1 and {bm}2N−4

m=1 , respectively. Since for all

k = 1, . . . , N − 2, v1k and v2k cannot be formed by the same couple of grains, the

couple (a2k, b2k) cannot be the same as the couple (a2k−1, b2k−1). Thus, there are at

least N − 2 changes in the sequence of couples {(am, bm)}2N−4
m=1 , which means that

there are at least (N − 2)/2 changes in at least one of the sequences {am} and {bm}.
Now form the subsequences {âm} and {b̂m} of the sequences {am} and {bm} such

that the elements repeated adjacently in the sequence {am} and {bm} are represented
only once in {âm} and {b̂m}, respectively (see description of Fig. 3 (c)). Then from
the previous paragraph it follows that at least one of the subsequences {âm} and
{b̂m} has at least (N − 2)/2 elements.

(6) Without loss of generality suppose that it is {âm} whose length is bounded
from below by (N − 1)/2. If there exists a triple of indices m1 < m2 < m3 such

that âm1
= xi = âm3

and âm2
= xj , i 6= j, then the boundaries ∂xi and ∂xj have to

meet at least twice. Therefore, there cannot exist m4 such that am4
= xj , because

in such case at least three intersections of ∂xi and ∂xj would occur and it is against

the assumption (4) imposed on the grains. Therefore, the sequence satisfies the

conditions

(a) for all m = 1, 2, . . . , we have âm 6= âm+1,

(b) there does not exist s = 4 indices m1 < m3 < m2 < m4 such that am1
= am3

6=
am2

= am4
.

Such a sequence is called a Davenport-Schinzel sequence of order s (briefly s-DS

sequence, see [10]) and its properties are used in the remaining part of the proof.

(7) Denote by λs−2(n) the maximal length of an s-DS sequence formed by n

mutually different elements. Then it can be shown that λs(n) = 2n − 1 (see [10]).

Thus, when we have n different elements, we can form a 4-DS sequence with maximal

length equal to 2n − 1 (see [10]). Since the length of the sequence {âm} is at least
(N − 2)/2 = λ2(n) = 2n − 1, we need at least n = N/4 different elements of this

sequence, i.e. at least n = N/4 different grains. Thus for n grains, the maximal

number of holes is equal to 4n. �
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3.2. Attractiveness and repulsiveness. For theoretical results in this part as

well as for the simulation described in the following section, Papangelou conditional

intensity (see [6]) is an important term.

For a finite configuration x of the objects {x1, . . . , xn} and for an object y /∈ x,

Papangelou conditional intensity is defined as

λθ(x, y) = fθ(x ∪ y)/fθ(x).

Denoting by

G(x, y) = G(Ux ∪ y)−G(Ux)

the increment of an arbitrary geometrical characteristic G ∈ {A,L, χ} when adding
an object y to the configuration x, we get

(3.1) λθ(x, y) = exp{θ1A(x, y) + θ2L(x, y) + θ3χ(x, y)}.

It means that Papangelou conditional intensity λθ(x, y) depends only on the incre-

ments of the geometrical characteristics and not on the characteristics themselves

nor on the normalizing constant. The proof of Proposition 3.3 below is based on this

property.

The properties to be studied here are attractiveness and repulsiveness. They are

defined as follows. The Quermass-interaction process with convex compact grains

(2.1) is called

(1) attractive if λθ(x1, y) 6 λθ(x2, y) for all configurations x1, x2 such that x1 ⊂ x2,

(2) repulsive if λθ(x1, y) > λθ(x2, y) for all configurations x1, x2 such that x1 ⊂ x2.

Proposition 3.3. For the Quermass-interaction process with convex compact

grains (2.1), the following assertions hold:

(1) The process with θ2 = θ3 = 0 and θ1 6= 0, i.e. the A-interaction process, is

attractive for θ1 < 0 and repulsive for θ1 > 0.

(2) The process with θ1 = θ3 = 0 and θ2 6= 0, i.e. the L-interaction process, is

(a) both attractive and repulsive, if L(X) = 0,

(b) attractive for θ2 < 0 and repulsive for θ2 > 0, if A(X) = 0 and

P (L(X) > 0) > 0,

(c) neither attractive nor repulsive, if P (A(X) > 0) > 0.

(3) The process with θ1 = θ2 = 0 and θ3 6= 0, i.e. the χ-interaction process, is

(a) both attractive and repulsive, if L(X) = 0,

(b) neither attractive nor repulsive, if P (L(X) > 0) > 0.
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P r o o f. From additivity of Minkowski functionals, we have

A(x, y) = A(y)−A(y ∩ Ux),(3.2)

L(x, y) = L(y)− L(y ∩ Ux).(3.3)

In the whole proof, we suppose that the configurations x1, x2 satisfy x1 ⊂ x2.

(1) Since A(Ux1
) 6 A(Ux2

), we have A(y∩Ux1
) 6 A(y∩Ux2

) and so from (3.2) we

get A(x1, y) > A(x2, y). Hence, from (3.1) we have λθ(x1, y) 6 λθ(x2, y) for θ1 < 0

and λθ(x1, y) > λθ(x2, y) for θ1 > 0.

(2) Due to (3.3), the properties of L(x, y) differ in the following three cases:

(a) The only convex compact planar random set satisfying L(X) = 0 is a random

point. In this case L(x, y) = 0 for all configurations x and all objects y. Hence, from

(3.1) we have λθ(x1, y) = λθ(x2, y) = 1.

(b) The only convex compact planar random set satisfying A(X) = 0 and L(X) > 0

is a random line segment. Then L(Ux1
) 6 L(Ux2

), i.e. L(y ∩ Ux1
) 6 L(y ∩ Ux2

) and

so from (3.3) we get L(x1, y) > L(x2, y). Therefore, λθ(x1, y) 6 λθ(x2, y) for θ2 < 0

and λθ(x1, y) > λθ(x2, y) for θ2 > 0.

(c) Consider two situations which lead to different inferences:

(i) Ux1
∩ y = ∅ and Ux2

∩ y = y. Then L(x1, y) = L(y) and L(x2, y) = L(y) −
L(y ∩ Ux2

) = 0, therefore L(x1, y) > L(x2, y).

(ii) There exists a configuration x1 such that Ux1
contains a hole which can be

covered by the object y and moreover ∂y ⊂ Ux1
, where ∂y denotes the boundary of

the object y. Denote by Lh the boundary of the hole in the set Ux1
, then L(x1, y) =

L(y) − L(y ∩ Ux1
) = L(y) − (L(y) + Lh) = −Lh < 0. If Ux2

is such that y ⊂ Ux2
,

then L(x2, y) = 0, therefore L(x1, y) < L(x2, y).

This together with (3.1) implies that the process is neither attractive nor repulsive.

(3) Distinguish between the following two situations:

(a) For a point process (i.e. the process with L(X) = 0), we have χ(x) = 1 for all

points x, i.e. χ(x, y) = 1 for all configurations x and all objects y. Hence, from (3.1)

we have λθ(x1, y) = λθ(x2, y) = exp{θ3}.
(b) Similarly to the above, consider two situations:

(i) Ux1
is one connected component without any hole, Ux2

consists of two con-

nected components without any hole, Ux1
∩ y 6= ∅ and Ux2

∪ y forms one connected

component. Then χ(x1, y) = χ(Ux1
∪ y) − χ(Ux1

) = 1 − 1 = 0 and χ(x2, y) =

χ(Ux2
∪ y)− χ(Ux2

) = 1− 2 = −1, i.e. χ(x1, y) > χ(x2, y).

(ii) Ux1
forms two connected components without any hole, Ux1

∪ y forms one

connected component without any hole and y ⊂ Ux2
. Then χ(x1, y) = χ(Ux1

∪ y)−
χ(Ux1

) = 1 − 2 = −1 and χ(x2, y) = χ(Ux2
∪ y) − χ(Ux2

) = χ(Ux2
) − χ(Ux2

) = 0,

i.e. χ(x1, y) < χ(x2, y).

477



This implies that the process is neither attractive nor repulsive. �

Note that the process with θ1 = θ2 = θ3 = 0, i.e. the Boolean model, is both

attractive and repulsive, because in (3.1) for all configurations x and all objects y,

we have λθ(x, y) = exp{0 · A(x, y) + 0 · L(x, y) + 0 · χ(x, y)} = 1.

4. Simulation

4.1. MCMC algorithm. For simulation of the process, we use the basic

Metropolis-Hastings birth-death algorithm (see [14]). It works as follows.

(1) Start from an arbitrary configuration x0 and suppose that in the t-th iteration

we have a configuration xt = {x1, . . . , xn}.
(2) In the (t+ 1)-st iteration:

(a) with probability 1/2, the proposal is xt ∪ {xn+1} and
(i) we accept the proposal with probability min{1;H(xt, xn+1)} and set

xt+1 = xt ∪ {xn+1},
(ii) else we set xt+1 = xt,

(b) else, the proposal is xt \ {xi}, i ∈ {1, . . . , n}, and
(i) we accept the proposal with probability min{1; 1/H(xt \ {xi}, xi)}
and set xt+1 = xt \ {xi},

(ii) else we set xt+1 = xt,

where H(x, y) = λθ(x, y)|S|/(n+ 1) for any finite configuration x = {x1, . . . , xn}
and an object y /∈ x.

In this procedure, we need to calculate Papangelou conditional intensity in each

iteration, so it is necessary to optimize its calculation.

Recall that Papangelou conditional intensity λθ(x, y) given by (3.1) depends only

on the increments of the geometrical characteristics and not on the characteristics

themselves nor on the normalizing constant. It plays an important role in this simu-

lation algorithm, because as mentioned in [12] and [13], the normalizing constant cθ

has no explicit form, its approximation is time-consuming and moreover, it need not

be precise enough.

The second advantage which follows from the relation (3.1) is that the work with

the increments instead of the whole characteristics allows us to make only local

calculations and so to make the calculations faster. For example in [12], the power

tessellation (also called the Laguerre tessellation, see e.g. [1]) of the union of discs

was used. The power tessellation divides the union of the discs to the union of convex

compact sets (so-called cells)

Bi = {v ∈ Ux : ‖v − ui‖2 − r2i < ‖v − uj‖2 − r2j ∀ j 6= i}

478



corresponding to the discs xi with centres ui and radii ri, i = 1, . . . , n. It holds

almost surely that at most three of the cells meet at one point and then instead of

the inclusion-exclusion formula

G(Ux) =
∑

i

G(xi)−
∑

{i1,i2}

G(xi1 ∩ xi2 ) + . . .+ (−1)n+1
∑

{i1,...,in}

G(xi1 ∩ . . . ∩ xin)

for all geometrical characteristics G ∈ {A,L, χ}, we can use

A(Ux) =
∑

i

A(Bi), L(Ux) =
∑

i

L(Bi), χ(Ux) = N1 −N2 +N3,

where L(Bi) is the length of the part of the boundary of Bi lying on the boundary of

the set Ux, N1 is the number of nonempty cells in the tessellation, N2 the number of

interior edges (i.e. the boundaries between two cells) and N3 the number of interior

vertices (i.e. the intersections of three cells) in the tessellation. It allows to do only

local calculations in the sense that when a disc is added or deleted, the geometrical

characteristics are changed only through the cells intersected by this disc. These

local calculations make the calculation of λθ(x, y) and consequently the usage of the

MCMC algorithm significantly faster. Moreover, the calculation of the geometrical

characteristics is easy. For example, due to the convexity of the cells, the area of

each cell can be divided into the areas of triangles and disc caps, see [12].

The aim of the research presented here is to find some local calculations also for

Quermass-interaction process with non circular grains. Unfortunately, it is difficult

to use some analogy to the power tessellation, since the objects are realizations of

a quite general random set X. In the special case when we consider the random

set X to be an ellipse with random axes, we can use a generalization of the Laguerre

tessellation described in [1] such that the cells corresponding to the ellipses xi with

centres ui, i = 1, . . . , n, are defined as

Bi = {v ∈ Ux : d(v, ui) < d(v, ui) ∀ j 6= i},

where d(v, ui) = (v− ui)
TMi(v− ui) and Mi is a symmetric positive definite matrix

such that its eigenvectors define the elliptical axes and the eigenvectors define their

length. But since the cells are not convex, it does not allow us to work with the

tessellation in the same way as in the case of the random disc process. It is impossible

to calculate the cell area in the way mentioned above and the calculation of the

remaining characteristic is more complicated as well.

Therefore, we found another way of local calculations. It is based on discretization

of the set described in the neet section.
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4.2. Discretization. For calculation of geometrical characteristics in (2.1)

and (3.1), we use a discretization where the needed values are kept in cells (or

pixels) of a chosen grid. In each cell of the grid, we have the information about

⊲ the area of the cell,

⊲ the perimeter by which the cell contributes to the perimeter of the union,

⊲ the neighborhood of the pixel needed for using the classical algorithm for calcula-

tion of the Euler-Poincaré characteristic based on local patterns (see below),

⊲ list of objects overlapping the cell

as illustrated in Fig. 4. Then in the case when an object is added or deleted, the

geometrical characteristics are recalculated only in the cells overlapped by this object.

4.2.1. Calculation of the area. The area of the cell is always 0 or 1 pixel,

depending on whether the corresponding cell belongs to the analyzed set or not. For

this notification, we use the planar coordinates of the centre of the cell. When we

consider the cell [k, l] = 〈a, a+∆〉×〈b, b+∆〉, we simply calculate whether the point
(a+∆/2, b+∆/2) belongs to x, where x is the recently added or deleted object.

4.2.2. Calculation of the perimeter. There are many publications concerning

calculation of the perimeter of sets displayed in digital image. For example in [16],

the perimeter is estimated by intrinsic volume densities using the Steiner formula,

the authors of [17] estimate the perimeter using the Cauchy formula, etc. Many of

these methods work with the whole digital image in order to make the estimation

precise enough. But our main aim is to make the calculations as local as possible

rather than to achieve the absolute precision, so we need to apply an easy algorithm,

where the inputs are close neighbourhoods of pixels belonging to the actually added

or deleted object.

Let “1” denote the pixel belonging to the analyzed set and “0” the pixel not

belonging to the analyzed set. In order to calculate the perimeter by which the cell

contributes to the perimeter of the union in our case, we focus just on the nearest

neighbouring cells. For a pixel [k, l] belonging to the analyzed set denote the six

different types of situations due to the neighbouring pixels by [k, l − 1], [k, l + 1],

[k − 1, l], and [k + 1, l] as

P0 :
1

1 1 1
1

P1 :
0

1 1 1
1

1
1 1 0
1

1
1 1 1
0

1
0 1 1
1
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P2a :
0

1 1 0
1

1
1 1 0
0

1
0 1 1
0

0
0 1 1
1

P2b :
0

1 1 1
0

1
0 1 0
1

P3 :
0

1 1 0
0

1
0 1 0
0

0
0 1 1
0

0
0 1 0
1

P4 :
0

0 1 0
0

Then the pixels contribute to the whole perimeter by the following values:

(1) The contribution of each pixel not belonging to the analyzed set is 0.

(2) The contribution of a pixel belonging to the analyzed set is

(a) 0 for the type P0,

(b) 1 for the type P1,

(c)
√
2 for the type P2a,

(d) 2 for the type P2b,

(e) 3 for the type P3,

(f) 4 for the type P4.

4.2.3. Calculation of the Euler-Poincaré characteristic. For calculation of

the Euler-Poincaré characteristic, we use a simple algorithm based on local (2× 2)-

pixel patterns (see e.g. [18]). Consider three types of such patterns, namely

Q1 :
1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

Q2 :
1 1
1 0

1 1
0 1

1 0
1 1

0 1
1 1

Q3 :
1 0
0 1

0 1
1 0

For i = 1, 2, 3 denote by n(Qi) the number of the patterns of the type Qi in the

digital image of the given set. Then the Euler-Poincaré characteristic of the set is

calculated as

χ =
1

4
(n(Q1)− n(Q2) + 2n(Q3))
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under the definition of four-connectivity and

χ =
1

4
(n(Q1)− n(Q2)− 2n(Q3))

for eight-connectivity. In our simulation study below, we use the definition of four-

connectivity and the information about the type of 2× 2 pattern is obtained in the

“upper left” pixel, i.e. the type of the pixel [k, l] is the type of the pattern

[k, l] [k, l+ 1]

[k + 1, l] [k + 1, l+ 1]

obj. 1
obj. 2

obj. 3

Figure 4. An example of the grid, where the light grey cell has area = 1, perimeter =
√
2,

type = Q2, list of objects = {2} and the dark grey cell has area = 1, perimeter
= 0, type = − (i.e. it is not used for calculation of Euler-Poincaré characteristic),
list of objects = {1, 3}.

4.3. Examples.

4.3.1. Rectangles and ellipses. In the first example, we consider the primary

grain X to be either a rectangle or an ellipse, so the probability distribution Q of X

is given by

(4.1) Q = αQ(rect) + (1− α)Q(el),

where α ∈ (0, 1) and both Q(rect) and Q(el) are determined by two random parameters

A(rect), B(rect) and A(el), B(el), respectively. It means that

X = I{K6α}X1 + I{K>α}X2,
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where

X1 = (−A(rect)/2, A(rect)/2)× (−B(rect)/2, B(rect)/2),

X2 = {(x, y) : (x/A(el))2 + (y/B(el))2 6 1},

and K ∼ U(0, 1) is a random variable independent of X1 and X2.

In this example, we consider the reference Boolean model with intensity ̺ = 1 in

S = [0, 10]×[0, 10] and the distributionQ ofX given by α = 0.3, A(rect) ∼ U(0.2, 1.2),

B(rect) ∼ U(0.2, 0.7), A(el) ∼ U(0.2, 0.5), and B(el) ∼ U(0.2, 0.7), where all these

random variables are mutually independent, see Fig. 5 (a). Simulated realizations of

Quermass-interaction process with non circular grains with different parameters are

shown in Fig. 5 (b)–(d). In this figure, we observe that for negative θ1 and positive θ2

(images (b) and (c)), i.e. when the realizations with smaller area and larger perimeters

are preferred, we have more rugged images compared to the reference process (a),

while in the image (b), where θ3 is positive, i.e., larger Euler-Poincaré characteristic

is preferred, we can see more of smaller components and in the image (c) for θ3

negative, we have less of protracted components. When we set θ1 to be positive and

θ2 to be negative, the realizations tend to produce patterns as seen in the image (d)

while θ3 negative causes occurrence of a number of holes.

(a) (b) (c) (d)

Figure 5. Realizations of (a) the reference Boolean model on S = [0, 10] × [0, 10] with
intensity ̺ = 1 and the distribution given by (4.1) with α = 0.3, A(rect) ∼
U(0.2, 1.2), B(rect) ∼ U(0.2, 0.7), A(el) ∼ U(0.2, 0.5) and B(el) ∼ U(0.2, 0.7),
(b) (A,L, χ)-interaction model with parameters (θ1, θ2, θ3) = (−4, 1, 0.5),
(c) (A,L, χ)-interaction model with parameters (θ1, θ2, θ3) = (−4, 1,−0.5) and
(d) (A,L, χ)-interaction model with parameters (θ1, θ2, θ3) = (3,−1.5,−1.5).

4.3.2. Rotated ellipses. In the second example X is a rotated ellipse, where

both the lengths A, B and the angle ϕ of its rotation are random.

The reference Boolean model is again considered with intensity ̺ = 1 in S =

[0, 10] × [0, 10], and the distribution Q of X is given by A ∼ U(0.4, 0.7), B ∼
U(0.2, 0.4) and ϕ ∼ U(π/8, 3π/8), i.e. the direction of the main axes of the ellipses

are not distributed uniformly at all possible angles, but the ellipses are inclined,

see Fig. 6 (a). Simulated realizations of Quermass-interaction process with elliptical
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grains with different parameters is shown in Fig. 6 (b)–(d). Similarly to the above,

we observe that for negative θ1 and positive θ2 (images (b) and (c)) the images are

more rugged compared to the reference process (a), while in the image (b), where

θ3 is positive, we have more of smaller components and in the image (c) for θ3 neg-

ative we observe protracted clusters. Another type of clustering is observed in the

image (d). There we set θ1 to be positive, θ2 to be negative, which forces the re-

alization to produce rather circular clusters while θ3 positive causes occurrence of

a larger number of such clusters.

(a) (b) (c) (d)

Figure 6. Realizations of (a) the reference Boolean model on S = [0, 10] × [0, 10] with
intensity ̺ = 1 and the parameters A ∼ U(0.2, 0.4), B ∼ U(0.4, 0.7) and ϕ ∼
U(π/8, 3π/8),
(b) (A,L, χ)-interaction model with parameters (θ1, θ2, θ3) = (−3, 1, 1),
(c) (A,L, χ)-interaction model with parameters (θ1, θ2, θ3) = (−3, 1,−0.5) and
(d) (A,L, χ)-interaction model with parameters (θ1, θ2, θ3) = (3,−1, 2).

4.4. Comparison to simulation of random disc process using power tes-

sellation. We are naturally interested also in comparison of the simulations of ran-

dom disc Quermass-interaction process by the method described in [12] using the

power tessellation and by the method using discretization described in this paper.

Two main questions surely are:

(1) How much similar the simulated realizations are?

(2) Which method is faster and how much?

Of course, the answers depend on the chosen resolution of the used discretization. By

refining the grid, we achieve more precise results, but the simulation time quadrati-

cally grows. It is not possible to recommend a concrete refinement in general, because

it depends on many aspects of the studied situation, mainly on the size of the win-

dow S and the distribution of the grains. However, let us provide at least a short

simulation study in order to compare these two methods in one concrete case.

Consider the reference random disc Boolean model with disc centres in S = [0, 10]×
[0, 10], intensity of the centres ̺ = 1 and the distribution of the radii U(0.2, 0.6).

First, we simulate the process with (θ1, θ2, θ3) = (−3, 1,−1.5) producing realiza-

tions with long connected components in which the influence of the resolution can

484



be significant. In Fig. 7, we observe the realizations obtained by discretization with

the resolutions (b) 100×100, (c) 300×300 and (d) 500×500 pixels (imaged both as
smooth discs and in the corresponding resolution) compared to (a) the realization

obtained by the simulation using the power tessellation algorithm. We can see that

in the case of quite rough resolution 100×100, the realization is not very similar to
the realization (a). It can be caused by the fact, that for small discs and rough

resolution, the perimeter is overvalued and since the process with given parameters

prefers larger perimeter, it produces more discs. In the case of smoother resolution,

we observe much better results, and also in their pixel image we observe almost

circular shapes of the discs. However, when we compare the time needed for the

simulation, it is approximately 4× longer for the resolution 100×100 (i.e. 36× longer
for the resolution 300×300 and 100× longer for the resolution 500×500) than for the
simulation using the power tessellation algorithm.

(a) (b) (c) (d)

Figure 7. Realizations of random disc Quermass-interaction process with the reference
Boolean model on S = [0, 10] × [0, 10] with intensity ̺ = 1, the distribution
of the radii U(0.2, 0.6) and (θ1, θ2, θ3) = (−3, 1,−1.5) obtained by the simula-
tion using the power tessellation algorithm (a) and by the simulation using the
discretization algorithm, where the resolution is (b) 100×100, (c) 300×300 and
(d) 500×500 pixels. The first row is the image of the discs themselves, the second
row are the same realizations plotting the corresponding resolution.

Secondly, we fix the resolution 400×400 and study other combinations of parame-
ters. In Fig. 8 in the cases (a) and (b), we set θ1 to be negative, θ2 to be positive and

θ3 to be negative, i.e. we expect the realizations with rather greater number of small

components. Both the images are similar, only in the image (a) we observe slightly

less area. For θ1 positive, θ2 as well as θ3 negative as chosen in cases (c) and (d),

where the realizations are big clusters with holes, the similarity is obvious again.
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(a) (b) (c) (d)

Figure 8. Realizations of random disc Quermass-interaction process with the reference
Boolean model on S = [0, 10]× [0, 10] with intensity ̺ = 1 and the distribution of
the radii U(0.2, 0.6), where (a) (θ1, θ2, θ3) = (−4, 1,−0.5) and the simulation used
the power tessellation algorithm, (b) (θ1, θ2, θ3) = (−4, 1,−0.5) and the simula-
tion used the discretization algorithm, (c) (θ1, θ2, θ3) = (1.2,−1,−1) and the sim-
ulation used the power tessellation algorithm, and (d) (θ1, θ2, θ3) = (1.2,−1,−1)
and the simulation used the power discretization algorithm.

5. Conclusion

In this paper, we generalized the random disc Quermass-interaction model to the

process of interacting convex compact grains. After deriving theoretical results, we

focused on simulation of the process. The simulation algorithm used local calcu-

lations in order to run faster, similarly to [12], where the power tessellation of the

union of discs was introduced. A similar tool was not found in the case of general

convex compact grains, therefore instead of it, we worked with a discretization of

the window in which the process is analyzed. It entailed the problem of choosing

the grid of the discretization. As shown in the last section, the grid must be chosen

carefully, because in case of a very coarse grid, the simulation is quite fast, but the

preciseness is not satisfactory, and vice versa. But despite the introduced problems,

the conclusion is that we provided a satisfactory simulation algorithm, which can be

later used for further analyses.
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