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Abstract

In Riemannian geometry the prescribed Ricci curvature problem is as
follows: given a smooth manifold M and a symmetric 2-tensor r, con-
struct a metric on M whose Ricci tensor equals r. In particular, DeTurck
and Koiso proved the following celebrated result: the Ricci curvature
uniquely determines the Levi-Civita connection on any compact Einstein
manifold with non-negative section curvature. In the present paper we
generalize the result of DeTurck and Koiso for a Riemannian manifold
with non-negative section curvature. In addition, we extended our re-
sult to complete non-compact Riemannian manifolds with nonnegative
sectional curvature and with finite total scalar curvature.
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1 Introduction

The main point of the papers [1, 2] and the monograph [3, pp. 140–153] is
that in certain circumstances the metric (or at last the connection) is uniquely
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determined by the Ricci tensor. In particular, in [1, Corollary 3.3] and [3,
Theorem 5.42] anyone can read the following: Let (M, ḡ) be a compact Einstein
manifold with non-negative section curvature and with the Ricci tensor Ric(ḡ) =
ḡ, then another Riemannian metric g on M with Ric(g) = ḡ has the same Levi-
Civita connection as ḡ. We note that this proposition is a corollary of the Eells
and Sampson vanishing theorem for harmonic maps of compact Riemannian
manifolds (see [4, p. 124]).
In the present paper we consider a compact Riemannian manifold (M, ḡ)

with non-negative sectional curvature and with Ric(ḡ) ≤ ḡ. Under these con-
ditions, we prove that if g is another Riemannian metric on M with the Ricci
tensor Ric(g) = ḡ, then g and ḡ have the same Levi-Civita connection. Further-
more, if the full holonomy group Hol(ḡ) is irreducible then the metric g = Cḡ
for some constant > 0. In turn, it is well known that Ric(ḡ) = Ric(Cḡ). This
proposition was announced in report [5] at the 12th International Conference on
Geometry and Applications (September 1–5, 2015, Varna, Bulgaria). We extend
the above scheme to show that if (M, ḡ) is a non-compact manifold (M, ḡ) with
non-negative sectional curvature and with the Ricci tensor Ric(ḡ) ≤ ḡ then there
is no complete Riemannian metric g such that its Ricci tensor Ric(g) = ḡ and
its total scalar curvature sg(M) is finite. This proposition is a corollary of the
Schoen and Yau vanishing theorem for harmonic maps of complete non-compact
Riemannian manifolds (see [8]).
Our statements generalize and complement the results of the papers [1] and

[2], and the monograph [3].

2 Harmonic maps

For the discussion of harmonic maps we will follow Eells and Sampson [4]. Let
(M, g) and (M̄, ḡ) be two Riemannian manifolds with the Levi-Civita connec-
tions ∇ := ∇(g) and ∇̄ := ∇(ḡ), and f : (M, g) → (M̄, ḡ) be a smooth map.
The energy density of f is defined as the scalar function

e(f) = 2−1‖df‖2 (1)

where ‖df‖2 is the squared norm of the differential of f with respect to metric on
the bundle T ∗M ⊗f∗TM̄ . Then the total energy of f is obtained by integrating
the energy density e(f) over M

E(f) =

∫
M

e(f) dV olg (2)

where dvg denotes the measure on (M, g) induced by the metric g. If f is of class
C2 and E(f) < +∞, and f is an extremum of the Dirichlet energy functional
E(f), then f is called a harmonic map and satisfies the Euler–Lagrange equation

tracegD df = 0 (3)

where D is the connection in the bundle T ∗M ⊗ f∗TM̄ induced from the Levi-
Civita connections ∇ and ∇̄ of (M, g) and (M̄, ḡ), respectively.
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For any harmonic f : (M, g) → (M̄, ḡ) we have theWeitzenböck formula (see
[4])

Δe(f) = Q(f) + ‖D df‖2 (4)

where Δ is the Laplace–Beltrami operator Δ = div∇ and

Q(f) = g(Ric, f∗ḡ)− traceg(traceg(f
∗Riem)) (5)

where Ric = Ric(g) is the Ricci tensor of (M, g) and Riem is the Riemannian
curvature tensor of (M̄, ḡ). Let the inequality sec ≤ 0 be satisfied anywhere
on (M̄, ḡ) and the inequality Ric ≥ 0 be satisfied anywhere on compact (M, g),
then Q(f) is non-negative everywhere on M . Since our hypothesis implies that
the left hand side of (3) is non-negative, then using the Hopf’s lemma (see [6,
pp. 30–31]), one can verify that e(f) is constant. In this case, from (4) we
obtain D df = 0. In this case, f is totally geodesic map (see [7]). Now we
can formulate the following vanishing theorem on harmonic maps. Namely, if
f : (M, g) → (M̄, ḡ) is any harmonic mapping between a compact Riemannian
manifold (M, g) with the Ricci tensor Ric ≥ 0 and a Riemannian manifold
(M̄, ḡ) with the sectional curvature sec ≤ 0 then f is totally geodesic and has
constant energy density e(f). Furthermore, if there is at least one point ofM at
which its Ricci curvature Ric > 0, then every harmonic map f : (M, g) → (M̄, ḡ)
is constant (see [4, p. 124]).
In turn, Schoen and Yau have showed in [8] that

√
e(f) is subharmonic

function on (M, g) if Q(f) ≥ 0. On other hand, Yau has proved in other
his paper [9] that every non-negative L2-integrable subharmonic function on a
complete Riemannian manifold must be constant. Applying this to

√
e(f), we

conclude that
√
e(f) is a constant if the total energy E(f) < +∞ (see also [8]).

On the other hand, every complete non-compact Riemannian manifold with
nonnegative Ricci curvature has infinite volume (see [9]). In our case, we have
Ric ≥ 0 then the volume of (M, g) is infinite. This forces the constant e(f) to be
zero and f to be a constant map (see also [8]). Now we can formulate another
celebrated vanishing theorem on harmonic maps: If the sectional curvature of
(M̄, ḡ) is non-positive and (M, g) is a complete non-compact manifold with
Ric ≥ 0, then any harmonic map f : (M, g) → (M̄, ḡ) with the finite energy E(f)
is a constant map (see [8], [10, p. 116]). We remark that in the original paper
[8] the manifold (M̄, ḡ) was assumed to be compact. However, this assumption
is superfluous (see [10, p. 116]).

3 The main theorem

If we consider the manifold M with two Riemannian metrics g and ḡ then the
identity mapping Id : (M, g) → (M, ḡ) is harmonic if and only if the deformation
tensor T = ∇̄ −∇ is a section of the tensor bundle TM ⊗S2

0M , because in this
case the Euler–Lagrange equation (3) has the form traceg T = 0 (see [1, 3]). In
particular, if (M, g) is a manifold of strictly positive Ricci Ric curvature, then
Id : (M, g) → (M,Ric) is a harmonic map (see [1]). Next we can formulate and
prove the following
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Theorem 1 Let (M, ḡ) be a compact Riemannian manifold with the sectional
curvature sec ≥ 0 and with the Ricci tensor Ric ≤ ḡ. If g is another Riemannian
metric on M with the Ricci tensor Ric = ḡ, then g and ḡ have the same Levi-
Civita connection. Furthermore, if the full holonomy group Hol(ḡ) of (M, ḡ) is
irreducible then Ric = Ric.

Proof With the above assumptions, we have Ric = ḡ > 0, then the identity
map Id: (M, g) → (M, ḡ) is harmonic. In this case, we have e(f) = 1

2s for
the energy density e(f) of the harmonic identity map Id : (M, g) → (M, ḡ) and
the scalar curvature s = traceg Ric of the Riemannian manifold (M, g) (see [1],
[3, p. 152]). Therefore, s satisfies the Weitzenbck formula (4) which has the
following form (see [1]):

1

2
Δs = Q(f) + ‖D df‖2 (6)

where Q(f) = gikgjl(ḡij ḡkl − R̄ijkl and ‖D df‖2 = gijgklḡpqT
p
ikT

q
jl ≥ 0 for local

components gij , ḡkl, R̄ijkl and T ikl of metric tensors g and ḡ, the Riemannian
curvature tensor Riem and the deformation tensor T , respectively. On the other
hand, we have the identity (see [3, p. 436], [11])

(ḡijR̄kl − R̄ijkl)ϕ
ikϕjl =

∑
i<j

sec(ēi, ēj)(λ̄i, λ̄j)
2 (7)

where ϕ is any smooth symmetric tensor field such that ϕ(ēi, ēj) = λ̄iδij for
the Kronecker delta δij and some orthonormal basis {ē1, . . . , ēn} at any point
x ∈M . Then equation (6) can be rewritten in the form

1

2
Δs =

∑
i<j

sec(ēi, ēj)(λ̄i, λ̄j)
2 + gikgjlḡij(ḡkl − R̄kl) + ‖T‖2 (8)

where g(ēi, ēj) = λ̄iδij . We remark that under the stated assumptions the right
side of (8) is non-negative, since then Δs ≥ 0. Therefore, the scalar curvature s
is a positive subharmonic function on (M, g). If (M, ḡ) is a compact Riemannian
manifold, then using the Hopf’s lemma (see [6, pp. 30–31]), one can verify that
s = const. In this case, from (8) we obtain T = 0. Then g and ḡ have the same
Levi-Civita connection, i.e. ∇̄g = 0. Furthermore, if the full holonomy group
Hol(ḡ) of (M, ḡ) is irreducible then the metric g = Cḡ for some constant > 0
(see [3, pp. 282, 285–287]). In this case, we have the identity Ric = Ric because
Ric(ḡ) = Ric(Cḡ) for some positive constant C (see [3, pp. 44, 152]). �

4 Two vanishing theorems

In [13] the following non-existence theorem was proved: Let (M, ḡ) be a compact
Riemannian manifold with all sectional curvature less then (n̄ − 1)−1. Then
there is no Riemannian metric g on M such that its Ricci tensor Ric = ḡ. In
its turn, in [2] the following vanishing theorem was proved: Let ḡ be a metric
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on a compact manifold M with the sectional curvature sec < +1, then any
metric g does not exist on M such that its Ricci tensor Ric = ḡ. We also get
a non-existence result which complements the above propositions. In turn, we
can formulate and prove an analogue of these propositions in the following form.

Theorem 2 Let (M, ḡ) be a compact Riemannian manifold with nonnegative
section curvatures and with the Ricci tensor Ric ≤ ḡ. If in addition there is
at least one point of M at which the Ricci tensor Ric < ḡ, then there is no
Riemannian metric g on M such that its Ricci tensor Ric = ḡ.

Proof Let M be a compact manifold. We may assume that M is oriented by
taking the twofold covering of M if necessary. Then by Green’s theorem (see
[6, pp. 31–33]) we obtain from (6) the following identity∫

M

Q(f) dV olg +

∫
M

‖T‖2 dV olg = 0. (9)

If the inequalities sec ≥ 0 and Ric ≤ ḡ are satisfied and there is a one point
x of M in which Ric < ḡ then the inequality

∫
M
Q(f) dV olg > 0 holds. This

inequality contradicts the equation (9). In this case, the harmonic mapping f
must be constant. �

Theorem 3 Let (M, ḡ) be a non-compact Riemannian manifold with the sec-
tion curvature sec ≥ 0 and with the Ricci tensor Ric < ḡ. Then there is no
complete Riemannian metric g on (M, ḡ) such that its Ricci tensor Ric = ḡ and
its total scalar curvature s(M) is finite.

Proof Let (M, ḡ) be a non-compact Riemannian manifold with the section
curvature sec ≥ 0 and with the Ricci tensor Ric < ḡ, then Q(f) is non-negative
everywhere on M . If we assume that there is complete Riemannian metric g
on (M, ḡ) such that its Ricci tensor Ric = ḡ > 0, then the volume of (M, g)
is infinite (see [9]). Moreover, we have e(f) = 1

2s for the energy density e(f)
of the harmonic identity map Id : (M, g) → (M, ḡ) and the scalar curvature
s = traceg Ric of the Riemannian manifold (M, g). In this case,

√
s is a strictly

positive subharmonic function on a complete Riemannian manifold (M, g) of in-
finite volume (see [8]). In addition, if we suppose that the total scalar curvature∫
M
s dV olg < +∞, then smust be zero (see [8], [12, p. 262]). On the other hand,

according to the condition of our theorem the scalar curvature s = traceg ḡ > 0
and hence there is no complete Riemannian metric g on non-compact (M, ḡ)
such that its Ricci tensor Ric = ḡ. �

References

[1] DeTurck, D., Koiso, N.: Uniqueness and non-existence of metrics with prescribed Ricci
curvature. Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984),
351–359.

[2] Hamilton, R. S.: The Ricci curvature equation. Lecture notes: Seminar on nonlinear
partial differential equations, Mathematical Sciences Research Institute Publications,
Berkeley, 1983, 47–72.



52 M. B. Khripunova, S. E. Stepanov, I. I. Tsyganok, J. Mikeš
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