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Abstract

The object of investigations are almost contact B-metric manifolds
which are derived as a product of a real line and a 2-dimensional mani-
fold equipped with a complex structure and a Norden metric. There are
used two different methods for generation of the B-metric on the product
manifold. The constructed manifolds are characterised with respect to
the Ganchev–Mihova–Gribachev classification and their basic curvature
properties.
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1 Introduction

The differential geometry of almost contact metric manifolds is well studied (e.g.
[1]). Ganchev, Mihova, Gribachev begin investigations on the almost contact
manifolds with B-metric in [3]. These manifolds are the odd-dimensional coun-
terpart of almost complex manifolds with Norden metric (briefly, almost Norden
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manifolds) [2, 4], where the almost complex structure acts as an anti-isometry re-
garding the metric. Further, almost contact B-metric manifolds of arbitrary odd
dimension are investigated in many works, for example [11, 12, 13, 14, 15, 17].
An object of our special interest is the case of the lowest dimension 3 of the

considered manifolds ([6, 7, 8, 9, 10]). In the present paper, there are used two
different methods for construction of an almost contact B-metric manifold as a
product of a real line and a 2-dimensional Norden manifold. The goal of this
work is a characterisation of the obtained manifolds.
The paper is organized as follows. In Sect. 2 we recall some preliminary

facts about almost contact B-metric manifolds and almost Norden manifolds. In
Sect. 3 and Sect. 4 we study the considered manifolds derived from a space-form
of real dimension 2 equipped with a complex structure and a Norden metric,
which are constructed as its cone and its S1-solvable extension, respectively.

2 Preliminaries

2.1 Almost contact B-metric manifolds

Let (M,ϕ, ξ, η, g) be an almost contact B-metric manifold, whereM is a (2n+1)-
dimensional differentiable manifold with an almost contact structure (ϕ, ξ, η)
consisting of an endomorphism ϕ of the tangent bundle, a Reeb vector field ξ,
its dual contact 1-form η as well as M is equipped with a pseudo-Riemannian
metric g of signature (n+ 1, n), called B-metric, such that:

ϕξ = 0, ϕ2 = −Id + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,

g(ϕx, ϕy) = −g(x, y) + η(x)η(y),

where Id is the identity map ([3]). In the latter equality and further, x, y, z,
w will stand for arbitrary elements of X(M), the Lie algebra of tangent vector
fields, or vectors in the tangent space TpM of M at an arbitrary point p in
M . Let us recall that these manifolds are the odd dimensional extension of the
almost Norden manifolds and the case with indefinite metrics corresponding to
almost contact metric manifolds.
The associated metric g̃ of g onM is defined by g̃(x, y) = g(x, ϕy)+η(x)η(y)

and it is also a B-metric. The manifold (M,ϕ, ξ, η, g̃) is also an almost contact
B-metric manifold.
The Ganchev–Mihova–Gribachev classification of almost contact B-metric

manifolds, consisting of eleven basic classes F1, F2, . . . , F11, is given in [3]. It
is made with respect to the (0,3)-tensor F defined by

F (x, y, z) = g
(
(∇xϕ) y, z

)
,

where ∇ is the Levi-Civita connection of g and the following general properties
are valid:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ),

F (x, ϕy, ξ) = (∇xη)(y) = g(∇xξ, y).
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The intersection of the basic classes is the special class F0, determined by
the condition F (x, y, z) = 0 and it is known as the class of the cosymplectic
B-metric manifolds.
Let {ei; ξ} (i = 1, 2, . . . , 2n) be a basis of TpM and let (gij) be the corre-

sponding matrix of g and
(
gij

)
be its inverse matrix. The 1-forms θ, θ∗, ω

associated with F , called Lee forms, are determined by:

θ(z) = gijF (ei, ej , z), θ∗(z) = gijF (ei, ϕej , z), ω(z) = F (ξ, ξ, z).

In the present work, we consider the case of the lowest dimension of the
considered manifolds, i.e. dimM = 3.
The basis {e1, e2, e3} in any tangent space at an arbitrary point of M is

called a ϕ-basis if the following equalities are valid

ϕe1 = e2, ϕe2 = −e1, e3 = ξ,

g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1, g(ei, ej) = 0, i �= j.
(1)

According to [6], the components of F , θ, θ∗, ω, denoted by Fijk = F (ei, ej , ek),
θk = θ(ek), θ∗k = θ∗(ek), ωk = ω(ek), with respect to the given ϕ-basis are:

θ1 = F221 − F331, θ2 = F222 − F332, θ3 = F223 − F322,

θ∗1 = F231 + F321, θ
∗
2 = F223 + F322, θ

∗
3 = F222 + F332,

ω1 = 0, ω2 = F112, ω3 = F113.

(2)

Let us denote by F s (s = 1, 2, . . . , 11) the components of F in the corre-
sponding basic classes Fs. In [6], F s are obtained for dimM = 3 and it is
established that the class of 3-dimensional almost contact B-metric manifolds is

F1 ⊕F4 ⊕F5 ⊕F8 ⊕F9 ⊕F10 ⊕F11.

According to [14], the class of the normal almost contact B-metric manifolds
is F1 ⊕ F2 ⊕ F4 ⊕ F5 ⊕ F6, since the Nijenhuis tensor of almost contact struc-
ture vanishes there. Therefore, we conclude that the class of the 3-dimensional
normal almost contact B-metric manifolds is F1 ⊕F4 ⊕F5. The corresponding
components of F for x = xiei, y = yjej , z = zkek are the following ones in
compliance with [6]:

F 1(x, y, z) =
(
x2θ2 − x3θ3

) (
y2z2 + y3z3

)
,

θ2 = F222 = F233, θ3 = −F322 = −F333;

F 4(x, y, z) = 1
2θ1

{
x2

(
y1z2 + y2z1

)
− x3

(
y1z3 + y3z1

)}
,

1
2θ1 = F212 = F221 = −F313 = −F331;

F 5(x, y, z) = 1
2θ

∗
1

{
x2

(
y1z3 + y3z1

)
+ x3

(
y1z2 + y2z1

)}
,

1
2θ

∗
1 = F213 = F231 = F312 = F321.

(3)

In [12], there are given fundamental facts of the conformal geometry of almost
contact B-metric manifolds. We recall some of them which are in relation with
the obtained results in this work.
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The contactly conformal transformations are determined by

ḡ = e2u cos 2v g + e2u sin 2v g̃ + (1− e2u cos 2v − e2u sin 2v)η ⊗ η

and they form a group C. The minimal contactly conformal equivalent class
with respect to C is contained in the most cramped class with non-zero Lee
forms θ and θ∗, the class F1 ⊕ F4 ⊕ F5, whose is also the minimal contactly
conformally invariant class with respect to C.
The classes F1 ⊕ F4 and F1 ⊕ F5 are locally contactly conformally invari-

ant with respect to the transformations of the groups C1,4 and C1,5, respec-
tively, which are contactly conformal transformations satisfying the conditions
du(ξ) = 0 and dv(ξ) = 0, respectively. Similarly, the classes F1, F4 and F5 are
locally contactly conformally invariant with respect to the transformations of
the groups C1, C4 and C5, respectively. The latter groups are determined by
the conditions:

C1 : du(ξ) = dv(ξ) = 0,

C4 : du ◦ ϕ = dv ◦ ϕ2, du(ξ) = 0,

C5 : du ◦ ϕ = dv ◦ ϕ2, dv(ξ) = 0.

The subsets F0
i (i = 1, 4, 5) are subclasses of Fi with closed Lee forms θ and

θ∗. An F0-manifold is contactly conformally equivalent to a manifold from the
classes F0

1 ⊕F0
4 , F0

1 ⊕F0
5 , F0

1 , F0
4 , F0

5 with respect to transformations belonging
to the groups C0

1,4, C
0
1,5, C

0
1 , C

0
4 , C

0
5 , respectively. The latter subgroups are

determined as follows:

C1,4 ⊃ C0
1,4 : d(du ◦ ϕ) = 0, C1,5 ⊃ C0

1,5 : d(dv ◦ ϕ) = 0,

C1 ⊃ C0
1 : d(du ◦ ϕ) = d(dv ◦ ϕ) = 0,

C4 ⊃ C0
4 : d(du ◦ ϕ) = 0, C5 ⊃ C0

5 : d(dv ◦ ϕ) = 0.

In [11], it is defined the square norm of ∇ϕ as follows

‖∇ϕ‖2 = gijgksg
(
(∇eiϕ) ek,

(
∇ejϕ

)
es
)
. (4)

If an almost contact B-metric manifold has a zero square norm of ∇ϕ it is
called an isotropic-cosymplectic B-metric manifold ([11]). Obviously, the equal-
ity ‖∇ϕ‖2 = 0 is valid if (M,ϕ, ξ, η, g) is an F0-manifold, but the inverse impli-
cation is not always true.
Let R = [∇,∇] − ∇[ , ] be the curvature (1,3)-tensor of ∇ and the corre-

sponding curvature (0, 4)-tensor be denoted by the same letter: R(x, y, z, w)
= g(R(x, y)z, w). The following properties are valid in general:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),
R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

(5)

Let the essential curvature-like tensors π1 and π2 (i.e. tensors generated by
g and ϕ such that they possess the properties (5)) of types (1,3) and (0,4) are
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defined by

π1(x, y)z = g(y, z)x− g(x, z)y,

π2(x, y)z = g(y, ϕz)ϕx− g(x, ϕz)ϕy,

π1(x, y, z, w) = g(y, z)g(x,w)− g(x, z)g(y, w),

π2(x, y, z, w) = g(y, ϕz)g(x, ϕw)− g(x, ϕz)g(y, ϕw).

(6)

Let the Ricci tensor ρ and the scalar curvature τ for R and g as well as their
associated quantities be defined as follows

ρ(y, z) = gijR(ei, y, z, ej), ρ∗(y, z) = gijR(ei, y, z, ϕej),

τ = gijρ(ei, ej), τ∗ = gijρ∗(ei, ej), τ∗∗ = gijρ∗(ei, ϕej).
(7)

The sectional curvature of each non-degenerate 2-plane α in TpM with re-
spect to g and R has the following form

k(α; p) =
R(x, y, y, x)

g(x, x)g(y, y)
, (8)

where {x, y} is an orthogonal basis of α.
A 2-plane α is called a ϕ-holomorphic section (respectively, a ξ-section) if

α = ϕα (respectively, ξ ∈ α).

2.2 Almost complex manifold with Norden metric

Let us remark that the 2n-dimensional contact distribution H = ker(η) of
(M,ϕ, ξ, η, g) can be considered as an almost complex manifold N endowed
with an almost complex structure J = ϕ|H and a metric h = g|H , where ϕ|H
and g|H are the restrictions of ϕ and g on H, respectively.
Let x′, y′, z′, w′ denote arbitrary vector fields or vectors in the contact

distribution H of M . Since g is a B-metric of M , then h is a Norden metric on
H, i.e. it is compatible with J as follows

h(Jx′, Jy′) = −h(x′, y′).

The associated Norden metric h̃ of h is determined by

h̃(x′, y′) = h(x′, Jy′).

Both metrics h and h̃ have signature (n, n).
We recall that an 2n-dimensional manifold N with almost complex structure

J and Norden metric h is an almost Norden manifold (N, J, h). The manifold
(N, J, h̃) is also an almost Norden manifold.
In the present work we pay attention to the case of the lowest dimension.

Let (N, J, h) be a 2-dimensional almost Norden manifold. It is known that
such a manifold is a space-form, i.e. the manifold has constant sectional cur-
vature k′ and its curvature tensor has the form R′ = k′ π′

1, where π
′
1 is the
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essential curvature-like tensor as π1 in (6) but with respect to h. Moreover,
according to [2], any 2-dimensional almost Norden manifold is integrable and it
belongs to the basic class W1. In other words, this is the class of the considered
manifolds which are conformally equivalent to Kähler–Norden manifolds, where
conformal transformations of the metric are given by h = e2u(cos 2v h+sin 2v h̃)
for differentiable functions u, v on N . The Kähler–Norden manifolds are the
most specialized case of the almost Norden manifolds, determined by ∇′J = 0,
where ∇′ is the Levi-Civita connection of h. Their class is denoted by W0

and it is a subclass of W1. The fundamental tensor F ′ of (N, J, h) is defined
by F ′(x′, y′, z′) = h

(
(∇′

x′J) y′, z′
)
and for any W1-manifold it is determined as

follows

F ′(x′, y′, z′) =
1

2
{h(x′, y′)θ′(z′) + h(x′, Jy′)θ′(Jz′)

+ h(x′, z′)θ′(y′) + h(x′, Jz′)θ′(Jy′)}. (9)

A more wide subclass of W1 comparing with W0 contains the so-called
isotropic-Kähler–Norden manifolds ([16]). They have a vanishing square norm
of ∇′J , i.e. ‖∇′J‖2 = 0, where this square norm is defined by

‖∇′J‖2 = hijhksh
(
(∇′

eiJ)ek, (∇
′
ejJ)es

)
(10)

with respect to an arbitrary basis.

3 The cone over a 2-dimensional complex space-form with
Norden metric

In this section, we consider the cone over N , C(N) = R+ ×N , where R+ is the
set of positive reals. We equip it with a metric g defined by

g
((
x′, a d

dt

)
,
(
y′, b d

dt

))
= t2 h(x′, y′) + ab, (11)

where t is the coordinate on R+ and a, b are differentiable functions on C(N).
We introduce an almost contact structure on the cone by

ϕ|H = J, ξ = d
dt , η = dt, ϕξ = 0, η ◦ ϕ = 0. (12)

Obviously, the manifold (C(N), ϕ, ξ, η, g) is an almost contact B-metric mani-
fold.
Using the general Koszul formula

2g(∇xy, z) = xg(y, z) + yg(z, x)− zg(x, y)

+ g([x, y], z)− g([y, z], x) + g([z, x], y), (13)

(11) and (12), we obtain the following equalities for the Levi-Civita connection
∇ of the B-metric g on C(N):

g (∇x′y′, z′) = t2 h (∇′
x′y′, z′) , g (∇ξy

′, z′) = t h (y′, z′) ,

g (∇x′y′, ξ) = −t h (x′, y′) , g (∇x′ξ, z′) = t h (x′, z′) .
(14)
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Further, using (14), we find the following formulae for the covariant derivatives
with respect to ∇

∇x′y′ = ∇′
x′y′ −

1

t
g (x′, y′) ξ, ∇ξy

′ =
1

t
y′, ∇x′ξ =

1

t
x′. (15)

Bearing in mind (5) and (15), we obtain

R(x′, y′)z′ = 1
t2 (k

′ − 1)π1(x
′, y′)z′,

R(x′, y′)ξ = R(x′, ξ)z′ = R(ξ, y′)z′ = R(x′, ξ)ξ = R(ξ, y′)ξ = 0.

Therefore, by direct computations, we get the following

Proposition 3.1 The following equalities for the curvature tensor R of (C(N), ϕ,
ξ, η, g) are valid:

R(x′, y′, z′, w′) = 1
t2 (k

′ − 1)π1(x
′, y′, z′, w′),

R(ξ, y′, z′, w′) = R(x′, ξ, z′, w′) = R(x′, y′, ξ, w′)

= R(x′, y′, z′, ξ) = R(ξ, y′, z′, ξ) = 0.

(16)

According to (1) and (11), we obtain the components hij = h(ei, ej) and
gij = g(ei, ej) and the non-zero of them are

h11 = −h22 =
1

t2
, g11 = −g22 = g33 = 1. (17)

Using (13), (15) and (17), we get

∇e1e1 = ∇′
e1e1 −

1
t e3, ∇e1e2 = ∇′

e1e2, ∇e1e3 = 1
t e1,

∇e2e1 = ∇′
e2e1, ∇e2e2 = ∇′

e2e2 +
1
t e3, ∇e2e3 = 1

t e2,

∇e3e1 = 1
t e1, ∇e3e2 = 1

t e2, ∇e3e3 = 0.

(18)

By virtue of (4), (12), (17) and (18), we obtain the value of the square norm
of ∇ϕ as follows

‖∇ϕ‖2 = 2{(θ1)2 − (θ2)
2} − 4

t2
, ‖∇′J‖2 = 2t2{(θ1)2 − (θ2)

2}.

The latter equalities imply

‖∇ϕ‖2 =
1

t2
{‖∇′J‖2 − 4}

and the truthfulness of the following

Theorem 3.2 1. The manifold (C(N), ϕ, ξ, η, g) is an isotropic-cosymplectic
B-metric manifold if and only if the square norm of ∇′J on (N, J, h) is

‖∇′J‖2 = 4.
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2. The manifold (N, J, h) is an isotropic-Kähler-Norden manifold if and only
if the square norm of ∇ϕ on (C(N), ϕ, ξ, η, g) is

‖∇ϕ‖2 = − 4

t2
.

Taking into account (12), (17) and (18), we compute the components Fijk
of F and get

F111 = F122 = θ′1, F211 = F222 = −θ′2,
F123 = F132 = F213 = F231 = 1

t ,
(19)

where θ′i = θ′(ei) for i = 1, 2, as well as the other components of F are zero.
Using (2), we obtain the components of the Lee forms of (C(N), ϕ, ξ, η, g)

and the non-zero of them are:

θ1 = θ′1, θ2 = θ′2, θ∗1 = −θ′2, θ∗2 = θ′1, θ∗3 =
2

t
.

Bearing in mind (3) and (19), we establish the equality

F (x, y, z) = (F 1 + F 5)(x, y, z),

where F 1 and F 5 are the components of F in the basic classes F1 and F5,
respectively. The non-zero components of F 1 and F 5 by means of (3) and (9)
are the following

F 1
111 = F 1

122 = θ1, F 1
211 = F 1

222 = −θ2,
F 5
123 = F 5

132 = F 5
213 = F 5

231 = 1
2θ

∗
3 .

Therefore, we establish the truthfulness of the following

Theorem 3.3 The manifold (C(N), ϕ, ξ, η, g)

1. belongs to F1 ⊕F5,

2. belongs to F5 if and only if (N, J, h) is a W0-manifold,

3. could not belongs to F1.

The class F1⊕F5 is a subclass of the class F1⊕F4⊕F5 of the 3-dimensional
normal almost contact B-metric manifolds.
Using (16), (17) and (18), we compute the componentsRijk	 = R(ei, ej , ek, e	)

of the curvature tensor R. The non-zero ones of them are determined by (5)
and the following

R1212 =
1

t2
(k′ − 1). (20)

Theorem 3.4 The manifold (C(N), ϕ, ξ, η, g) is flat if and only if k′ = 1.
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Bearing in mind (8), (17) and (20), we compute the basic sectional curvatures
kij = k(ei, ej) as follows

k12 =
1

t2
(k′ − 1), k13 = k23 = 0. (21)

Taking into account (7), (17) and (20), we obtain the basic components
ρjk = ρ(ej , ek) and ρ∗jk = ρ∗(ej , ek) of the Ricci tensor ρ and its associated
tensor ρ∗, respectively, as well as the values of the scalar curvature τ and its
associated quantities τ∗, τ∗∗. The non-zero ones of them are:

ρ11 = −ρ22 = ρ∗12 = ρ∗21 = 1
2τ = 1

2τ
∗∗ = 1

t2 (k
′ − 1). (22)

By virtue of (21) and (22), we conclude the following

Proposition 3.5 For the manifold (C(N), ϕ, ξ, η, g)

1. the sectional curvatures of the ξ-sections vanish,

2. τ∗ = 0,

3. τ∗∗ = τ .

Proposition 3.6 The following assertions for (C(N), ϕ, ξ, η, g) are valid:

1. k′ < 1 if and only if τ < 0;

2. k′ = 1 if and only if τ = 0;

3. k′ > 1 if and only if τ > 0.

4 The S1-solvable extension of a 2-dimensional complex
space-form with Norden metric

In the present section, let us introduce a warped product 3-dimensional manifold
S1(N) = R+ ×t2 N as follows. Let dt be the coordinate 1-form on R+ and let
us define an almost contact B-metric structure on S1(N) as follows

ϕ|H = J, ξ = d
dt , η = dt, η ◦ ϕ = 0, g = dt2 + cos 2t h− sin 2t h̃. (23)

In [5], it is proved that the warped product manifold S1(N) equipped with
the almost contact B-metric structure defined in (23) is an almost contact B-
metric manifold. The constructed manifold (S1(N), ϕ, ξ, η, g) in this manner is
called an S1-solvable extension of (N, J, h) in [5].
Using (13) and (23), we compute the components of the covariant derivative

∇ as follows:

∇x′y′ = ∇′
x′y′ − 1

2 sin 2t{g (x′, y′) θ′
 + g (x′, Jy′)Jθ′
}+ g (x′, Jy′) ξ,

∇ξy
′ = −Jy′, ∇x′ξ = −Jx′, ∇ξξ = 0.

(24)

In the latter equalities and further, we denote by θ′
 the dual vector of θ′ with
respect to h. Analogously, θ
 stands for the dual vector of θ with respect to g.
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Using (24), we obtain

R(x′, y′)z′ = k′{cos 2t π1(x′, y′)z′ − sin 2t Jπ2(x
′, y′)z′} − π2(x

′, y′)z′

+ 2 sin 2t (π1 + π2)(x
′, y′, z′, θ′
)Jθ


− 1
2 sin 2t {g (y′, z′)∇x′θ′
 − g (x′, z′)∇y′θ

′


+ g (y′, Jz′)∇x′Jθ′
 − g (x′, Jz′)∇y′Jθ
′
}

− 1
2{cos 2t (π1 + π2)(x

′, y′, z′, θ′
)

+ sin 2t (π1 + π2)(x
′, y′, z′, Jθ′
)}ξ,

R(x′, y′)ξ = − 1
2 (π

′
1 + π′

2)(x
′, y′)θ′
,

R(ξ, y′)z′ = − 1
2 (π

′
1 + π′

2)(θ
′
, y′)z′

− cos 2t {h (y′, z′) (θ′1e1 − θ′2e2) + h (y′, Jz′) (θ′2e1 + θ′1e2)}
+ g (y′, z′) ξ,

R(x′, ξ)z′ = − 1
2 (π

′
1 + π′

2)(x
′, θ′
)z′

+ cos 2t {h (x′, z′) (θ′1e1 − θ′2e2) + h (x′, Jz′) (θ′2e1 + θ′1e2)}
+ g (x′, z′) ξ.

(25)

The equalities (23) and (25) imply the following

Proposition 4.1 The following equalities for the curvature tensor R of (S1(N),
ϕ, ξ, η, g) are valid:

R(x′, y′, z′, w′) = k′{cos 2t π1(x′, y′, z′, w′)− sin 2t π2(x
′, y′, z′, ϕw′)}

− π2(x
′, y′, z′, w′)

+ 4 sin 2t {cos 2t (π1 + π2)(x
′, y′, z′, θ
)

− sin 2t (π1 + π2)(x
′, y′, z′, ϕθ
)}θ(ϕw′)

− sin 2t {g (y′, z′) [cos 2t (∇x′θ)w′ + sin 2t (∇x′θ∗)w′]

− g (x′, z′) [cos 2t (∇y′θ)w
′ + sin 2t (∇y′θ

∗)w′]

+ g (y′, Jz′) [sin 2t (∇x′θ)w′ − cos 2t (∇x′θ∗)w′]

− g (x′, Jz′) [sin 2t (∇y′θ)w
′ − cos 2t (∇y′θ

∗)w′]},
R(x′, y′, z′, ξ) = −(π1 + π2)(x

′, y′, z′, θ
),

R(x′, y′, ξ, w′) = −(π1 + π2)(x
′, y′, θ
, w′),

R(x′, ξ, z′, w′) = −(π1 + π2)(x
′, θ
, z′, w′),

R(ξ, y′, z′, w′) = −(π1 + π2)(θ

, y′, z′, w′),

R(ξ, y′, z′, ξ) = g (y′, z′) .

(26)

Using (1) and (23), we obtain the components gij and hij as follows

g11 = −g22 = g33 = 1, g12 = g21 = 0,

h11 = −h22 = cos 2t, h12 = h21 = − sin 2t.
(27)
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Taking into account (13), (24) and (27), we get

∇e1e1 = ∇′
e1e1 −

1
2 sin 2t θ

′
, ∇e1e2 = ∇′
e1e2 +

1
2 sin 2t Jθ

′
 − ξ,

∇e2e1 = ∇′
e2e1 +

1
2 sin 2t Jθ

′
 − ξ, ∇e2e2 = ∇′
e2e2 +

1
2 sin 2t θ

′
,

∇e1e3 = ∇e3e1 = −e2, ∇e2e3 = ∇e3e2 = e1, ∇e3e3 = 0.

(28)

Bearing in mind (4), (10), (23), (27) and (28), we obtain the values of the
square norms of ∇ϕ and ∇′J as follows

‖∇ϕ‖2 = 2{(θ′1)2 − (θ′2)
2}+ 4,

‖∇′J‖2 = (1 + cos 4t){(θ′1)2 − (θ′2)
2} − 2 sin 4t θ′1θ

′
2.

The latter equalities imply the truthfulness of the following

Theorem 4.2 The manifold (S1(N), ϕ, ξ, η, g) is an isotropic-cosymplectic B-
metric manifold if and only if it is valid

‖∇′J‖2 = −2(1 + cos 4t+ sin 4t θ′1θ
′
2).

By virtue of (23), (27) and (28), we compute the components Fijk of F . The
non-zero ones of them are

F111 = F122 = cos 2t θ′1 − sin 2t θ′2,

F211 = F222 = − sin 2t θ′1 − cos 2t θ′2,

F131 = F113 = −F232 = −F223 = −1.

(29)

Using (2), we obtain the components of the Lee forms of (S1(N), ϕ, ξ, η, g)
and the non-zero of them are:

θ1 = θ∗2 = cos 2t θ′1 − sin 2t θ′2, θ2 = −θ∗1 = sin 2t θ′1 + cos 2t θ′2, θ3 = −2.

Bearing in mind (3) and (29), we establish the equality

F (x′, y′, z′) = (F 1 + F 4)(x′, y′, z′),

where F 1 and F 4 are the components of F in the basic classes F1 and F4,
respectively. The non-zero components of F 1 and F 4 are

F 1
111 = F 1

122 = θ1, F 1
211 = F 1

222 = −θ2, F 4
131 = F 4

113 = −F 4
232 = −F 4

223 = 1
2θ3.

Therefore, we establish the validity of the following

Theorem 4.3 The manifold (S1(N), ϕ, ξ, η, g)

1. belongs to F1 ⊕F4,

2. belongs to F4 if and only if (N, J, h) is a Kähler–Norden manifold,

3. could not belongs to F1.
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The class F1⊕F4 is a subclass of the class F1⊕F4⊕F5 of the 3-dimensional
normal almost contact B-metric manifolds.
Bearing in mind (26), (27) and (28), we calculate the components Rijk	 of

R. The non-zero of them are determined by (5) and the following

R1212 = k′ cos 2t− 1 + sin 2t cos 2t {(∇e2θ)e2 − (∇e1θ
∗)e2 + 8θ1θ2}

+ sin2 2t {(∇e2θ
∗)e2 + (∇e1θ)e2 + 8(θ1)

2},
R1213 = 2θ2, R1223 = 2θ1, R3113 = −R3223 = 1.

(30)

Bearing in mind (8), (27) and (30), we compute the basic sectional curvatures
kij as follows

k12 = R1212, k13 = k23 = 1. (31)

Using (7), (27) and (30), we get the basic components ρjk and ρ∗jk as well
as the values τ , τ∗ and τ∗∗:

ρ11 = −ρ22 = R1212 + 1, ρ33 = 2, ρ∗11 = ρ∗22 = ρ∗33 = 0,

ρ12 = ρ21 = 0, ρ13 = ρ31 = −2θ1, ρ23 = ρ32 = −2θ2

ρ∗12 = ρ∗21 = R1212, ρ∗13 = ρ∗31 = 2θ2, ρ∗23 = ρ∗32 = −2θ1,

τ = 2R1212 + 4, τ∗ = 0, τ∗∗ = 2R1212.

(32)

By virtue of the latter equalities for ρ, ρ∗ and (27) for gij , we get

Theorem 4.4 For the manifold (S1(N), ϕ, ξ, η, g) the following assertions are
equivalent:

1. (N, J, h) is a Kähler–Norden manifold;

2. ρ = k′ cos 2t g + (2− k′ cos 2t)η ⊗ η;

3. ρ∗ = (1− k′ cos 2t)(g̃ − η ⊗ η).

Let us remark that the assertion (1) in the latter theorem is equivalent to the
assertion that (S1(N), ϕ, ξ, η, g) is an F4-manifold, according to (2) in Theo-
rem 4.3.
The assertion (2) in the latter theorem shows that (S1(N), ϕ, ξ, η, g) in this

case is an η-Einstein manifold, according to [10]; whereas the assertion (3)
in the latter theorem presents ρ∗ as proportional to g∗, which is defined by
g∗(x, y) = g(x, ϕy).
By virtue of (31) and (32), we conclude the following

Proposition 4.5 For the manifold (S1(N), ϕ, ξ, η, g)

1. the sectional curvatures of the ξ-sections are constant,

2. τ∗ = 0,

3. τ∗∗ = τ − 4.

Taking into account the first equality of (30) and the equalities in the last
line of (32), we get the following corollaries.
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Corollary 4.6 If (N, J, h) is a Kähler–Norden manifold, then

τ = 2(k′ cos 2t+ 1), τ∗∗ = 2(k′ cos 2t− 1).

Corollary 4.7 If (N, J, h) is a Kähler–Norden manifold, then

1. k′ < 0 if and only if 2(k′ + 1) < τ < 2, 2(k′ − 1) < τ∗∗ < −2;

2. k′ = 0 if and only if τ = 2, τ∗∗ = −2;

3. k′ > 0 if and only if 2 < τ < 2(k′ + 1), −2 < τ∗∗ < 2(k′ − 1).
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