Commentationes Mathematicae Universitatis Caroline

Mahdi Sadie

Comaximal graph of $C(X)$

Commentationes Mathematicae Universitatis Carolinae, Vol. 57 (2016), No. 3, 353-364
Persistent URL: http://dml.cz/dmlcz/145840

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Comaximal graph of $C(X)$

Mehdi Badie

Abstract

In this article we study the comaximal graph $\Gamma_{2}^{\prime} C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma_{2}^{\prime} C(X)$, the ring properties of $C(X)$ and the topological properties of X. Radius, girth, dominating number and clique number of the $\Gamma_{2}^{\prime} C(X)$ are investigated. We have shown that $2 \leq \operatorname{Rad} \Gamma_{2}^{\prime} C(X) \leq 3$ and if $|X|>2$ then girth $\Gamma_{2}^{\prime} C(X)=3$. We give some topological properties of X equivalent to graph properties of $\Gamma_{2}^{\prime} C(X)$. Finally we have proved that X is an almost P-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=3$.

Keywords: rings of continuous functions; comaximal graph; radius; girth; dominating number; clique number; zero cellularity; P-space; almost P-space; connected space; regular ring

Classification: 54C40

1. Introduction

Throughout this paper, G stands for an undirected graph. Distance between two vertices u and v is defined as the length of shortest path between u and v, and is denoted by $d(u, v)$, then the diameter of G is denoted by $\operatorname{diam}(G)$, and is defined to be the supremum of $\{d(u, v): u, v \in G\}$. If u is a vertex of a graph G, then eccentricity of u, denoted by $\operatorname{ecc}(u)$, is defined $\max \{d(u, v): v \in G\}$. The set of all vertices with the smallest eccentricity is called center of G and $\min \{\operatorname{ecc}(u): u \in G\}$ is called the radius of G and is denoted by $\operatorname{Rad}(G)$. The minimum length of cycles in a graph G is called the girth of G and is denoted by girth (G). For every $u, v \in G$, let us denote by $\operatorname{gi}(u, v)$ the length of the shortest cycle containing u and v. It is clear that girth $(G)=\min \{\operatorname{gi}(u, v): u, v \in G\}$. G is called triangulated (hypertriangulated) if each vertex (edge) of G is a vertex (edge) of a triangle. A subset A of G is called a dominating set if for each $u \in G \backslash A$, there exists v in A such that u is adjacent to v. The dominating number of G, denoted by $\operatorname{dt}(G)$, is the smallest cardinal number of the form $|A|$, where A is a dominating set of G. It is said that two vertices u and v of G are orthogonal, written $u \perp v$, if u and v are adjacent and there is no a vertex w of G which is adjacent to both u and v. A graph G is called complemented if for each vertex u of G, there is a vertex v of G such that $u \perp v$. A clique of a graph G is defined as
a maximal complete subgraph of G and the supremum of $|A|$, where A is clique of G, is called the clique number of G, and is denoted by clique G.

Let R be a commutative ring with unity. R is called an almost ring if each non-unit element of R is a zero-divisor element of R. Comaximal $\operatorname{graph} \Gamma(R)$ is defined as a graph with vertices of elements of R, where two distinct vertices a and b are adjacent if and only if $R a+R b=R$. Also consider a subgraph $\Gamma_{2}(R)$ of $\Gamma(R)$ which consists of all non-unit elements of R. If $J(R)$ is Jacobson radical of R, then $\Gamma_{2}(R) \backslash J(R)$ is denoted by $\Gamma_{2}^{\prime}(R)$.

We assume throughout the paper that $C(X)$ is the ring of all real valued continuous functions on a Tychonoff space X. The density (weight) of X, denoted by $d(X)(w(X))$, is the infimum of the cardinalities of dense subsets (bases) of X. The character of X at a point p, denoted by $\chi(p, X)$, is the infimum of the cardinalities of neighborhood bases at x and the character of space X, denoted by $\chi(X)$, is the supremum of $\chi(p, X)$, where $p \in X$. A space X is called first (second) countable if $w(X)(\chi(X))$ is countable. The cellularity of X, denoted by $c(X)$, is defined by
$\sup \{|\mathcal{U}|: \mathcal{U}$ is a family of mutually disjoint nonempty open subsets of $X\}$.
For any $f \in C(X)$, we denote $f^{-1}\{0\}$ and $X \backslash f^{-1}\{0\}$ by $Z(f)$ and $C o z(f)$, respectively. Every set of the form $Z(f)(\operatorname{Coz}(f))$ is called zeroset (cozeroset). A subset S of X is C-embedded in X if for every f in $C(S)$, there exists g in $C(X)$ such that $\left.g\right|_{S}=f$. It is clear that every clopen subset of X is C-embedded in X. Suppose $p \in \beta X$, then by M^{p} we mean the set $\left\{f \in C(X): p \in \mathrm{cl}_{\beta X} Z(f)\right\}$. By [18, Theorem 7.3 (Gelfand-Kolmogoroff)], $\left\{M^{p}: p \in \beta X\right\}$ is the family of all maximal ideal of $C(X) . X$ is a P-space if every prime ideal of X is maximal and we say that X is an almost P-space if the interior of every nonempty zeroset of X is nonempty. It is easy to check that X is an almost P-space if and only if $C(X)$ is an almost regular ring. By [18, Theorem 14.28], X is a P-space if and only if every zeroset of X is open. For more details we refer the reader to [15], [18], [11] and [29].

The study of translating graph properties to algebraic properties is an interesting subject for mathematicians. In [14], linear algebra and some properties of polynomials were used to describe properties of graphs. In [13], the studying of zero-divisor graph of commutative rings has been started. The investigation on zero-divisor graph of commutative rings was then continued in [7], [10], [20], [25], [4], [9], [6], and [8].

In [27], comaximal graph of a commutative ring was defined. On later, in [21], [26], [16], [28], [24], [22], [19], [2], [3], [1], [30], and [23], this investigation was continued.

In [12] and in a section of [5] the zero-divisor graph and the comaximal ideal graph of $C(X)$ were studied, respectively. These investigations tried to associate the ring properties of $C(X)$, the graph properties of graphs on $C(X)$ and the topological properties of X.

In this article we study the $\Gamma_{2}^{\prime} C(X)$. Since $J(C(X))=0$, so $\Gamma_{2}^{\prime} C(X)=$ $\Gamma_{2}(C(X))-\{0\}$. If X is singleton, then $\Gamma_{2}^{\prime} C(X)$ is empty. Thus, subsequently we assume $|X|>1$.

By [21, Theorem 3.1, Lemma 3.2 and Proposition 3.3] and [24, Corollary 3.4], we can conclude the following.

Proposition 1.1. For each Tychonoff space X,
(a) $\Gamma_{2}^{\prime} C(X)$ is connected;
(b) diam $\Gamma_{2}^{\prime} C(X)=3$;
(c) if X is infinite, then girth $\Gamma_{2}^{\prime} C(X)=3$.

Lemma 1.2. Suppose $f, g \in \Gamma_{2}^{\prime} C(X)$. Then f is adjacent to g if and only if $Z(f) \cap Z(g)=\emptyset$.

Proof: f is not adjacent to g if and only if both f and g are contained in a maximal ideal, that is

$$
\begin{aligned}
\exists p \in \beta X \quad f, g \in M^{p} & \Leftrightarrow \exists p \in \beta X \quad p \in \operatorname{cl}_{\beta X} Z(f) \wedge p \in \operatorname{cl}_{\beta X} Z(g) \\
& \Leftrightarrow \exists p \in \operatorname{cl}_{\beta X} Z(f) \cap \operatorname{cl}_{\beta X} Z(g)=\operatorname{cl}_{\beta X}(Z(f) \cap Z(g)) \\
& \Leftrightarrow Z(f) \cap Z(g) \neq \emptyset
\end{aligned}
$$

In Section 2 we investigate the radius of $\Gamma_{2}^{\prime} C(X)$ and show that $2 \leq \operatorname{Rad} \Gamma_{2}^{\prime} C(X)$ ≤ 3. The girth of this graph is investigated in Section 3 and we show that if $|X|>$ 2 , then girth $\Gamma_{2}^{\prime} C(X)=3$. In Section 4 we study the dominating number and the clique number of the graph $\Gamma_{2}^{\prime} C(X)$. We prove that $d(X) \leq \mathrm{dt} \Gamma_{2}^{\prime} C(X) \leq w(X)$, introduce zeroset cellularity of X and show that it is equal to clique $\Gamma_{2}^{\prime} C(X)$. In Section 5 we use the notions of the previous sections to associate the topological properties of X, the ring properties $C(X)$ and the graph properties of $\Gamma_{2}^{\prime} C(X)$. In this section we observe that $\Gamma_{2}^{\prime} C(X)$ is triangulated (hypertriangulated, complemented) if and only if X does not have any isolated points (X is connected, X is a P-space), and finally we conclude that X is an almost P-space which does not have isolated points if and only if $C(X)$ is regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=3$.

Similar results to Theorem 4.4, Proposition 4.7 and Corollary 4.8 devoted to zero divisor graphs may be found in [12]. Here we prove them for comaximal graphs.

2. Radius of the graph

Lemma 2.1. For any f and g in $\Gamma_{2}^{\prime} C(X)$
(a) $d(f, g)=1$ if and only if $Z(f) \cap Z(g)=\emptyset$;
(b) $d(f, g)=2$ if and only if $Z(f) \cap Z(g) \neq \emptyset$ and $Z(f) \cup Z(g) \neq X$;
(c) $d(f, g)=3$ if and only if $Z(f) \cap Z(g) \neq \emptyset$ and $Z(f) \cup Z(g)=X$.

Proof: (a) By Lemma 1.2, it is clear.
(b) \Rightarrow Since $d(f, g)=2, f$ is not adjacent to g, thus $Z(f) \cap Z(g) \neq \emptyset$, by Lemma 1.2. We now show that $Z(f) \cup Z(g) \neq X$. Suppose that, on the contrary $Z(f) \cup Z(g)=X$. From $d(f, g)=2$ it follows that h in $\Gamma_{2}^{\prime} C(X)$ exists such that h is adjacent to both f and g, hence by Lemma 1.2,

$$
\left\{\begin{array}{l}
Z(h) \cap Z(f)=\emptyset \\
Z(h) \cap Z(g)=\emptyset
\end{array} \quad \Rightarrow \quad Z(h)=Z(h) \cap X=Z(h) \cap[Z(f) \cup Z(g)]=\emptyset\right.
$$

which is a contradiction.
$(\mathrm{b}) \Leftarrow$ Since $Z(f) \cap Z(g) \neq \emptyset, d(f, g)>1$, by Lemma 1.2. Since $Z(f g)=$ $Z(f) \cup Z(g) \neq X, p \in X \backslash Z(f g)$ exists, hence there is some h in $C(X)$ such that $p \in Z(h)$ and $Z(f g) \cap Z(h)=\emptyset$, thus $h \in \Gamma_{2}^{\prime} C(X)$ and

$$
\begin{gathered}
\emptyset=[Z(f) \cup Z(g)] \cap Z(h)=[Z(f) \cap Z(h)] \cup[Z(g) \cap Z(h)] \\
\Rightarrow \quad\left\{\begin{array}{l}
Z(f) \cap Z(h)=\emptyset \\
Z(g) \cap Z(h)=\emptyset
\end{array}\right.
\end{gathered}
$$

Hence h is adjacent to both f and g, thus $d(f, g)=2$.
(c) By Proposition 1.1(b), it is clear.

Lemma 2.2. For every $f \in \Gamma_{2}^{\prime} C(X), \operatorname{ecc}(f) \geq 2$.
Proof: Since $Z(f) \cap Z(2 f)=Z(f) \neq \emptyset$ and $Z(f) \cup Z(2 f)=Z(f) \neq X$, $d(f, 2 f)=2$, by Lemma 2.1. This implies that $\operatorname{ecc}(f) \geq 2$.
Proposition 2.3. Suppose $f \in \Gamma_{2}^{\prime} C(X)$. Then $\operatorname{ecc}(f)=2$ if and only if either $\operatorname{int} Z(f)=\emptyset$ or $Z(f)=\{p\}$, in which p is an isolated point.
Proof: \Rightarrow By Lemma 2.2, $d(f, g) \neq 3$, for every $g \in \Gamma_{2}^{\prime} C(X)$. From Lemma 2.1, it follows that

$$
\begin{array}{ll}
& \forall g \in \Gamma_{2}^{\prime} C(X)
\end{array} \quad Z(f) \cup Z(g) \neq X \vee Z(f) \cap Z(g)=\emptyset \quad\left(\begin{array}{ll}
\prime \\
\equiv & \forall g \in \Gamma_{2}^{\prime} C(X) \\
\equiv & Z(f) \cup Z(g)=X \Rightarrow Z(f) \cap Z(g)=\emptyset \tag{1}\\
\equiv & \operatorname{Coz}(g) \subseteq Z(f) \Rightarrow Z(f)=\operatorname{Coz}(g)
\end{array}\right.
$$

If $\operatorname{int} Z(f) \neq \emptyset$, then $Z(f)$ is open. It is sufficient to show that $Z(f)$ is singleton. Suppose, on the contrary, there are two distinct points p and q in $Z(f)$, thus there is a function $h: Z(f) \rightarrow \mathbb{R}$, such that $h(p)=0$ and $h(q)=1$. Since $Z(f)$ is clopen, $Z(f)$ is C-embedded in X, thus k in $C(X)$ exists such that $\left.k\right|_{Z(f)}=h$.

Let $g: X \rightarrow \mathbb{R}$ be given by

$$
g(x)= \begin{cases}1 & x \in Z(f) \\ 0 & x \notin Z(f)\end{cases}
$$

Since $Z(f)$ is clopen, $g \in \Gamma_{2}^{\prime} C(X)$ and therefore $g k \in \Gamma_{2}^{\prime} C(X) . \operatorname{Coz}(g k)=$ $\operatorname{Coz}(g) \cap \operatorname{Coz}(k) \subseteq Z(f)$, but $Z(f) \neq \operatorname{Coz}(g k)$ since $p \in Z(f) \backslash \operatorname{Coz}(g k)$. This contradicts the fact (1).
\Leftarrow By Proposition 1.1, it suffices to prove that

$$
\forall g \in \Gamma_{2}^{\prime} C(X) \quad d(f, g) \neq 3
$$

According to the first part of the proof, the above statement is equivalent to

$$
\forall g \in \Gamma_{2}^{\prime} C(X) \quad \operatorname{Coz}(g) \subseteq Z(f) \Rightarrow Z(f)=\operatorname{Coz}(g)
$$

By the assumption, the above statement is clear.
An immediate conclusion of Proposition 1.1, and Lemma 2.2, is the following corollary.

Corollary 2.4. $2 \leq \operatorname{Rad} \Gamma_{2}^{\prime} C(X) \leq 3$.

3. Girth of the graph

Lemma 3.1. Let $f \in \Gamma_{2}^{\prime} C(X)$. Then $\operatorname{Coz}(f)$ is not singleton if and only if f is a vertex of a triangle.

Proof: \Rightarrow Let p and q be distinct elements of $\operatorname{Coz}(f)$. There are two disjoint zerosets Z_{1} and Z_{2} containing p and q, respectively. Since $p, q \notin Z(f)$, there are two zerosets Z_{3} and Z_{4} containing p and q, respectively, such that $Z_{3} \cap Z(f)=$ $Z_{4} \cap Z(f)=\emptyset$. Put $Z(g)=Z_{3} \cap Z_{1}$ and $Z(h)=Z_{4} \cap Z_{2}$. Consequently, $g, h \in \Gamma_{2}^{\prime} C(X), Z(f) \cap Z(g)=\emptyset, Z(g) \cap Z(h)=\emptyset$ and $Z(h) \cap Z(f)=\emptyset$. Lemma 1.2 now shows that f is adjacent to g, g is adjacent to h and h is adjacent to f, thus f is vertex of a triangle.
\Leftarrow There are vertices g and h in $\Gamma_{2}^{\prime} C(X)$ such that f is adjacent to g, g is adjacent to h and h is adjacent to f. By Lemma 1.2

$$
\left\{\begin{array} { l }
{ Z (f) \cap Z (g) = \emptyset } \\
{ Z (f) \cap Z (h) = \emptyset } \\
{ Z (g) \cap Z (h) = \emptyset }
\end{array} \Rightarrow \left\{\begin{array}{l}
\emptyset \neq Z(g) \subseteq \operatorname{Coz}(f) \\
\emptyset \neq Z(h) \subseteq \operatorname{Coz}(f) \\
Z(g) \cap Z(h)=\emptyset
\end{array}\right.\right.
$$

Hence $\operatorname{Coz}(f)$ is not singleton.
Theorem 3.2. If $|X|>2$, then girth $\Gamma_{2}^{\prime} C(X)=3$.
Proof: Since X has some non-singleton cozeroset, girth $\Gamma_{2}^{\prime} C(X)=3$, by Lemma 3.1.

Example 3.3. If $|X|>2$ and finite, then $C(X)$ has finitely many maximal ideal and girth $\Gamma_{2}^{\prime} C(X)=3$, by Theorem 3.2. This is a counterexample to the converse of [24, Corollary 3.4].

4. Dominating and clique number

Lemma 4.1. Let $f, g \in \Gamma_{2}^{\prime} C(X)$.
(a) If $Z(f) \cap Z(g)=\emptyset$ and $Z(f) \cup Z(g)=X$, then $\operatorname{gi}(f, g)=4$.
(b) If $Z(f) \cap Z(g)=\emptyset$ and $Z(f) \cup Z(g) \neq X$, then $\operatorname{gi}(f, g)=3$.
(c) If $Z(f) \cap Z(g) \neq \emptyset$ and $Z(f) \cup Z(g) \neq X$, then $\operatorname{gi}(f, g)=4$.
(d) If $Z(f) \cap Z(g) \neq \emptyset$ and $Z(f) \cup Z(g)=X$, then $\operatorname{gi}(f, g)=6$.

Proof: (a) $Z(f) \cap Z(g)=\emptyset, Z(g) \cap Z(2 f)=\emptyset, Z(2 f) \cap Z(2 g)=\emptyset$ and $Z(2 g) \cap$ $Z(f)=\emptyset$. By Lemma 1.2, f is adjacent to g, g is adjacent to $2 f, 2 f$ is adjacent to $2 g$ and $2 g$ is adjacent to f, it follows that $\operatorname{gi}(f, g) \leq 4$. We claim that $\operatorname{gi}(f, g) \neq 3$ and therefore $\operatorname{gi}(f, g)=4$. On the contrary, suppose $\operatorname{gi}(f, g)=3$, then h in $\Gamma_{2}^{\prime} C(X)$ exists such that h is adjacent to both f and g, by Lemma 1.2

$$
\left\{\begin{array}{l}
Z(h) \cap Z(f)=\emptyset \\
Z(h) \cap Z(g)=\emptyset
\end{array} \quad \Rightarrow \quad Z(h)=Z(h) \cap X=Z(h) \cap[Z(f) \cup Z(g)]=\emptyset\right.
$$

which is impossible.
(b) Suppose $x \in X \backslash[Z(f) \cup Z(g)]$. There is some h in $\Gamma_{2}^{\prime} C(X)$ such that $x \in Z(h)$ and

$$
Z(h) \cap[Z(f) \cup Z(g)]=\emptyset \quad \Rightarrow \quad Z(h) \cap Z(f)=\emptyset \text { and } Z(h) \cap Z(g)=\emptyset
$$

thus $h \in \Gamma_{2}^{\prime} C(X)$ and h is adjacent to both f and g, by Lemma 1.2, hence $\operatorname{gi}(f, g)=3$.
(c) Suppose $x \in X \backslash[Z(f) \cup Z(g)]$, then there is some $h \in \Gamma_{2} C(X)$, such that $x \in Z(h)$ and

$$
Z(h) \cap[Z(f) \cup Z(g)]=\emptyset \quad \Rightarrow \quad Z(h) \cap Z(f)=\emptyset \text { and } Z(h) \cap Z(g)=\emptyset
$$

thus $Z(f) \cap Z(2 h)=\emptyset$ and $Z(2 h) \cap Z(g)=\emptyset$. From Lemma 4.1, we deduce that f is adjacent to h, h is adjacent to g, g is adjacent to $2 h$ and $2 h$ is adjacent to f, this gives $\operatorname{gi}(f, g) \leq 4$. Since $Z(f) \cap Z(g) \neq \emptyset$, so f is not adjacent to g and therefore $\operatorname{gi}(f, g) \neq 3$, and so $\operatorname{gi}(f, g)=4$.
(d) By Lemma 2.1, $d(f, g)=3$, thus $\operatorname{gi}(f, g) \leq 6$ and there are h and k in $\Gamma_{2}^{\prime} C(X)$ such that f is adjacent to h, h is adjacent to k and k is adjacent to g. It is easily seen that g is adjacent to $2 k, 2 k$ is adjacent to $2 h$ and $2 h$ is adjacent to f. This clearly forces $\operatorname{gi}(f, g)=6$.

$$
\begin{aligned}
& Z(f) \cap Z(g)=\emptyset \\
& Z(f) \cup Z(g) \neq X \\
& \quad \operatorname{gi}(f, g)=3
\end{aligned}
$$

$$
\begin{aligned}
& Z(f) \cap Z(g)=\emptyset \\
& Z(f) \cup Z(g)=X \\
& \operatorname{gi}(f, g)=4
\end{aligned}
$$

$Z(f) \cap Z(g) \neq \emptyset$
$Z(f) \cup Z(g) \neq X$
$\operatorname{gi}(f, g)=4$

$$
\begin{aligned}
& Z(f) \cap Z(g) \neq \emptyset \\
& Z(f) \cup Z(g)=X \\
& \operatorname{gi}(f, g)=6
\end{aligned}
$$

Corollary 4.2. (a) Every cycle in $\Gamma_{2}^{\prime} C(X)$ has length 3 or 4.
(b) Every edge of $\Gamma_{2}^{\prime} C(X)$ is edge of a cycle with length 3 or 4.
(c) Every vertex of $\Gamma_{2}^{\prime} C(X)$ is vertex of a square.

Proof: (a) and (b) are immediate conclusions of Lemma 4.1.
(c) For each $f \in \Gamma_{2}^{\prime} C(X)$, we have

$$
\left\{\begin{array}{l}
Z(f) \cap Z(2 f) \neq \emptyset \\
Z(f) \cup Z(2 f) \neq X .
\end{array}\right.
$$

By Lemma 4.1, gi $(f, 2 f)=4$, and therefore f is vertex of a square.
Lemma 4.3. If X is an infinite space, then every dominating set of $\Gamma_{2}^{\prime} C(X)$ is infinite.

Proof: We show that none of the finite subsets of $\Gamma_{2}^{\prime} C(X)$ is a dominating set. Suppose $A=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a finite subset of $\Gamma_{2}^{\prime} C(X)$. Each $Z\left(f_{i}\right)$ is nonempty, thus p_{i} in $Z\left(f_{i}\right)$ exists. Since X is infinite, p_{0} in X distinct from p_{i} 's exists. Thus there are zerosets $Z_{0}, Z_{1}, \ldots, Z_{n}$ in $\Gamma_{2}^{\prime} C(X)$ such that $p_{i} \in Z_{i}$, for every $0 \leq i \leq n$, and $i \neq j$ implies $Z_{i} \cap Z_{j}=\emptyset$. Set $Z(g)=Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}$. Then $p_{0} \notin Z(g) \neq X$ and $p_{i} \in Z(g) \cap Z\left(f_{i}\right) \neq \emptyset$, thus $g \in \Gamma_{2}^{\prime} C(X)$ and not adjacent to any f_{i}. This follows that A is not a dominating set.
Theorem 4.4. $d(X) \leq \mathrm{dt} \Gamma_{2}^{\prime} C(X) \leq w(X)$. In particular, whenever $d(X)=$ $w(X)$, then $\mathrm{dt} \Gamma_{2}^{\prime} C(X)=w(X)$.
Proof: If X is finite, then it is easy to check $d(X)=\mathrm{dt} \Gamma_{2}^{\prime} C(X)=w(X)$, thus we assume X is infinite. Let A be a dominating set in $\Gamma_{2}^{\prime} C(X)$. For each $f \in A$, we pick $x_{f} \in Z(f)$ and $y_{f} \in \operatorname{Coz}(f)$. Set $D=\left\{x_{f}: f \in A\right\} \cup\left\{y_{f}: f \in A\right\}$. For every cozeroset $\operatorname{Coz}(g)$, if $g \in A$, then $y_{g} \in D \cap \operatorname{Coz}(g)$, if $g \notin A$, then $f \in A$ exists such that

$$
Z(f) \cap Z(g)=\emptyset \quad \Rightarrow \quad Z(f) \subseteq \operatorname{Coz}(g) \quad \Rightarrow \quad x_{f} \in Z(f) \cap D \subseteq \operatorname{Coz}(g) \cap D
$$

Hence D is dense in X. Since D is infinite, $d(X) \leq \mathrm{dt} \Gamma_{2}^{\prime} C(X)$.
We now suppose that \mathcal{B} is a base for X. Without loss of generality we can assume that \mathcal{B} does not have any empty members. Then for every $B \in \mathcal{B}$, there
is some f_{B} in $\Gamma_{2}^{\prime} C(X)$ such that $Z\left(f_{B}\right) \subseteq B$. For each f in $\Gamma_{2}^{\prime} C(X)$ there is some B in \mathcal{B} such that

$$
Z\left(f_{B}\right) \subseteq B \subseteq \operatorname{Coz}(f) \quad \Rightarrow \quad Z\left(f_{B}\right) \cap Z(f)=\emptyset
$$

By Lemma 1.2, f is adjacent to f_{B}. Therefore $\left\{f_{B}: B \in \mathcal{B}\right\}$ is a dominating set and finally that $\mathrm{dt} \Gamma_{2}^{\prime} C(X) \leq w(X)$.

An immediate conclusion of the above theorem is the following corollary.
Corollary 4.5. If X is an infinite second countable space, then $\mathrm{dt}^{\prime} \Gamma_{2}^{\prime} C(X)=\omega$.
Example 4.6. Let X be Moore plane. For every (x_{\circ}, y_{\circ}) in X, set $f_{x_{\circ}, y_{\circ}}$: $X \rightarrow \mathbb{R}$ as $f_{x_{\circ}, y_{\circ}}(x, y)=\sqrt{\left(x-x_{\circ}\right)^{2}+\left(y-y_{\circ}\right)^{2}}$. It is clear that $f \in \Gamma_{2}^{\prime} C(X)$ and $Z\left(f_{x_{\circ}, y_{\circ}}\right)=\left\{\left(x_{\circ}, y_{\circ}\right)\right\}$. Suppose $A=\left\{f_{x, y}: x, y \in \mathbb{Q}\right.$ and $\left.y>0\right\}$. If $Z(f) \cap Z\left(f_{x, y}\right) \neq \emptyset$, for each $f_{x, y} \in A$, then $\mathbb{Q} \times \mathbb{Q}^{>0} \subseteq Z(f)$ and therefore $X Z(f)$. This implies that A is a dominating set and therefore $\mathrm{dt} \Gamma_{2}^{\prime} C(X)=\omega \neq \mathbf{c}=\omega(X)$.
Proposition 4.7. Suppose $\Gamma C(X)$ is the zero divisor graph of $C(X)$. If $\chi(X) \leq$ $d(X)$, then $\mathrm{dt} \Gamma_{2}^{\prime} C(X)=d(X)=\mathrm{dt} \Gamma C(X)$.
Proof: According to Theorem 4.4, we only need to show that $d(X) \geq \mathrm{dt} \Gamma_{2}^{\prime} C(X)$. Clearly, if X is finite, then $\mathrm{dt} \Gamma_{2}^{\prime} C(X)=d(X)$.

Now suppose X is infinite, then every dominating set is infinite, by Lemma 4.3. Let D be a dense subset of X and \mathfrak{B}_{x} is a neighborhood base at x, for each x in D. For every $x \in D$ and $B \in \mathfrak{B}_{x}$, there is some $f_{x, B} \in \Gamma_{2}^{\prime} C(X)$ such that $x \in Z\left(f_{x, B}\right) \subseteq B$. Put $A=\left\{f_{x, B}: x \in D\right.$ and $\left.B \in \mathfrak{B}_{x}\right\}$. If $g \in \Gamma_{2}^{\prime} C(X)$, then $\operatorname{Coz}(g) \neq \emptyset$, and it follows that $x \in D \cap \operatorname{Coz}(g)$ exits. Hence there is a $B \in \mathfrak{B}_{x}$ such that $Z\left(f_{B, x}\right) \subseteq B \subseteq \operatorname{Coz}(g)$, thus $Z\left(f_{B, x}\right) \cap Z(g)=\emptyset$, and, in consequence, $f_{B, x}$ is adjacent to g. This implies that A is dominating set. Since $|A| \leq \chi(X)|D| \leq d(X) d(X)=d(X), d(X) \geq \mathrm{dt} \Gamma_{2}^{\prime} C(X)$. The equality $\mathrm{dt} \Gamma C(X)=d(X)$ was shown in [12, Proposition 3.4].

By [17, Thorem 1.5.7], $w(X) \leq \exp d(X)$, hence the following corollary is immediate.

Corollary 4.8. $d(X) \leq \mathrm{dt} \Gamma_{2}^{\prime} C(X) \leq \exp d(X)$.
Definition 4.9. We define zero cellularity of X, denoted by $z c(X)$, by the supremum of $\{|\mathcal{Z}|: \mathcal{Z}$ is a family of pairwise disjoint nonempty zero subsets of $X\}$.
Theorem 4.10. We have clique $\Gamma_{2}^{\prime} C(X)=z c(X) \leq|X|$. In particular if X is first countable, then clique $\Gamma_{2}^{\prime} C(X)=z c(X)=|X|$.
Proof: By Lemma $1.2, A \subseteq \Gamma_{2}^{\prime} C(X)$ is a complete subgraph of $\Gamma_{2}^{\prime} C(X)$ if and only if $Z(A)=\{Z(f): f \in A\}$ is a family of pairwise disjoint zerosets, thus clique number of $\Gamma_{2}^{\prime} C(X)$ is the supremum of

$$
\{|\mathcal{Z}|: \mathcal{Z} \text { is a family of pairwise disjoint zero sets of } X\}
$$

hence clique $\Gamma_{2}^{\prime} C(X)=z c(X)$. It is clear that $z c(X) \leq|X|$.

If X is first countable, then for every p in $X,\{p\}$ is a zeroset and thus $z c(X)=$ $|X|$.

5. Some applications

Theorem 5.1. $\Gamma_{2}^{\prime} C(X)$ is triangulated if and only if X does not have any isolated points.

Proof: \Rightarrow If p is an isolated point of X, then there is some f in $\Gamma_{2}^{\prime} C(X)$ such that $\operatorname{Coz}(f)=\{p\}$, thus f is not a vertex of a triangle, by Lemma 3.1. Consequently, $\Gamma_{2}^{\prime} C(X)$ is not triangulated.
\Leftarrow Suppose $\Gamma_{2}^{\prime} C(X)$ is not triangulated, hence there is some f in $\Gamma_{2}^{\prime} C(X)$ such that f is not a vertex of any triangle. By Lemma 3.1, $\operatorname{Coz}(f)=\{p\}$ is singleton, hence p is an isolated point of X.

Theorem 5.2. $\Gamma_{2}^{\prime} C(X)$ is hypertriangulated if and only if X is connected.
Proof: \Rightarrow If X is disconnected, then there are zerosets $Z(f)$ and $Z(g)$ such that $Z(f) \cap Z(g)=\emptyset$ and $Z(f) \cup Z(g)=X$. From Lemma 4.1, gi $(f, g)=4$, which yields $\{f, g\}$ is not edge of any triangle, and therefore $\Gamma_{2}^{\prime} C(X)$ is not hypertriangulated.
\Leftarrow Suppose $\Gamma_{2}^{\prime} C(X)$ is not hypertriangulated. Then there is an edge $\{f, g\}$ of $\Gamma_{2}^{\prime} C(X)$, which is not an edge of any triangle, thus gi $(f, g)=4$. Lemma 4.1 now shows that $Z(f) \cup Z(g)=X$ and $Z(f) \cap Z(g)=\emptyset$, this implies X is disconnected.

Theorem 5.3. $\Gamma_{2}^{\prime} C(X)$ is complemented if and only if X is a P-space.
Proof: \Rightarrow For every zeroset $Z(f)$ there is a zeroset $Z(g)$ such that $f \perp g$, thus $\operatorname{gi}(f, g)=3$. We conclude from Lemma 4.1 that $\operatorname{Coz}(f) \cap \operatorname{Coz}(g)=\emptyset$ and $\operatorname{Coz}(f) \cup \operatorname{Coz}(g)=X$, therefore $Z(f)$ is open. This follows that X is a P-space.
\Leftarrow For every vertex f in $\Gamma_{2}^{\prime} C(X), Z(f)$ is open, thus g in $\Gamma_{2}^{\prime} C(X)$ exists such that $Z(f) \cap Z(g)=\emptyset$ and $Z(f) \cup Z(g)=X$. Now Lemma 4.1 becomes gi $(f, g)=3$, thus $f \perp g$ and consequently $\Gamma_{2}^{\prime} C(X)$ is complemented.

Lemma 5.4. Suppose M^{p} is a maximal ideal of $C(X)$, for some $p \in \beta X$. Then M^{p} is principal if and only if p is an isolated point.

Proof: \Rightarrow Let $M^{p}=\langle f\rangle$, for some $f \in C(X) . Z(f)=\{p\}$, since $\bigcap_{Z \in Z\left(M^{p}\right)} Z=$ $Z(f)$. If p is not an isolated point, then $p \in \overline{\operatorname{Coz}(f)}$, and therefore there is a net $\left(x_{\lambda}\right)$ in $\operatorname{Coz}(f)$, which converges to p. We conclude from $Z\left(f^{\frac{1}{3}}\right)=Z(f)$ that there is some g in $C(X)$ such that $f^{\frac{1}{3}}=g f$, hence that $g(x)=1 / f^{\frac{2}{3}}(x)$, for each x in $\operatorname{Coz}(f)$, therefore $g(p)=\lim g\left(x_{\lambda}\right)=\infty$, which is a contradiction.
\Leftarrow It is straightforward.
Proposition 5.5. Let p be a G_{δ}-point of X. If $Z(f)=\{p\}$, then

$$
M^{p}=\left\{g \in \Gamma_{2}^{\prime} C(X): d(f, g)=2\right\} \cup\{0, f\}
$$

Proof: Set $I=\left\{g \in \Gamma_{2}^{\prime} C(X): d(f, g)=2\right\} \cup\{0, f\}$. If $g \in M^{p}$, then $p \in Z(g)$, hence $Z(f) \cup Z(g) \neq X$ and $Z(f) \cap Z(g) \neq \emptyset$. Lemma 2.1 shows that $d(f, g)=2$, and therefore $M^{p} \subseteq I \quad$ (1).

Now suppose $g \in I$. Since $d(f, g)=2,\{p\} \cap Z(g)=Z(f) \cap Z(g) \neq \emptyset$. This implies $p \in Z(g)$, and thus $g \in M^{p}$. Hence $I \subseteq M^{p}$ (2). By (1) and (2), $M^{p}=I$.

Theorem 5.6. The following are equivalent.
(a) X is an almost P-space which does not have any isolated points.
(b) $C(X)$ is almost regular ring which does not have any principal maximal ideals.
(c) $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=3$.
(d) For each $f \in \Gamma_{2}^{\prime} C(X)$, there is some $g \in \Gamma_{2}^{\prime} C(X)$ such that $\operatorname{gi}(f, g)=6$.

Proof: (a) \Leftrightarrow (b) By Lemma 5.4 it is obvious.
(a) \Rightarrow (c) For each $f \in \Gamma_{2}^{\prime} C(X), \operatorname{int} Z(f) \neq \emptyset$, thus $\operatorname{ecc}(f)=3$. Hence $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=3$.
$(c) \Rightarrow$ (a) Since $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=3$, for every $f \in \Gamma_{2}^{\prime} C(X)$ we have $\operatorname{ecc}(f)=3$. We conclude from Proposition 2.3, that $\operatorname{int} Z(f) \neq \emptyset$ and X does not have any isolated points, hence that X is an almost P-space without any isolated points.
$(\mathrm{d}) \Rightarrow(\mathrm{b})$ For each $f \in \Gamma_{2}^{\prime} C(X)$, there is some $g \in \Gamma_{2}^{\prime} C(X)$ such that gi $(f, g)=$ 6, thus $Z(f) \cap Z(g) \neq \emptyset$ and $Z(f) \cup Z(g)=X$. We conclude that f is a zero divisor and consequently $C(X)$ is an almost regular ring.
(c) $\Rightarrow(\mathrm{d})$ Since $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=3$, for each $f \in \Gamma_{2}^{\prime} C(X)$ we have $\operatorname{ecc}(f)=3$, thus g in $\Gamma_{2}^{\prime} C(X)$ exists such that $d(f, g)=3$ and therefore $\operatorname{gi}(f, g)=6$.

Proposition 5.7. The following statements are equivalent.
(a) $C(X)$ is almost regular ring which has some principal maximal ideal.
(b) X is an almost P-space which has some isolated point.
(c) $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=2$ and for each f in the center of $\Gamma_{2}^{\prime} C(X)$ there is $g \in$ $\Gamma_{2}^{\prime} C(X)$ such that $\{f, g\}$ is an edge of a square.

Proof: (a) \Leftrightarrow (b) By Lemma 5.4, it is evident.
(b) \Rightarrow (c) By Theorem 5.6, $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=2$, thus for every f in center of $\Gamma_{2}^{\prime} C(X), \operatorname{ecc}(f)=2$. Theorem 5.4 shows that $Z(f)=\{p\}$, for some isolated point p. Hence $g \in \Gamma_{2}^{\prime} C(X)$ exists such that $\operatorname{Coz}(g)=\{p\}$. Since $Z(f) \cap Z(g)=\emptyset$ and $Z(f) \cup Z(g)=X$, by Lemma 4.1, $\{f, g\}$ is an edge of a square.
(c) \Rightarrow (b) If $Z(f)=\emptyset$, for some $f \in \Gamma_{2}^{\prime} C(X)$, then f belongs to the center of $\Gamma_{2}^{\prime} C(X)$. This implies that there is a $g \in \Gamma_{2}^{\prime} C(X)$ such that $\{f, g\}$ is an edge of some square, thus $Z(f)$ is open, by Lemma 4.1, a contradiction. Since $\operatorname{Rad} \Gamma_{2}^{\prime} C(X)=2$, from Theorem 5.6, X has some isolated point.

Acknowledgments. We are very grateful to the referee whose valuable suggestions and comments improved an earlier version of this article.

References

[1] Afkhami M., Barati Z., Khashyarmanesh K., When the comaximal and zero-divisor graphs are ring graphs and outerplanar, Rocky Mountain J. Math. 44 (2014), no. 6, 1745-1761.
[2] Afkhami M., Khashyarmanesh K., On the cozero-divisor graphs and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013), no. 3, 1250173, 9pp.
[3] Akbari S., Habibi M., Majidinya A., Manaviyat R., A note on comaximal graph of noncommutative rings, Algebr. Represent. Theory 16 (2013), no. 2, 303-307.
[4] Akbari S., Maimani H.R., Yassemi S., When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003), no. 1, 169-180.
[5] Amini A., Amini B., Momtahan E., Shirdareh Haghighi M.H., On a graph of ideals, Acta Math. Hungar. 134 (2011), no. 3, 369-384.
[6] Anderson D.F., Mulay S.B., On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550.
[7] Anderson D.D., Naseer M., Beck's coloring of a commutative ring, J. Algebra 159 (1993), no. 2, 500-514.
[8] Anderson D.F., Badawi A., On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), no. 8, 3073-3092.
[9] Anderson D.F., Levy R., Shapiro J., Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241.
[10] Anderson D.F., Livingston P.S., The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[11] Atiyah M.F., Macdonald I.G., Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[12] Azarpanah F., Motamedi M., Zero-divisor graph of $C(X)$, Acta Math. Hungar. 108 (2005), no. 1-2, 25-36.
[13] Beck I., Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[14] Biggs N., Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[15] Bondy J.A., Murty U.S.R., Graph Theory with Application, The Macmillan Press, New York, 1976.
[16] Dheena P., Elavarasan B., On comaximal graphs of near-rings, Kyungpook Math. J. 49 (2009), no. 2, 283-288.
[17] Engelking R., General Topology, Heldermann-Verlag, Berlin, 1989.
[18] Gillman L., Jerison M., Rings of Continuous Functions, Transactions of the New York Academy of Sciences 27 (1964), no. 1 Series II, 5-6.
[19] Jinnah M.I., Mathew Sh.C., When is the comaximal graph split?, Comm. Algebra 40 (2012), no. 7, 2400-2404.
[20] Levy R., Shapiro J., The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30 (2002), no. 2, 745-750.
[21] Maimani H.R., Salimi M., Sattari A., Yassemi S., Comaximal graph of commutative rings, J. Algebra 319 (2008), no. 4, 1801-1808.
[22] Maimani H.R., Pournaki M.R., Tehranian A., Yassemi S., Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011), no. 6, 997-1011.
[23] Mehdi-Nezhad E., Rahimi A.M., Dominating sets of the comaximal and ideal-based zerodivisor graphs of commutative rings, Quaest. Math. 38 (2015), 1-17.
[24] Moconja S.M., Petrović Z., On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc. 83 (2011), no. 1, 11-21.
[25] Mulay Sh.B., Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558.
[26] Petrovic Z.Z., Moconja S.M., On graphs associated to rings, Novi Sad J. Math. 38 (2008), no. 3, 33-38.
[27] Sharma P.K., Bhatwadekar S.M., A note on graphical representation of rings, J. Algebra 176 (1995), no. 1, 124-127.
[28] Wang H.-J., Co-maximal graph of non-commutative rings, Linear Algebra Appl. 430 (2009), no. 2, 633-641.
[29] Willard S., General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.
[30] Ye M., Wu T., Liu Q., Yu H., Implements of graph blow-up in co-maximal ideal graphs, Comm. Algebra 42 (2014), no. 6, 2476-2483.

Department of Basic Sciences, Jundi-Shapur University of Technology, DezFUL, IRAN

E-mail: Badie@jsu.ac.ir
(Received December 6, 2015, revised March 22, 2016)

