
Czechoslovak Mathematical Journal

Yan Ling Shao; Yubin Gao; Wei Gao
Dn,r is not potentially nilpotent for n ≥ 4r − 2

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 3, 671–679

Persistent URL: http://dml.cz/dmlcz/145864

Terms of use:
© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/145864
http://dml.cz


Czechoslovak Mathematical Journal, 66 (141) (2016), 671–679

Dn,r IS NOT POTENTIALLY NILPOTENT FOR n > 4r − 2

Yanling Shao, Yubin Gao, Taiyuan, Wei Gao, Atlanta

(Received August 29, 2015)

Dedicated to the memory of Miroslav Fiedler

Abstract. An n × n sign pattern A is said to be potentially nilpotent if there exists
a nilpotent real matrix B with the same sign pattern as A. Let Dn,r be an n × n sign
pattern with 2 6 r 6 n such that the superdiagonal and the (n, n) entries are positive,
the (i, 1) (i = 1, . . . , r) and (i, i − r + 1) (i = r + 1, . . . , n) entries are negative, and zeros
elsewhere. We prove that for r > 3 and n > 4r− 2, the sign pattern Dn,r is not potentially
nilpotent, and so not spectrally arbitrary.
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1. Introduction

A sign pattern A is a matrix whose entries are from the set {+,−, 0}. Associated

with each sign pattern A = (aij) is a class of real matrices, called the qualitative

class of A, defined by

Q(A) = {B = (bij) : B is an n× n real matrix, and sign bij = aij ∀ i, j}.

An n × n sign pattern A is a spectrally arbitrary sign pattern (SAP) if for any

given real monic polynomial f(x) with degree n, there exists a real matrix B ∈ Q(A)

with characteristic polynomial f(x). A sign pattern A is a minimal SAP (MSAP)

if A is a SAP, but is not a SAP if one or more nonzero entries are replaced by zero.

An n × n sign pattern A is potentially nilpotent if there exists B ∈ Q(A) such

that B is nilpotent, i.e., there exists B ∈ Q(A) with characteristic polynomial

f(x) = xn. In particular, each SAP must necessarily be potentially nilpotent.
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A permutation sign pattern is a square sign pattern with entries from the set

{0,+}, where the entry + occurs precisely once in each row and in each column.

A signature sign pattern is a square diagonal sign pattern all of whose diagonal entries

are nonzero. Let A1 and A2 be two square sign patterns of the same order. A sign

pattern A1 is said to be permutationally similar to A2 if there exists a permutation

sign pattern P such that A2 = PTA1P . A sign pattern A1 is said to be signature

similar to A2 if there exists a signature sign pattern D such that A2 = DA1D.

The properties of being potentially nilpotent and spectrally arbitrary are preserved

under negation, transposition, signature similarity and permutation similarity. Two

sign patterns are said to be equivalent if one can be obtained from the other by any

combination of these four operations.

Cavers and Vander Meulen [3] considered an interesting n × n sign pattern Dn,r

with 2n nonzero entries defined as follows:

⊲ Dn,r is an n× n sign pattern with 2 6 r 6 n such that the superdiagonal and the

(n, n) entries are positive, the (i, 1), i = 1, . . . , r, and (i, i− r+1), i = r+1, . . . , n,

entries are negative, and zeros elsewhere.

They proved that if n 6 2r, then Dn,r is a MSAP. If r > 3, then D2r+1,r is not

potentially nilpotent.

More recently, Gao et al. in [4] proved that if r > 3 and 2r + 2 6 n 6 4r − 3,

then Dn,r is not potentially nilpotent and thus not a SAP. Garnett and Shader in [5]

proved that Dn,2 is a SAP for all n > 2.

To the best of our knowledge, for r > 3 and n > 4r−2, some questions about Dn,r

are still open ([2], page 3084). For instance, “Is Dn,r a SAP?”

Our main result answers the above question:

Theorem 1.1. If r > 3 and n > 4r − 2, then Dn,r is not potentially nilpotent

and thus not a SAP.

2. Preliminary

Let A = (aij) be an n × n matrix. The directed graph (digraph) D(A) of A is

the directed graph with vertex set {1, 2, . . . , n} such that there is a directed edge

in D(A) from i to j, denoted by i → j, if and only if aij 6= 0.

A directed path of length k−1 in D(A) is a sequence of k−1 edges i1 → i2 → . . . →

ik−1 → ik such that the vertices are distinct. A simple cycle of length k in D(A) con-

sists of a directed path as above together with the additional directed edge ik → i1.

A (composite) k-cycle is a set of simple cycles whose total length is k, and whose

index sets are mutually disjoint.
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A nonzero product of the form γ = ai1i2ai2i3 . . . aiki1 in which the index set

{i1, i2, . . . , ik} consists of distinct indices is called a simple cycle of length k of A.

A composite k-cycle is a product of simple cycles whose total length is k, and whose

index sets are mutually disjoint.

A cycle (simple or composite) of a matrix A just corresponds to ± a term in the

principle minor of A based upon the indices appearing in the cycle.

Note that the cycles of a matrix A correspond exactly to the cycles of the di-

graph D(A) (see [1]).

Let Dn,r be a real matrix in Q(Dn,r) with r > 3 and n > 4r−3. Up to equivalence,

we may assume Dn,r has the form

(2.1) Dn,r =





























−a1 1 0 0 . . . 0 0

−a2 0 1 0 . . . 0 0
...

...
. . .

. . .
. . .

...
...

−ar 0
. . .

. . .
. . . 0 0

0 −ar+1

. . .
. . .

. . . 1 0

0 0
. . .

. . .
. . . 0 1

0 0 0 −an . . . 0 b





























,

where b and all the ai, i = 1, 2, . . . , n, are positive.

The digraph D(Dn,r) is as follows:

1

2

3 r r+1 r+2 2r−1 2r n−r n−r+1 n−1 n

Figure 1. The digraph D(Dn,r).

3. The characteristic polynomial of Dn,r

The characteristic polynomial of a real matrix B of order n is given [6] by

pB(t) = tn − E1(B)tn−1 + E2(B)t2 + . . .+ (−1)nEn(B),

where Ek(B) is the sum of the k × k principal minors of B, k = 1, 2, . . . , n. We

use B{i1, i2, . . . , ik} to denote the k × k principal minor of B based on the indices

{i1, i2, . . . , ik}.

For Dn,r in the form (2.1) with r > 3 and n > 4r−3, we have the following results,

which are important in the proof of Theorem 1.1.

Lemma 3.1. E1(Dn,r) = b − a1, E2(Dn,r) = −ba1 + a2.
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P r o o f. It is clear that E1(Dn,r) = tr(Dn,r) = b − a1. The only two 2 × 2

nonzero principal minors of Dn,r are Dn,r{1, 2} = a2 and Dn,r{1, n} = −ba1. Thus,

E2(Dn,r) = −ba1 + a2. �

Lemma 3.2. Er(Dn,r) = (−1)r−1bar−1 + (−1)r
n
∑

i=r

ai.

P r o o f. All r-cycles in the digraph D(Dn,r) are

i → i+ 1 → . . . → i+ r − 1 → i, i = 1, 2, . . . , n− r + 1,

(1 → 2 → . . . → r − 1 → 1) ∪ (n → n).

The corresponding nonzero r × r principal minors of Dn,r are

Dn,r{i, i+ 1, . . . , i+ r − 1} = (−1)rai+r−1, i = 1, 2, . . . , n− r + 1,

Dn,r{1, 2, . . . , r − 1, n} = (−1)r−1bar−1.

So, Er(Dn,r) = (−1)r−1bar−1 + (−1)r
n
∑

i=r

ai. �

Lemma 3.3. Er+1(Dn,r) = (−1)rb
n−1
∑

i=r

ai − (−1)ra1
n
∑

i=r+1

ai.

P r o o f. All (r + 1)-cycles in the digraph D(Dn,r) are

(i → i+ 1 → . . . → i+ r − 1 → i) ∪ (n → n), i = 1, 2, . . . , n− r,

(1 → 1) ∪ (i → i+ 1 → . . . → i+ r − 1 → i), i = 2, 3, . . . , n− r + 1.

The corresponding nonzero (r + 1)× (r + 1) principal minors of Dn,r are

Dn,r{i, i+ 1, . . . , i+ r − 1, n} = (−1)rai+r−1b, i = 1, 2, . . . , n− r,

Dn,r{1, i, i+ 1, . . . , i+ r − 1} = −a1(−1)rai+r−1, i = 2, 3, . . . , n− r + 1.

So, Er+1(Dn,r) = (−1)rb
n−1
∑

i=r

ai − (−1)ra1
n
∑

i=r+1

ai. �

Lemma 3.4. Er+2(Dn,r) = (−1)r+1a1b
n−1
∑

i=r+1

ai + (−1)ra2
n
∑

i=r+2

ai.
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P r o o f. All (r + 2)-cycles in the digraph D(Dn,r) are

(1 → 1) ∪ (i → i+ 1 → . . . → i+ r − 1 → i) ∪ (n → n), i = 2, 3, . . . , n− r,

(1 → 2 → 1) ∪ (i → i+ 1 → . . . → i + r − 1 → i), i = 3, 4, . . . , n− r + 1.

The corresponding nonzero (r + 2)× (r + 2) principal minors of Dn,r are

Dn,r{1, i, i+ 1, . . . , i+ r − 1, n} = (−1)r+1a1bai+r−1, i = 2, 3, . . . , n− r,

Dn,r{1, 2, i, i+ 1, . . . , i+ r − 1} = (−1)ra2ai+r−1, i = 3, 4, . . . , n− r + 1.

So, Er+2(Dn,r) = (−1)r+1a1b
n−1
∑

i=r+1

ai + (−1)ra2
n
∑

i=r+2

ai. �

Lemma 3.5. E2r(Dn,r) = −ar−1b
n−1
∑

i=2r−1

ai +
n−r
∑

i=r

n
∑

j=i+r

aiaj .

P r o o f. All 2r-cycles in the digraph D(Dn,r) are

(1 → 2 → . . . → r − 1 → 1) ∪ (i → i+ 1 → . . . → i+ r − 1 → i) ∪ (n → n),

i = r, r + 1, . . . , n− r,

(i → i+ 1 → . . . → i+ r − 1 → i) ∪ (j → j + 1 → . . . → j + r − 1 → j),

i = 1, 2, . . . , n− 2r + 1, j = i+ r, i+ r + 1, . . . , n− r + 1.

The corresponding nonzero 2r × 2r principal minors of Dn,r are

Dn,r{1, 2, . . . , r − 1, i, i+ 1, . . . , i+ r − 1, n} = −ar−1bai+r−1,

i = r, r + 1, . . . , n− r,

Dn,r{i, i+ 1, . . . , i+ r − 1, j, j + 1, . . . , j + r − 1} = ai+r−1aj+r−1,

i = 1, 2, . . . , n− 2r + 1, j = i+ r, i+ r + 1, . . . , n− r + 1.

So, E2r(Dn,r) = −ar−1b
n−1
∑

i=2r−1

ai +
n−r
∑

i=r

n
∑

j=i+r

aiaj . �

Lemma 3.6. E2r+1(Dn,r) = b
n−r−1
∑

i=r

n−1
∑

j=i+r

aiaj − a1
n−r
∑

i=r+1

n
∑

j=i+r

aiaj .

P r o o f. All (2r + 1)-cycles in the digraph D(Dn,r) are

(i → i+ 1 → . . . → i+ r − 1 → i) ∪ (j → j + 1 → . . . → j + r − 1 → j) ∪ (n → n),

i = 1, 2, . . . , n− 2r, j = i+ r, i+ r + 1, . . . , n− r,

(1 → 1) ∪ (i → i+ 1 → . . . → i+ r − 1 → i) ∪ (j → j + 1 → . . . → j + r − 1 → j),

i = 2, 3, . . . , n− 2r + 1, j = i+ r, i+ r + 1, . . . , n− r + 1.
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The corresponding nonzero (2r + 1)× (2r + 1) principal minors of Dn,r are

Dn,r{i, i+ 1, . . . , i+ r − 1, j, j + 1, . . . , j + r − 1, n} = bai+r−1aj+r−1,

i = 1, 2, . . . , n− 2r, j = i+ r, i+ r + 1, . . . , n− r,

Dn,r{1, i, i+ 1, . . . , i+ r − 1, j, j + 1, . . . , j + r − 1} = −a1ai+r−1aj+r−1,

i = 2, 3, . . . , n− 2r + 1, j = i+ r, i+ r + 1, . . . , n− r + 1.

So, E2r+1(Dn,r) = b
n−r−1
∑

i=r

n−1
∑

j=i+r

aiaj − a1
n−r
∑

i=r+1

n
∑

j=i+r

aiaj . �

Lemma 3.7. E2r+2(Dn,r) = −a1b
n−r−1
∑

i=r+1

n−1
∑

j=i+r

aiaj + a2
n−r
∑

i=r+2

n
∑

j=i+r

aiaj .

P r o o f. All (2r + 2)-cycles in the digraph D(Dn,r) are

(1 → 1) ∪ (i → i+ 1 → . . . → i+ r − 1 → i) ∪ (j → j + 1 → . . . → j + r − 1 → j)

∪ (n → n), i = 2, 3, . . . , n− 2r, j = i+ r, i+ r + 1, . . . , n− r,

(1 → 2 → 1) ∪ (i → i+ 1 → . . . → i+ r − 1 → i) ∪ (j → j + 1 → . . . → j + r − 1 → j),

i = 3, 4, . . . , n− 2r + 1, j = i+ r, i+ r + 1, . . . , n− r + 1.

The corresponding nonzero (2r + 2)× (2r + 2) principal minors of Dn,r are

Dn,r{1, i, i+ 1, . . . , i+ r − 1, j, j + 1, . . . , j + r − 1, n} = −a1bai+r−1aj+r−1

i = 2, 3, . . . , n− 2r, j = i+ r, i+ r + 1, . . . , n− r,

Dn,r{1, 2, i, i+ 1, . . . , i+ r − 1, j, j + 1, . . . , j + r − 1} = a2ai+r−1aj+r−1

i = 3, 4, . . . , n− 2r + 1, j = i+ r, i+ r + 1, . . . , n− r + 1.

So, E2r+2(Dn,r) = −a1b
n−r−1
∑

i=r+1

n−1
∑

j=i+r

aiaj + a2
n−r
∑

i=r+2

n
∑

j=i+r

aiaj . �

4. Proof of Theorem 1.1

We will prove the theorem by contradiction.

Let r > 3 and n > 4r−2. Suppose Dn,r is potentially nilpotent. Then there exists

Dn,r ∈ Q(Dn,r) in the form (2.1) such that Ek(Dn,r) = 0 for k = 1, 2, . . . , n.

By Lemma 3.1, we have E1(Dn,r) = b − a1 = 0 and E2(Dn,r) = −ba1 + a2 = 0.

Thus, b = a1 and a2 = ba1.
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By Lemma 3.2, we have Er(Dn,r) = (−1)r−1bar−1 + (−1)r
n
∑

i=r

ai = 0. Thus,

(4.1) bar−1 =

n
∑

i=r

ai.

By Lemma 3.3, we have Er+1(Dn,r) = (−1)rb
n−1
∑

i=r

ai− (−1)ra1
n
∑

i=r+1

ai = 0. Thus,

b
n−1
∑

i=r

ai = a1
n
∑

i=r+1

ai. Since b = a1, we get ar = an.

By Lemma 3.4, we have Er+2(Dn,r) = (−1)r+1a1b
n−1
∑

i=r+1

ai+(−1)ra2
n
∑

i=r+2

ai = 0.

Thus, a1b
n−1
∑

i=r+1

ai = a2
n
∑

i=r+2

ai. Since ba1 = a2, we get ar+1 = an.

By Lemma 3.6, we have E2r+1(Dn,r) = b
n−r−1
∑

i=r

n−1
∑

j=i+r

aiaj−a1
n−r
∑

i=r+1

n
∑

j=i+r

aiaj = 0.

Thus, b
n−r−1
∑

i=r

n−1
∑

j=i+r

aiaj = a1
n−r
∑

i=r+1

n
∑

j=i+r

aiaj . Since b = a1, we get

n−r−1
∑

i=r

n−1
∑

j=i+r

aiaj =

n−r
∑

i=r+1

n
∑

j=i+r

aiaj ,

and so,

ar(a2r + a2r+1 + . . .+ an−1) = an(ar+1 + ar+2 + . . .+ an−r).

Noting that ar = an, we have

(4.2) a2r + a2r+1 + . . .+ an−1 = ar+1 + ar+2 + . . .+ an−r.

By Lemma 3.7, we have

E2r+2(Dn,r) = −a1b

n−r−1
∑

i=r+1

n−1
∑

j=i+r

aiaj + a2

n−r
∑

i=r+2

n
∑

j=i+r

aiaj = 0.

Thus a1b
n−r−1
∑

i=r+1

n−1
∑

j=i+r

aiaj = a2
n−r
∑

i=r+2

n
∑

j=i+r

aiaj . Since ba1 = a2, we get

n−r−1
∑

i=r+1

n−1
∑

j=i+r

aiaj =

n−r
∑

i=r+2

n
∑

j=i+r

aiaj ,

and so,

ar+1(a2r + a2r+1 + . . .+ an−1) = an(ar+2 + ar+2 + . . .+ an−r).
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Noting that ar+1 = an, we have

(4.3) a2r+1 + a2r+2 + . . .+ an−1 = ar+2 + ar+3 + . . .+ an−r.

Combining (4.2) and (4.3), we obtain ar+1 = a2r.

By Lemma 3.5 and (4.1), that is, bar−1 =
n
∑

i=r

ai, we have

E2r(Dn,r) = −ar−1b

n−1
∑

i=2r−1

ai +
n−r
∑

i=r

n
∑

j=i+r

aiaj = −
n
∑

i=r

ai

n−1
∑

j=2r−1

aj +
n−r
∑

i=r

ai

n
∑

j=i+r

aj .

By the assumption n > 4r − 2, we have n − r − 1 > 3r − 3 > r. Thus the above

expression can be written as

E2r(Dn,r) =

n−r
∑

i=r

ai

n
∑

j=i+r

aj −

n
∑

i=r

ai

n−1
∑

j=2r−1

aj

=

n−r−1
∑

i=r

ai

( n
∑

j=i+r

aj −

n−1
∑

j=2r−1

aj

)

+ an−ran

−

n−1
∑

i=n−r

ai

n−1
∑

j=2r−1

aj − an

n−1
∑

j=2r−1

aj

=
n−r−1
∑

i=r

ai

(

an −
i+r−1
∑

j=2r−1

aj

)

+ an−ran −
n−1
∑

i=n−r

ai

n−1
∑

j=2r−1

aj − an

n−1
∑

j=2r−1

aj

= an

n−r
∑

i=r

ai −

n−r−1
∑

i=r

ai

i+r−1
∑

j=2r−1

aj −

n−1
∑

i=n−r

ai

n−1
∑

j=2r−1

aj − an

n−1
∑

j=2r−1

aj.

By (4.2),

an

n−r
∑

i=r

ai − an

n−1
∑

j=2r−1

aj = an(ar − a2r−1).

Then according to the assumption that ai > 0 for i = 1, 2, . . . , n and the known

result ar = ar+1 = a2r = an, we have

E2r(Dn,r) = an(ar − a2r−1)−
n−r−1
∑

i=r

ai

i+r−1
∑

j=2r−1

aj −
n−1
∑

i=n−r

ai

n−1
∑

j=2r−1

aj

< an(ar − a2r−1)− ar+1(a2r−1 + a2r)

= an(an − a2r−1)− an(a2r−1 + an) = −2ana2r−1 < 0,

contradicting the identity E2r(Dn,r) = 0. So Dn,r is not potentially nilpotent. �
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