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Abstract. The perturbed Laplacian matrix of a graph G is defined as LD = D−A, where D
is any diagonal matrix and A is a weighted adjacency matrix of G. We develop a Fiedler-like
theory for this matrix, leading to results that are of the same type as those obtained with
the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic
eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian
matrix over the points of articulation of a graph. Furthermore, we use the notion of Perron
component for the perturbed Laplacian matrix of a graph and show how its second smallest
eigenvalue can be characterized using this definition.
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1. Motivation

The object of spectral graph theory is to determine structural properties of a graph

G from the spectrum of the matrices one may associate with G. The matrices that

are well known and for which there are many results are the adjacency matrix A

and the combinatorial Laplacian matrix L = d − A, where d is the diagonal degree

matrix.

The normalized Laplacian matrix L = d−1/2Ld−1/2, popularized by Chung [4]

in the 90s, has a more recent record and fewer results are known. In particular,

This work is part of the doctoral studies of Israel Rocha, who acknowledges the support of
CAPES Grant PROBRAL 408/13—Brazil. Vilmar Trevisan is also partially supported
by CNPq—Grants 305583/2012-3 and 481551/2012-3.
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given a graph G, one may ask whether the matrix L gives additional or distinct
information from what L gives. Bapat, Kirkland and Pati [1] defined the perturbed

Laplacian matrix of a graph G as LD = D − A, where D is any diagonal matrix and

A is a weighted adjacency matrix of G. We note that L is a perturbed Laplacian
matrix.

As in [1], the goal of this paper is also to study the second smallest eigenvalue of LD

and its eigenvector. Here we develop a Fiedler-like theory for this matrix, leading to

results that are of the same type as those obtained with the algebraic connectivity of

a graph G. In order to state the kind of results we discuss in this paper, we recount

some of Fiedler’s findings on the second smallest eigenvalue of the Laplacian L, called

the algebraic connectivity, one of the most studied spectral parameters. Indeed,

the pioneering work of Fiedler [7], [6] is qualified as a mathematical gold strike by

Nikiforov [12] due to its impact in many areas of pure and applied science.

An eigenvector associated with the algebraic connectivity is called a Fiedler vec-

tor. Labeling the vertices of G by v1, v2, . . . , vn and denoting a Fiedler vector by

y = [yi], the coordinates of y can be assigned to the vertices of G naturally: the

coordinate yi labels the vertex vi. This assignment has been called the characteristic

valuation and Fiedler noticed that it induces partitions of the vertices of G that

are natural connected clusters, important for applications and for characterizing the

graph structure. If G is a connected graph, a vertex v is called an articulation point

if the graph G \ v is disconnected. A block in G is any maximal induced connected

subgraph with no articulation points.

Fiedler’s monotonicity theorem [7] shows (among other results) that exactly one

of the following cases occurs.

Case A: There is exactly one block C in G which contains the positive as well as

negative vertices. Every other block is either a positive block, or a negative block,

or a zero block.

Case B: No block of G contains positive as well as negative vertices. In this case,

there exists a unique characteristic vertex z. This vertex z is a point of articulation.

Each block (with the exception of z) is either a positive block, or a negative block,

or a zero block.

The word monotonicity is justified because Fiedler also shows that the character-

istic valuation through articulation points is a monotone sequence.

In this paper we show a property of the harmonic eigenfunction of the second

smallest eigenvalue of LD (see the next section for the definitions) over the points of

articulation which, as in the work of Fiedler, enables us to classify every graph into

two distinct families.

In the late 90s, Kirkland, Neumann, Shader [9] and Fallat [8] used Fiedler’s theory

and the Perron values of matrices associated with the components G \ {v} (v an
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articulation point) in order to characterize the algebraic connectivity of trees [9] and

for graphs with articulation points [8].

In this paper, using the notion of a Perron component for the perturbed Laplacian

matrix of a graph, we provide a characterization of the second smallest eigenvalue

in terms of this definition. Moreover, we introduce the notion of a perturbed bottle-

neck matrix of a branch of a tree, which allows us to describe the second smallest

eigenvalue and the characteristic vertices of trees as a function of its Perron values.

As a general outcome of this note, we show that the eigenvector of the second

smallest eigenvalue of a perturbed Laplacian matrix gives partition properties that

are similar to the properties that the Fiedler vector gives to a graph. The character-

izations we provide are also of the same type as Kirkland et al. gave. We point out,

however, that the two eigenvectors do not give the same information. The follow-

ing example shows a graph whose sign partitions provided by the eigenvectors are

distinct.

Example 1.1. Consider P7 the path on 7 vertices. Its Laplacian matrix has one

eigenvector for the algebraic connectivity whose coordinates are approximately

[−1 −0.8 −0.44 0 0.44 0.8 1 ]
T
.

On the other hand, if we consider one perturbed Laplacian matrix given by























4 −4 0 0 0 0 0

−4 8 −4 0 0 0 0

0 −4 8 −2 0 0 0

0 0 −2 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 1























,

we obtain one eigenfunction of the second smallest eigenvalue of the above matrix

given by (approximately)

[−0.71 −0.64 −0.5 −0.64 −0.02 0.6 1 ]
T
.

Clearly the sign partition does not induce the same set of vertices of P7.

Saying that, it is reasonable to ask when, for a given graph G, the sign partition

(given by the signs of the eigenvector entries) provided by eigenvectors of the al-

gebraic connectivity and the second smallest eigenvalue of LD are always the same.

A more precise question is the following.
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Let G be a graph with Laplacian matrix L and sign partition obtained by

a Fiedler vector. Is there an eigenfunction of the second smallest eigenvalue of LD

that gives the same sign partition?

We give sufficient conditions to answer this question affirmatively. In the last

section of the paper we provide results for graphs satisfying both the Cases A and B

of Fiedler’s monotonicity theorem.

The main results of this paper are the mathematical proofs of the fact that the

eigenvectors of the second smallest eigenvalues of L and LD give similar type of infor-

mation. We emphasize, however, that it is not true that the matrices L and LD (and

in particular the normalized L) provide the same kind of information for a given
graph. As an example, we point out that the Laplacian energy and the normalized

Laplacian energy have distinct behavior. Moreover, in light of the last example, the

sign partition provided by the eigenvectors may have distinct behavior as well. In

any event, since the algebraic connectivity and its Fiedler vector has led to many

important applications, we hope that the theory presented here may also lead to

important and perhaps different findings.

2. Notation and known results

In this paper we denote by G = G(V,E) a connected weighted graph, which

is a graph with vertex set V and edge set E, where each edge is associated with

a positive number (the weight of the edge).

Given a connected weighted graph G = (V,E) on n vertices, the adjacency matrix

of G is the order n matrix defined by

A(vi, vj) =

{

wij , the weight of the edge vivj ,

0, if vi and vj are not adjacent.

For any real diagonal matrix D, as defined in [1], the perturbed Laplacian matrix

of G, denoted by LD, is given by LD = D −A.

We notice that if D(i, i) =
∑

i6=j

wij := wi for each 1 6 i 6 n, then LD is simply

L = D−A, the combinatorial Laplacian matrix for G, while when D(i, i) = −wi for

each 1 6 i 6 n, we have LD = −Q = −(D + A), where Q is the signless Laplacian.

When D is the null matrix, LD = −A, the adjacency matrix. One more important

instance of the perturbed Laplacian worth mentioning is the (weighted) normalized
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Laplacian matrix L(G) defined by Chung [5] as

L(vi, vj) =















1, vi = vj and wi 6= 0;

−wij√
wiwj

, whenever vi and vj are adjacent;

0, otherwise.

As G is connected, it does not have isolated vertices and in this case, the diagonal

degree matrix d is invertible and L and L are related by the formula

L = d−1/2Ld−1/2,

which may be written as L = d−1/2Ld−1/2 = d−1/2(d−A)d−1/2 = I − d−1/2Ad−1/2,

a perturbed Laplacian matrix.

The normalized Laplacian eigenvalues were first studied by Chung in [4]. More

recently, Butler [2] and Cavers [3] have provided numerous spectral properties of L
and among them the fact that, like the algebraic connectivity, the second smallest

eigenvalue of L is nonzero if and only if the graph is connected.
Chung has also defined the notion of an eigenfunction as follows. Let g denote

a function which assigns to each vertex v of G a real value g(v). We may view g as

a column vector and whenever Lg = λg, we call g an eigenfunction of L. Further, the
harmonic eigenfunction of λ for L is defined as f = d−1/2g. We point out that the

sign partition induced by the harmonic eigenfunction for the normalized Laplacian

has been studied by Li, Li and Fan in [10].

We consider the perturbed Laplacian matrix LD of a connected weighted graph G

and denote the eigenvalues of LD by λ1 6 λ2 6 . . . 6 λn. We note that, since G

is connected, LD is irreducible and by the Perron-Frobenius theory, it follows that

the smallest eigenvalue of LD is simple and has a corresponding eigenvector with all

entries positive.

To be consistent with Chung’s notation, we call g an eigenfunction of LD for the

eigenvalue λ whenever LDg = λg. We denote by z the eigenfunction associated with

the smallest eigenvalue of LD and we define the harmonic eigenfunction of λi for i > 2

as

f =
g

z
=

[g(v1)

z(v1)
, . . . ,

g(vn)

z(vn)

]

.

The vectors f and g for λ2 were studied in [1] and it turns out that, in the context of

normalized Laplacian, they are compatible with the definition of eigenfunction and

harmonic eigenfunction provided by Chung in [4].

In this paper we further investigate the harmonic eigenfunction, providing a mono-

tonicity theorem for this function in the next section. This result turns out to be
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a fundamental tool for our approach to characterizing and computing λ2. Since the

perturbed Laplacian encompasses both the Laplacian and normalized Laplacian as

well as adjacency matrices, the general framework of the theory presented here may

be useful in many particular situations. We point out, however, that some of the

results have a restrictive hypothesis. Typically, it is required that the smallest eigen-

value of LD is zero, which is a reasonable condition, but it rules out the adjacency

matrix, in general.

3. Monotonicity theorem

In this section we show a property of the harmonic eigenfunction of λ2 over the

points of articulation of a graph. We shall provide a monotonicity theorem for such

a harmonic eigenfunction. This enables us to classify every graph into one of two

distinct families.

Let us recall that a block of a graph is a maximal induced connected subgraph not

containing a point of articulation. Hence, a block is either a maximal 2-connected

subgraph, or a bridge (with its ends) or an isolated vertex. We say that a block is

positive, negative or null if, over that block, f is positive, negative or null, respec-

tively. If over a block, f assumes positive and negative values, then we call it a mixed

block.

Let g be an eigenfunction of LD corresponding to λ2. A vertex v is called a char-

acteristic vertex of G if g(v) = 0 and if there is a vertex w adjacent to v such

that g(w) 6= 0. An edge {u, v} is called a characteristic edge of G if g(u)g(v) < 0.

We define the characteristic set as the collection of all characteristic vertices and

characteristic edges of G. Here ̺(M) denotes the Perron value of the matrix M .

Remark 3.1. Let g be an eigenfunction of LD corresponding to λ2 and f its

harmonic eigenfunction. Then sign(f(v)) = sign(g(v)) for each vertex v of G.

The next lemma follows from Lemma 3 in [1] adapted to our notation.

Lemma 3.2. Let G be a connected weighted graph and g an eigenfunction of LD

corresponding to λ2. LetW be a nonempty set of vertices of G such that g(u) = 0 for

all u ∈ W and suppose G \W is disconnected with t > 2 components C1, C2, . . . , Ct

such that g(Ci) 6= 0. Let LD(Ci) be the principal submatrix of L
D corresponding

to the component Ci. Then each Ci satisfies either g(Ci) > 0 or g(Ci) < 0 with

λ2 = 1/(̺(LD(Ci)
−1)) in either case.

The next lemma follows from Lemma 4 in [1].
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Lemma 3.3. Let G be a connected weighted graph. Let g be an eigenfunction

of LD corresponding to λ2. Suppose that the characteristic set contains an edge. Then

the vertices v such that g(v) > 0 induce a connected subgraph.

The next lemma follows from part (ii) of Lemma 5 in [1].

Lemma 3.4. Let G be a connected weighted graph and let g be an eigenfunction

of LD corresponding to λ2. Let S be its characteristic set. Then either S is a single

vertex or S is contained in a block of G.

The next lemma follows from Remark 3.1 and Corollary 16 in [1]. It is worth men-

tioning that this result was proved under the hypothesis that the smallest eigenvalue

of LD is zero even though it is not explicitly written in the original statement.

Lemma 3.5. Let v be a point of articulation of G and C a hanging component

at v. Assume that f(C) > 0 for some harmonic eigenfunction f of LD corresponding

to λ2 and assume that the smallest eigenvalue of LD is zero. Let u be any vertex

in C. Then f(v) < f(u).

A path is said to be pure if it contains at most two articulation points in each

block.

Theorem 3.6. Let G be a connected graph with perturbed Laplacian matrix LD.

Let g be an eigenfunction of LD corresponding to λ2. Let f be the corresponding

harmonic eigenfunction. Then only one of the following cases can occur.

Case 1: G has no mixed block, i.e. a block with both positive and negative values

of g. In this case, there is a unique point of articulation z having f(z) = 0 and

a nonzero neighbour. Each block (with the exception of the vertex z) is either

a positive block, or a negative block, or a zero block. Let P be a pure path which

starts at z. If the smallest eigenvalue of LD is zero, then over the points of articulation

of G in P (with the exception of z), f forms either an increasing, or decreasing, or

a zero sequence. Every path containing both positive and negative vertices passes

through z.

Case 2: G has a unique block B0 which is mixed. In this case, each of the remaining

blocks is positive, negative or null. If the smallest eigenvalue of LD is zero, then each

pure path P starting in B0 and containing only one vertex v ∈ B0 has the property

that over the points of articulation contained in P , f forms either an increasing, or

decreasing, or a zero sequence according to whether f(v) > 0, f(v) < 0 or f(v) = 0.

In the last case, f ≡ 0 along the path.
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P r o o f. First, for Case 1. If no block is mixed, then there is one block with

a positive vertex and one block with a negative vertex. Furthermore, since the

intersections of blocks have only articulation points and no block is mixed, it follows

that there exists an articulation point z with f(z) = 0. Now, applying Lemma 3.2

with W = {z}, we obtain that each component is either null, positive or negative.
Therefore, there is no other vertex v 6= z having f(v) = 0 and a nonzero neighbour.

This shows the first part of Case 1.

Also, if P contains another vertex v with f(v) = 0, by the previous argument we

can see that f ≡ 0 over the vertices of P . On the other hand, if P has a vertex v

with f(v) 6= 0, then we denote by z = v0, v1, . . . , vs the points of articulation in P in

the order they appear. If f(v) > 0, then from Lemma 3.5 we obtain f(vi) < f(vi+1),

i = 0, . . . , s − 1. If f(v) < 0, then the same argument applied to the eigenfunction

−f shows that this forms a decreasing sequence.

Now we proceed to proving Case 2. IfG has only one block, then we are done. If the

characteristic set contains an edge, then Lemma 3.3 ensures that the remaining blocks

are either positive or negative. Otherwise, Lemma 3.4 implies that only one block

contains the characteristic set. Now by Lemma 3.2 and Lemma 3.3 all the remaining

blocks are either null, positive or negative. This completes the first part of Case 2.

Finally, denote by v = v0, v1, . . . , vs the points of articulation in P in the order

they appear. If f(v) > 0, then Lemma 3.5 we obtain f(vi) < f(vi+1), i = 0, . . . , s−1.

If f(v) < 0, then the same argument applied to the eigenfunction −f shows that

this forms a decreasing sequence. If f(v) = 0, then only the component at v that

contains non-null vertices is the component containing the mixed block, otherwise

it would contradict Lemma 3.2. Therefore, we obtain that f ≡ 0 over the vertices

of P . This concludes the proof. �

Remark 3.1 and Theorem 3.6 give us the following result.

Theorem 3.7. Let G be a connected graph and let g be the eigenfunction of LD

corresponding to λ2. Then only one of the following cases can occur.

Case 1: There is no mixed block. In this case, there is a unique point of articula-

tion z having g(z) = 0 and a nonzero neighbour. Each block (removing vertex z) is

either a positive block, or a negative block, or a zero block.

Case 2: There is a unique block B0 which is mixed. In this case, each of the

remaining blocks is either positive, negative or null.

Theorem 3.7 does not claim the monotonicity property for the eigenfunction as

Theorem 3.6 does for the harmonic eigenfunction. In fact, it is not always the case

that the eigenfunction has this property. The next example shows a graph without

this property.
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Example 3.8. For the graph shown in Figure 1 the spectrum of its normalized

Laplacian matrix has λ2 = 0.140 851 868 4 and its eigenfunction g is given by

[0.332 146 838 0 0.403 562 860 1 0.353 716 996 1 −0.353 717 003 3

−0.403 562 857 4 −0.332 146 834 1 −0.184 119 332 7 −0.184 119 332 7

−0.184 119 332 7 0.184 119 332 7 0.184 119 332 7 0.184 119 332 7]T.

1 2 3 4 5 6

10 12 11 7 8 9

Figure 1. The graph whose monotonicity does not hold for the eigenfunction.

Since the graph is a tree, every vertex is a point of articulation and every edge

with its vertices is a block. We notice that Case 2 of Theorem 3.6 holds for this

graph. Consider the pure path P = {1, 2, 3}. It is easy to compute the harmonic
eigenfunction f . Satisfies f(1) > f(2) > f(3) in accordance to Theorem 3.6. On the

other hand, the eigenfunction g satisfies g(3) < g(2) and g(2) > g(1). Hence, the

monotonicity property does not hold for the eigenfunction.

4. Characterizing the second smallest eigenvalue

Despite giving classification for graphs and a good insight into the behavior of the

harmonic eigenfunction, Theorems 3.6 and 3.7 do not give us information about λ2

itself. However, there is a different characterization for Cases 1 and 2 such that the

information about λ2 arises.

More precisely, in this section we are interested in describing λ2 in terms of the

Perron value of special matrices. These results were inspired by [9].

Let G be a connected graph, LD its perturbed Laplacian matrix and v a cut vertex

of G, with C0, C1, . . . , Cr as all connected components of the graph G \ v. For each
componentCi, let L

D(Ci) be the principal submatrix of L
D corresponding to the vertices

of Ci. Whenever these matrices are nonsingular with inversesMi = LD
−1

(Ci), we call

them the perturbed bottleneck matrices of Ci at v. Each such inverse is entry-wise

positive, and so by Perron’s Theorem, it has a simple positive dominant eigenvalue

called the Perron value, and a corresponding eigenvector with all entries positive

called the Perron vector. A component Cj is said to be the Perron component at v

if its Perron value is maximal among C0, C1, . . . , Cr.

If G satisfies Case 1 of Theorem 3.7, then we say that G is a Type 1 graph. If G

satisfies Case 2 of Theorem 3.7, then we say that G is a Type 2 graph.
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If G is a Type 1 graph, then the only null vertex adjacent to a non-null vertex

(see Theorem 3.7) is said to be the characteristic vertex of G. In the context of the

combinatorial Laplacian matrix, it is shown in [11] that the characteristic vertices of

a tree are independent of the eigenvector associated with the algebraic connectivity.

For Type 1 graphs it is easy to characterize λ2(L
D) and the following theorem is

just a recast of the results in [1] using our framework.

Theorem 4.1. Let G be a graph and g an eigenfunction of λ2. Then G is

a Type 1 graph with characteristic vertex v if and only if there are at least two

Perron components at v. In this case, λ2 = 1/̺(LD(C)−1) for each Perron component

C at v.

P r o o f. The first part follows from parts (i) and (iv) of Theorem 7 in [1] and

λ2 = 1/̺(LD(C)−1) follows from Lemma 3.2 by taking W = {v}. �

The previous theorem may be seen as a natural generalization of the result in [9]

where, in the context of the Laplacian matrix, the authors characterized the algebraic

connectivity for Type 1 trees.

A Type 1 graph (or a Type 2 graph) which is a tree is called a Type 1 tree (a Type 2

tree, respectively). Now, we want to find some characterization for λ2 of Type 2 trees

using the perturbed Laplacian matrix. However, a different method must be used.

As the next theorem shows, these matrices are more complicated than those in [9].

First, we need some definitions. Let T be a tree. We call a branch of T at v any

of the connected components of T \ v obtained from T by deleting the vertex v and

its edges. If T is a Type 2 tree, by Theorem 3.7 the only mixed block is formed

by only two adjacent vertices. For a Type 2 tree, we say that two vertices i and j

are characteristic vertices if and only if they are adjacent and satisfy sign(g(i)) 6=
sign(g(j)).

Consider the matrix ∆L∆, where L is the combinatorial Laplacian matrix and

∆ is a positive diagonal matrix. Since ∆L∆ = ∆D∆ −∆A∆, it is clear that this

is a special kind of perturbed Laplacian matrix. From now on, we assume that the

perturbed Laplacian matrix is of the form ∆L∆.

Theorem 4.2. Let T be a Type 2 tree on n vertices with perturbed Laplacian

matrix LD = ∆L∆ and let i and j be adjacent vertices of T with edge weight w. Then

i and j are the characteristic vertices of T if and only if there exists a γ ∈ (0, 1) such

that

̺
(

M1 −
1

w
γD−1

1 11
TD−1

1

)

= ̺
(

M2 −
1

w
(1 − γ)D−1

2 11
TD−1

2

)

=
1

λ2
,
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whereM1 is the perturbed bottleneck matrix for the branch at j containing i, and D1

is the submatrix of ∆ corresponding to this branch, M2 is the perturbed bottleneck

matrix for the branch at i containing j, and D2 is the submatrix of ∆ corresponding

to this branch.

To prove Theorem 4.2 we need more information about the matrices M1 and M2.

Therefore, the proof is given in the next section.

5. Perturbed bottleneck matrix of trees

In the previous section we pointed out that in order to characterize λ2 of trees, it

is necessary to study the perturbed bottleneck matrices. Hence, in this section we

perform a more careful analysis of the structure of these matrices with the expecta-

tion of characterizing λ2 and proving Theorem 4.2. Along the way we also provide

a simple way to characterize Type 1 and Type 2 trees in terms of Perron components.

First, we define the set Pi,j,k as the set of edges of T which are on both the path

from vertex i to vertex k and the path from vertex j to vertex k. The following

lemma was obtained by Kirkland in [9], where he investigated Perron components of

trees using the Laplacian matrix.

Lemma 5.1. Consider a tree T with n vertices. Denote by Lk the principal

submatrix of the Laplacian matrix L(T ) obtained by deleting the k-th column and

the k-th row from L(T ). Then the entry (i, j) of L−1
k is equal to

∑

e∈Pi,j,k

1/w(e),

where w(e) is the weight of the edge e.

Likewise, for a perturbed Laplacian matrix LD, we can describe the entries of LD
−1
k

in terms of Pi,j,k as the following result shows.

Lemma 5.2. Consider a tree T with n vertices with perturbed Laplacian matrix

LD = ∆L∆. Then the entry (i, j) of LD
−1
k is equal to (didj)

−1
∑

e∈Pi,j,k

1/w(e), where di is

the diagonal entry of ∆ corresponding to the vertex vi.

P r o o f. We observe that since ∆ is a diagonal matrix, we have

LDk = (∆L∆)k = ∆kLk∆k.

Thus, it is straightforward to obtain LD
−1
k = ∆−1

k L−1
k ∆−1

k . By applying Lemma 5.1,

we obtain that the (i, j) entry of LD
−1
k is equal to

(∆−1
k L−1

k ∆−1
k )i,j = (∆−1

k )i,i
∑

e∈Pi,j,k

1

w(e)
(∆−1

k )j,j =
1

didj

∑

e∈Pi,j,k

1

w(e)
.

�
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Since now we have a good description of the perturbed bottleneck of a component,

we are ready to prove Theorem 4.2.

P r o o f of Theorem 4.2. As usual, ei denotes the canonical vector with nonzero

entry on the i-th position. Then we can write the perturbed Laplacian matrix of T

in the format

LD =

[

M−1
1 −didjweke

T
1

−didjwe1e
T
k M−1

2

]

,

where the last row ofM−1
1 represents the vertex i and the first row ofM−1

2 represents

the vertex j.

First, we suppose that i and j are characteristic vertices of T . Hence, the block

composed by them and its incident edge is the unique mixed block. By Theorem 3.7

we have that the vertices in the branch at i containing j have the sign of the vertex j,

whereas the vertex in the branch at j containing i have the sign of the vertex i. Hence,

this two branches have opposite signs. Moreover, the theorem ensures that we can

write the eigenvector associated with λ2 as v = [−vT1 |vT2 ]T, where both v1 and v2
are positive vectors. Here 1 denotes the vector of ones. Since 1T∆−1v = 0, we have

1
TD−1

1 v1 = 1
TD−1

2 v2.

From the equation LDv = λ2v, if we set α = weT1 v2 and β = weTk v1, we find that

−M−1
1 v1 − αdidjek = −λ2v1,

which we can rewrite as

v1
λ2

= M1v1 −
α

λ2
didjM1ek.

Using Lemma 5.2, we conclude that M1ek = (diw)
−1D−1

1 1, because
∑

e∈Pa,i,j

1/w(e) =

1/w for any vertex a in the branch at j containing i. Hence, we have

(5.1)
v1
λ2

= M1v1 −
αdj
λ2w

D−1
1 1.

Now we multiply (5.1) by eTk to obtain

eTk v1
λ2

= eTk

(

M1v1 −
αdj
λ2w

D−1
1 1

)

=
1

diw
1
TD−1

1 v1 −
αdj

λ2wdi
.

Hence,
β

λ2
=

1

di
1
TD−1

1 v1 −
αdj
λ2di

,
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which can be rewritten as

1

βdi + αdj
1
TD−1

1 v1 =
1

λ2
.

Now, we substitute for 1/λ2 in (5.1) to obtain

v1
λ2

= M1v1 −
αdj

w(βdi + αdj)
1
TD−1

1 v1D
−1
1 1

= M1v1 −
αdj

w(βdi + αdj)
D−1

1 11
TD−1

1 v1.

Therefore, we have

v1
λ2

=
(

M1 −
αdj

w(βdi + αdj)
D−1

1 11
TD−1

1

)

v1.

The same calculation for the matrix M2 gives the relation

v2
λ2

=
(

M2 −
βdi

w(βdi + αdi)
D−1

2 11
TD−1

2

)

v2.

Now, from Lemma 5.2, we conclude that
∑

e∈Pa,b,j

1/w(e) > 1/w and
∑

e∈Pa,b,i

1/w(e) >

1/w. Hence, we have M1 > w−1D−1
1 11

TD−1
1 and M2 > w−1D−1

2 11
TD−1

2 . If we de-

fine γ = αdj/(βdi + αdj) and notice that γ ∈ (0, 1), we conclude that v1 is a positive

eigenvector of the positive matrix M1 − w−1γD−1
1 11

TD−1
1 and that v2 is a posi-

tive eigenvector of the matrix M2 − w−1(1 − γ)D−1
2 11

TD−1
2 . Therefore, from the

Perron-Frobenius theory we have

̺
(

M1 −
1

w
γD−1

1 11
TD−1

1

)

= ̺
(

M2 −
1

w
(1 − γ)D−1

2 11
TD−1

2

)

=
1

λ2
,

as required.

Conversely, assume that there is a γ ∈ (0, 1) that satisfies

̺
(

M1 −
1

w
γD−1

1 11
TD−1

1

)

= ̺
(

M2 −
1

w
(1 − γ)D−1

2 11
TD−1

2

)

=
1

λ2
.

Let v1 and v2 be the Perron vectors of M1 − w−1γD−1
1 11

TD−1
1 and M2 − w−1 ×

(1− γ)D−1
2 11

TD−1
2 , respectively. Then we can compute

eTk v1
λ2

= eTk

(

M1 −
1

w
γD−1

1 11
TD−1

1

)

v1

=
( 1

diw
1
TD−1

1 − γ
1

diw
1
TD−1

1

)

v1

= (1 − γ)
1

diw
1
TD−1

1 v1.
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Also, we can choose normalized eigenvectors v1 and v2 such that 1
TD−1

1 v1 =

1
TD−1

2 v2, and then we can write

(5.2)
eTk v1
λ2

= (1 − γ)
1

diw
1
TD−1

2 v2.

Similarly, using the same procedure, we can compute

eT1

(

M2 −
1

w
(1− γ)D−1

2 11
TD−1

2

)

v2

and obtain the relation

(5.3)
eT1 v2
λ2

= γ
1

djw
1
TD−1

1 v1.

Using relation (5.2) in the equation (M2 − (1/w)(1 − γ)D−1
2 11

TD−1
2 )v2 = v2/λ2,

we obtain

1

λ2
v2 = M2v2 −

1

w
(1− γ)D−1

2 11
TD−1

2 v2

= M2v2 −
di
λ2

D−1
2 1eTk v1.

By applying Lemma 5.2, we get the relation M2e1 = (djw)
−1D−1

2 1 and

1

λ2
v2 = M2v2 −

wdidj
λ2

M2e1e
T
k v1,

which is equivalent to

(5.4) λ2v2 = M−1
2 v2 + wdidje1e

T
k v1.

In the same way, we can use relation (5.3) and rewrite the equation

(

M1 −
1

w
γD−1

1 11
TD−1

1

)

v1 =
1

λ2
v1

as

(5.5) λ2v1 = M−1
1 v1 + wdidjeke

T
1 v2.

Therefore, equations (5.4) and (5.5) show that the vector v = [−v1|v2]T satisfies
LDv = λ2v. This proves the result. �
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6. Characteristic vertices via Perron values

The results in this section describe the characteristic vertices of trees, so charac-

terize their type in a way similar to as in [9], in terms of the Perron branches of the

trees.

Lemma 6.1. If T is a Type 2 tree with characteristic vertices i and j, then i

and j are adjacent and the branch at i containing vertex j is the unique Perron

branch at i, while the branch at j containing vertex i is the unique Perron branch

at j.

The proof is similar to that of Corollary 1.1 in [9].

For square nonnegative matrices A and B (not necessarily of the same order), we

use the notation A 6 B (or B > A) to express that there are permutation matrices P

and Q such that PAPT is entrywise dominated by a principal submatrix of QBQT,

with strict inequality in at least one position in the case that A and B have the same

order. It is worth to recall that according to the Perron-Frobenius theory whenever

we have a nonnegative matrix C such that A − C and B − C are positive, then

̺(A− C) < ̺(B − C).

The following result provides a simple way how to characterize Type 1 and Type 2

trees as an alternative to Theorem 3.7.

Theorem 6.2. Let T be a tree. T is a Type 1 tree if and only if there is only one

vertex at which there are at least two Perron branches. Tree T is a Type 2 tree if

and only if at each vertex there is a unique Perron branch.

P r o o f. First, assume that there is only one vertex at which there are two or

more Perron branches. Then by Theorem 4.1, T is a Type 1 tree. Conversely, assume

that T is a Type 1 tree with characteristic vertex v. Take any branch at some vertex

u 6= v. Let P be the branch at u containing v and let Q be any other branch at u.

Let C be the component at v that contains u. In light of Lemma 5.2, we can see that

L(Q)−1 6 L(C)−1 6 L(P )−1 with the strict inequality for at least one entry. Hence,

we conclude that ̺(L(Q)−1) < ̺(L(P )−1) and there is only one Perron component

at u.

If T is a Type 2 tree, then by Lemma 6.1 there is a pair of adjacent vertices i and

j such that there is a unique Perron branch at each of them. If we consider a vertex

different from i and j, then we can use the same argument from the previous part to

conclude that there is only one Perron branch at this vertex. Finally, assume that

at each vertex there is a unique Perron branch. If T is not a Type 2 tree, then we

have a contradiction with Theorem 4.1. This completes the proof. �
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Corollary 6.3. Let T be a tree and u a vertex which is not its characteristic ver-

tex. Then the unique Perron branch at u is the branch containing the characteristic

set of T .

7. Sign partition of graphs

In the sense of the Laplacian matrix, paper [9] describes Type I and II trees and

for the case of the perturbed Laplacian matrix this paper introduces the analogues

as Type 1 and 2 trees. In this section, we will make some remarks about this analogy

in order to understand if the information given by both eigenvectors (from λ2 and

a(G)) are really the same.

We will refer to Laplacian Perron components in the sense of [9], where their

definition comes from the Laplacian matrix. Further, we refer to a perturbed Perron

component for the definition in the sense of the perturbed Laplacian matrix. If G

satisfies Case B of Fiedler’s monotonicity theorem, then we say that G is a Type I

graph.

Relating this concepts of Perron components we are able to describe case when

the eigenspaces of λ2 and a(G) give the same sign partition to a graph. The next

results explain how it may occur, giving an explicit description of such eigenspaces.

Theorem 7.1. Let G = (V,E) be a Type 1 graph and let v be its characteristic

vertex with C0, C1, . . . , Cr as perturbed Perron components. If C0, C1, . . . , Cr are

also Laplacian Perron components, then G is a Type I graph and there is a base of

eigenvectors of λ2 and a base of eigenvectors of a(G) with the same sign over V .

P r o o f. First, assume that the perturbed Laplacian matrix is in the form

(7.1) LD =















LD(C0) 0 . . . 0 c0
0 LD(C1) . . . 0 c1
...

...
. . .

...
...

0 0 . . . LD(Cr) cr
(c0)

T (c1)
T . . . (cr)

T dv















.

Let y(0), y(1), . . . , y(r) be the set of Perron vectors for the set of matrices LD(C0)
−1,

LD(C1)
−1, . . . , LD(Cr)

−1 such that 1Ty(i) = 1. Define for i = 1, . . . , r the vector

(7.2) Yi =











y(0)(v), v ∈ C0,

−y(i)(v), v ∈ Ci,

0, otherwise.

732



It is easy to see that 1TYi = 0, and each of Y1, Y2, . . . , Yr is a set of linearly in-

dependent vectors. Thus, 1/̺(LD(C0)
−1) is the eigenvalue associated with y(i) for

i = 1, . . . , r. Then we have

Y T
i L(D)Yi

Y T
i Yi

=
1

̺(LD(C0)−1)
.

Using Theorem 4.1, we obtain

Y T
i LDYi

Y T
i Yi

= λ2

for i = 1, . . . , r, therefore Y1, Y2, . . . , Yr is a set of linearly independent eigenvectors

associated with λ2.

Now let Z be an eigenvector of LD corresponding to λ2 such that G is a Type 1

graph with characteristic vertex v. From the relation LDZ = λ2Z it follows for each

component Ci that L
D(Ci)Z(Ci) = λ2Z(Ci). Since L

D(Ci)y
(i) = λ2y

(i), by the Perron-

Frobenius theorem, we have that 1/̺(LD(C0)
−1) is a simple eigenvalue of LD(Ci)

−1.

Hence, it follows that Z(Ci) is a scalar multiple of y
(i). That implies that Z is a linear

combination of Yi. Therefore, Y1, Y2, . . . , Yr is a base for the eigenspace associated

with λ2 if and only if G is a Type 1 graph with v as a characteristic vertex.

On the other hand, let f (0), f (1), . . . , f (r) be the set of Perron vectors for the set

of submatrices of the combinatorial Laplacian LD(C0)
−1, LD(C1)

−1, . . . , LD(Cr)
−1 such

that 1Tf (i) = 1. Define for i = 1, . . . , r the vector

(7.3) Fi =











f (0)(v), v ∈ C0,

−f (i)(v), v ∈ Ci,

0, otherwise.

It is easy to see that 1TFi = 0, and each of F0, F1, . . . , Fr is a set of linearly indepen-

dent vectors. Now, using the same considerations as before and the characterization

given in [9], we can conclude that F1, F2, . . . , Fr is a base for the eigenspace associated

with a(G) if and only if G is a Type I graph with a characteristic vertex v.

Hence, both the bases Y1, Y2, . . . , Yr and F1, F2, . . . , Fr provide the same signs over

the vertices of G and the result follows. �

Corollary 7.2. Let G be a Type 1 graph and let v be its characteristic vertex

with C0, C1, . . . , Cr as perturbed Perron components. Let y
(0), y(1), . . . , y(r) be the

set of Perron vectors for the set of matrices LD(C0)
−1, LD(C1)

−1, . . . , LD(Cr)
−1 such
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that 1Ty(i) = 1. Define for i = 1, . . . , r the vector

(7.4) Yi =











y(0)(v), v ∈ C0,

−y(i)(v), v ∈ Ci,

0, otherwise.

Then Y1, Y2, . . . , Yr is a base for the eigenspace associated with λ2.

The last corollary ensures that the characteristic vertex of a Type 1 graph is

independent of the choice of the eigenvector that defines the eigenfunction. In the

context of the Laplacian matrix, this is similar to the results in [11], where it is

shown that the characteristic vertices of a tree are independent of the eigenvector

associated with the algebraic connectivity.

Further, it is possible to show a similar result for Type 2 trees.

Theorem 7.3. Let G = (V,E) be a Type 2 tree, let {u, v} be a characteristic edge
and let the component C1 at u containing v and the component C2 at v containing

u be the perturbed Perron components. If C1 and C2 are also Laplacian Perron

components, then G is a Type II graph with an eigenvector of λ2 and an eigenvector

of a(G) with the same signs over V .

P r o o f. It follows straightforward from Theorem 4.2 and Case 2 of Theorem 3.7.

�

In light of Theorem 6.2 and Corollary 6.3, trees that fulfil Theorems 7.1 and 7.3

must have the same Perron and perturbed Perron components at any vertex. In any

event, whenever the Perron components for L and LD are the same, it seems that

the sign partition provided by the eigenvector of their second smallest eigenvalue

coincide. Thus, we finish the paper by reformulating the question posed at the

beginning of the paper.

Let G be a graph with Laplacian matrix L and perturbed Laplacian matrix LD.

Let v be an articulation point of G. Are the Perron components at v for both L

and LD the same?
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