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Abstract. The smoothed aggregation method has became a widely used tool for solving
the linear systems arising by the discretization of elliptic partial differential equations and
their singular perturbations. The smoothed aggregation method is an algebraic multigrid
technique where the prolongators are constructed in two steps. First, the tentative prolon-
gator is constructed by the aggregation (or, the generalized aggregation) method. Then, the
range of the tentative prolongator is smoothed by a sparse linear prolongator smoother. The
tentative prolongator is responsible for the approximation, while the prolongator smoother
enforces the smoothness of the coarse-level basis functions.
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1. Introduction

In [7], we established the convergence bound for the smoothed aggregation method

that depends polylogarithmically on the meshsize. In particular, we proved that the

convergence rate estimate is dependent on the third power of the number of levels

(it takes log3 h
−1 of levels to reach O(1) degrees of freedom on the coarsest level).

To be more precise, we have shown that the condition number of the stiffness matrix

preconditioned by the symmetric multigrid iteration grows as O(L3), where L is

the number of levels. In this paper, we prove an improved convergence bound that

depends on the first power of the number of levels (that is, the condition number of

the preconditioned system grows as O(L) = O(log3 h
−1)). Thus, the dependence of

the condition number of the preconditioned system on the meshsize is logarithmical.
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Our assumptions are basically similar to those of [7]; the difference is that while in [7]

we needed to control the growth of the diameter of the aggregates (and the overlaps

of the balls circumscribed to the aggregates), here, we need to control the growth of

the diameter of the supports of the smoothed aggregation coarse-level basis functions

and their overlaps. It is anyway needed to control the growth of overlaps of the basis-

functions supports (the sparsity of the coarse-level matrices) for the computational

complexity reasons.

The experimental material published in [9], [2] suggests that the convergence rate is

bounded uniformly with respect to the number of levels. In the theoretical front, for

10 levels, the estimate of the condition number of the stiffness matrix preconditioned

by the symmetric smoothed aggregation method grows 1000 times according to the

old theory and only 10 times according to the theory presented here.

In [7], we verified the assumptions of the regularity-free abstract convergence the-

ory of [1] based solely on the weak approximation property of the disaggregated func-

tions. Here, we verify the assumptions of the theory of [1] based on the weak approx-

imation property of the disaggregated functions and the stability of the smoothed-

aggregation based interpolation operator in the energy norm. The first goal is to

avoid the need to prove directly the weak approximation property of the smoothed

aggregation-based prolongators, because it invokes the need of the equivalence of the

discrete and the continuous L2-norms on the coarse-levels. The proof of such equiva-

lence is very difficult and is so far restricted to the cases with model geometry, see [3].

We avoid the need of this equivalence on the operator level by a simple trick. As

a result, we will need only the equivalence of the discrete and continuous L2-norms

to hold for purely disaggregated functions that holds trivially because the disaggre-

gation operators are orthogonal matrices. The convergence bound is established for

the second order scalar elliptic problems. Both the method and the presented theory

can be easily extended to the case of the three-dimensional linear elasticity. For the

generalized aggregation method suitable for constructing the tentative prolongator,

when solving the systems of partial differential equations, we refer to [7].

2. Standard variational multigrid algorithm

We solve the system of linear algebraic equations

(2.1) Ax = f

with a symmetric, positive definite n×n matrix A and a right-hand side f ∈ R
n. To

define the multigrid algorithm, we need the system of linear prolongators

I ll+1 : R
nl+1 → R

nl , n1 = n, nl+1 < nl, l = 1, . . . , L− 1
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and the smoothing iterative procedures Sl(·, ·) : R
nl × R

nl → R
nl on all levels l =

1, . . . , L− 1. The multigrid algorithm is defined as follows:

Algorithm 1. Given the system (2.1), the prolongators I ll+1, l = 1, . . . , L − 1,

the smoothers Sl(·, ·), l = 1, . . . , L− 1, the right-hand side f ∈ R
n and a smoothing

and cycle parameters ν, γ > 0, set A1 = A, Al+1 = (I ll+1)
TAlI

l
l+1, l = 1, . . . , L − 1

and f1 = f .

For a given input iterate x ∈ R
n, perform the iteration x←MG(x, f) as follows:

Set MG(·, ·) = MG1(·, ·) and x1 = x where MGl(·, ·), l = 1, . . . , L− 1 is given by:

⊲ Pre-smoothing: Perform ν iterations of xl ← Sl(xl, f l).

⊲ Coarse-level correction:

– Set f l+1 = (I ll+1)
T(f l −Alx

l),

– if l = L − 1, solve directly Al+1x
l+1 = f l+1, otherwise set xl+1 = 0 and

perform γ iterations of xl+1 = MGl+1(x
l+1, f l+1),

– correct the approximation on the level l by xl = xl + I ll+1x
l+1.

⊲ Post-smoothing: Perform ν iterations of xl ← Sl(f l,xl).

Our theory uses the abstract result of [1]. We define the coarse-space (Ul, ‖·‖l) by

(2.2) Ul = Range(I1l ), ‖·‖l : x ∈ Ul 7→ inf
y : I1

l
y=x
‖y‖,

where I1l is a composite prolongator given by I
1
l = I12 . . . I

l−1
l , l = 1, . . . , L. Clearly

(2.3) ‖I1l x‖l 6 ‖x‖

for all x ∈ R
nl .

Theorem 2.1 (Bramble, Pasciak, Wang, Xu [1], Theorem 1). Assume there are

linear mappings Ql : U1 → Ul, l = 1, . . . , L, Q1 = I such that for every u ∈ U1, the

conditions

(2.4) ‖(Ql −Ql+1)u‖l 6
C1√

λmax(Al)
‖u‖A

for all levels l = 1, . . . , L− 1 and

(2.5) ‖Ql‖A 6 C2

for all levels l = 1, . . . , L hold with positive constants C1, C2 independent of l and L.

In addition, assume that the smoothers

for i = 1, . . . , ν : xl ← Sl(xl, f l)
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in Algorithm 1 have the form xl ← (I − RlAl)x
l + Rlf

l, where Rl are symmetric

positive definite matrices that satisfy

(2.6) λmin(I −RlAl) > 0 and λmin(Rl) >
1

C2
3λmax(Al)

for all l = 1, . . . , L − 1, with constant C3 > 0 independent of l and L. Then

Algorithm 1 satisfies

‖A−1f −MG(x, f)‖A 6

(
1− 1

(1 + C2 + C1C3)2(L− 1)

)
‖A−1f − x‖A.

The preconditioner P : x 7→MG(0,x) satisfies

cond(A,P ) 6 (1 + C2 + C1C3)
2(L − 1).

3. Smoothed aggregation method

In the smoothed aggregation method ([5], [4], [6], [7], [9]), the prolongators I ll+1 :

R
nl+1 → R

nl are constructed as the products

(3.1) I ll+1 = SlP
l
l+1,

where P l
l+1 : R

nl+1 → R
nl is a tentative prolongator obtained by generalized ag-

gregation [8] and Sl : R
nl → R

nl is a sparse linear prolongator smoother. The

tentative prolongator Pl is an orthogonal matrix with a disjoint column (or block

column) structure responsible for the approximation. The prolongator smoother Sl

enforces the smoothness of the coarse-space basis functions, or equivalently, reduces

the coarse-level matrix spectral bounds

(3.2) ̺(Al+1) = ̺((I ll+1)
TAlI

l
l+1) = ̺((P l

l+1)
TST

l AlSlP
l
l+1) 6 ̺(ST

l AlSl)

(the last inequality holds because P l
l+1 is an orthogonal matrix). The minimisation

of the spectral bounds of the coarse-level matrices is desirable because of the key

assumption (2.4) of the multi-level convergence theory [1] (Theorem 2.1). The smaller

λmax(Al), the easier it becomes to satisfy (2.4) with a good (small) constant C1. So

generally, a more complex smoothing procedure Sl leads to better convergence [2], but
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increases the fill-in of the coarse-level matrices. In our multilevel method [7], we use

the tentative prolongator given by generalized aggregations obtained by a coarsening

by a factor of about three in all spatial directions, and Sl being the error propagation

operator of a single Richardson sweep. This leads to sparse coarse-level matrices and

guarantees a nearly optimal convergence bound for second-order elliptic problems.

Thus, we use the prolongator smoother

(3.3) Sl = I − ω

λl
Al

with ω chosen so that it minimizes ̺(S2
l Al), and λl being an available upper bound

of ̺(Al). This, in turn, reduces the spectral bound ̺(Al+1) in (3.2). To be more

precise, choosing ω = 4/3, (3.2), the spectral mapping theorem and substitution

ξ = t/λl yield (the symbol σ(Al) denotes the spectrum of Al)

̺(Al+1) 6 ̺(S2
l Al) = max

t∈σ(Al)

(
1− 4

3

1

λl
t
)2

t 6 max
t∈[0,λl]

(
1− 4

3

1

λl
t
)2

t

= λl max
t∈[0,λl]

(
1− 4

3

1

λl
t
)2 t

λl
= λl max

ξ∈[0,1]

(
1− 4

3
ξ
)2

ξ =
1

9
λl.

Thus, as λl+1 we can take

(3.4) λl+1 = min
{λl

9
, λ̂l+1

}
,

where λ̂l+1 is an upper bound of ̺(Al+1) obtained computationally. Then

(3.5)
(1
9

)l−1

λ1 > λl > ̺(Al).

We continue with the description of a simple aggregation procedure suitable for

solving scalar elliptic problems. For more general form of aggregations that can be

used for solving systems of partial differential equations (e.g. elasticity), we refer

to [7].

We start with a simple example.
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Example 1. Consider the simplest tentative prolongator P 1
2 for the 1D Laplace

equation discretized on a mesh consisting of n1 = 3n2 nodes:

(3.6) P 1
2 =

1√
3




1 ·
1 ·
1 ·

1 ·
1 ·
1 ·

· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·

· 1

· 1

· 1




.

The columns of P 1
2 are (up to the scaling) 0/1 vectors with disjoint nonzero struc-

ture. Each column corresponds to disaggregation of one Rn2 variable into three Rn1

variables; the nonzero structure of the jth column corresponds to the jth aggregate

of the system

{{1, 2, 3}, {4, 5, 6}, . . . , {n1 − 2, n1 − 1, n1}}
forming the disjoint covering of the set {1, . . . , n1}. So, P 1

2 can be thought of as

a piece-wise constant interpolation in a discrete sense. Obviously, P 1
2 is an orthogonal

matrix.

Let {Al
i} be the system of aggregates forming a disjoint covering of the set

{1, . . . , nl}. As in Example 1 we strive to form the aggregates so that each ag-
gregate contains closely coupled degrees of freedom. The algorithm that generates

the aggregates {Al
i} that correspond to the coarsening by a factor of about 3 in each

spatial direction, using the nonzero structure of the matrix Al, is given in [9]. We

set nl+1 to be the number of aggregates Al
i. As in Example 1, we first construct the

tentative prolongator by

(3.7) (P l
l+1)ij =

{
1 for i ∈ Al

j ,

0 otherwise.

To maintain the orthogonality of P l
l+1, we use the following scaling procedure: Set

b1 = (1, 1, . . . , 1)T ∈ R
n.
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Algorithm 2. Given the system of aggregates {Al
i}

nl+1

i=1 and the vector b
l ∈ R

nl ,

construct the tentative prolongator P l
l+1 : R

nl+1 → R
nl and the vector bl+1 ∈ R

nl+1

so that P l
l+1b

l+1 = bl as follows:

⊲ Construct P l
l+1 given by (3.7),

⊲ set P l
l+1 ← diag(bl)Pl+1,

⊲ construct the diagonal nl+1 × nl+1 matrix Bl+1 = (P l
l+1)

TP l
l+1,

⊲ set P l
l+1 ← P l

l+1B
−1/2
l+1 ,

⊲ set bl+1 to be a vector consisting of the diagonal entries of the matrix B
1/2
l+1,

bl+1 = ((Bl+1)
1/2
11 , (Bl+1)

1/2
22 , . . . , (Bl+1)

1/2
nl+1nl+1

)T.

Let P 1
l = P 1

2 . . . P l−1
l . Clearly, the resulting prolongators P l

l+1 and P
1
l are orthog-

onal matrices,

(3.8) P l
l+1b

l+1 = bl and P 1
l b

l = (1, 1, . . . , 1)T.

4. Avoiding the need of the equivalence of the discrete

and continuous L2-norms on the coarse levels

The direct use of Theorem 2.1 invokes the need of the equivalence of the discrete

and the continuous L2-norms on the coarse-levels. To be more precise, to verify (2.4)

directly, one needs to establish the equivalence

(4.1) ‖I1l x‖l ≡
√
xTx ≈ scaling ‖πhI

1
l x‖L2

,

where πh is the finest level finite element interpolation operator that takes a finest

level vector and returns the corresponding finite element function. (The proof then

proceeds by proving the interpolation in the L2-norm and using the above equivalence

to get the estimate for ‖·‖l.) It is very difficult to establish such an equivalence and
its proof is so far restricted to the cases with a model geometry, see [3].

In this short section we avoid the need for this equivalence by a simple trick on the

operator level. As a result, we will need only the equivalence of the discrete and the

continuous L2-norms for purely disaggregated functions that holds trivially, because

the disaggregation operators are (unlike the prolongators I1l in (4.1)) orthogonal

matrices. In other words, due to the orthogonality of P 1
l and the fact that ‖πhx‖L2

≈
scaling

√
xTx, the equivalence (4.1) with I1l replaced by P

1
l holds trivially.
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Let l be a level. We choose linear operators Q̃l : R
n1 → R

nl , Q̃1 = I, l = 1, . . . , L

and define the mappings

(4.2) Ql : u ∈ U1 7→ I1l Q̃lu ∈ Ul and QP
l : u ∈ U1 7→ P 1

l Q̃lu.

Theorem 4.1. Let S be given by (3.3) with ω ∈ (0, 2), let P j
j+1, j = 1, . . . , L− 1

be orthogonal matrices and λl > λmax(Al), l = 1, . . . , L. Assume the operators Q̃l

are chosen so that Q̃1 = I and the corresponding mappings Ql and QP
l defined

by (4.2) satisfy

(4.3) ∀ l = 1, . . . , L− 1, u ∈ U1 : ‖(QP
l −QP

l+1)u‖ 6
CP√
λl

‖u‖A

and

(4.4) ∀ l = 1, . . . , L : ‖Ql‖A 6 CE

with constants CP and CE independent of l and L. Then (2.4) and (2.5) are satisfied

with C1 = CP + ωCE and C2 = CE .

P r o o f. We estimate using I1l = I12 . . . I
l−1
l , (3.1), (2.3), (3.3), ̺(Sl) < 1, tri-

angle inequality, P 1
l = P 1

2 . . . P 1
l , the orthogonality of P

1
l and Galerkin isometry

‖I1l x‖A = ‖x‖Al
:

‖(Ql −Ql+1)u‖l = ‖I1l (Q̃l − I ll+1Q̃l+1)u‖l(4.5)

= ‖I1l (Q̃l − SlP
l
l+1Q̃l+1)u‖l

6 ‖(Q̃l − SlP
l
l+1Q̃l+1)u‖

=
∥∥∥Sl(Q̃l − P l

l+1Q̃l+1)u+
ω

λl
AlQ̃lu

∥∥∥

6 ‖Sl(Q̃l − P l
l+1Q̃l+1)u‖+

ω

λl
‖AlQ̃lu‖

6 ‖(Q̃l − P l
l+1Q̃l+1)u‖ +

ω√
λl

‖Q̃lu‖Al

= ‖P 1
l (Q̃l − P l

l+1Q̃l+1)u‖ +
ω√
λl

‖Qlu‖A

= ‖(QP
l −QP

l+1)u‖ +
ω√
λl

‖Qlu‖A.

The estimate (2.4) with C1 = CP + ωCE now follows by (4.3) and (4.4). The

estimate (2.5) with C2 = CE follows immediately from (4.4). �
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Remark 4.2. The abstract theory of [7] uses condition (4.3) to verify (4.4). This

is the reason why the convergence result depends on the power of three of L. Here,

we verify (4.4) directly for smoothed aggregation functions and get a convergence

result dependent on the first power of L. Certainly, by doing so, we loose the elegance

of the abstract assumption of [7], but in our opinion, very little on the strength of

the convergence result. As becomes clear in the next section, we will need to control

the growth of the diameter of the supports of the coarse-level basis functions (that

is needed anyway for the computational complexity reasons), while in [7] we needed

to control the diameter of the aggregates.

5. Verification of the assumptions of Theorem 4.1

for scalar elliptic problem

Let Ω ⊂ R
d, d = 2 or d = 3 be a polygon or polytope. Assume ΓD ⊂ ∂Ω and

µ(ΓD) > 0. (In case ΓD is not connected, we assume all connected fragments have

a positive measure.) Consider a variational problem

(5.1) find u ∈ H1
0,ΓD

(Ω): a(u, v) = f(v), v ∈ H1
0,ΓD

(Ω).

Here, a(·, ·) is a symmetric bilinear form coercive and continuous on

H1
0,ΓD

(Ω) = {u ∈ H1(Ω): tr u = 0 on ΓD, |·|H1(Ω)}

and f(·) ∈ (H1
0,ΓD

(Ω))−1. We consider a quasi-uniform triangulation τh of Ω with

characteristic mesh-size h and boundaries of elements aligned with ΓD. Let Vh =

span{ϕi}ni=1 ⊂ H1
0,ΓD

(Ω) be the corresponding P1 finite element space with the

finite element basis functions scaled so that ‖ϕi‖L∞(Ω) = 1. We assume the linear

system (2.1) arose by the standard conforming finite element discretization of (5.1),

that is, by replacing H1
0,ΓD

(Ω) in (5.1) by Vh.

Let πh : x ∈ R
n 7→ ∑

i

xiϕi and let ei be the i-th canonical basis vector of R
nl .

We define the basis on the level l by

(5.2) ϕl
i = πhI

1
l ei, i = 1, . . . , nl, l = 1, . . . , L.

The following is our key assumption on the geometry of coarse spaces.

Assumption 5.1. For every basis function ϕl
i there is a domain Bl

i ⊂ Ω being

an intersection of a ball, with Ω satisfying Bl
i ⊃ suppϕl

i such that for each level (an

integer l ∈ [1, L]), the domains Bl
i, i = 1, . . . , nl, satisfy
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1. diam(Bl
i) 6 C3l−1h with C independent of l and i,

2. there is an integer N independent of l such that for each level l, each point

x ∈ Ω belongs to at most N domains Bl
i.

Our first goal is to verify (4.4). First we prove that apart from the essential

boundary conditions, the coarse-level basis functions form a decomposition of unity.

Define

(5.3) I(ΩD,l) = {i : B
l

i ∩ ΓD 6= ∅} and ΩD,l =
⋃

i∈I(ΩD,l)

Bl
i.

Lemma 5.2. For vector bl created by Algorithm 2 and the basis {ϕl
i}nl

i=1 on the

level l we have

(5.4)

nl∑

i=1

bliϕ
l
i = 1 on Ω \ ΩD,l.

P r o o f. Aside from the essential boundary conditions, the basis functions on

any level satisfy (5.4) and bl ∈ ker(Al). Indeed, assume we solve the pure Neumann

problem (ΓD = ∅). Since the unit function belongs to the kernel of H1(Ω)-seminorm,

‖x‖A ≈ |πhx|H1(Ω) and the finest level basis functions ϕ
1
i satisfy ‖ϕ1

i ‖L∞(Ω) = 1, we

have b1 = (1, 1, . . . , 1)T ∈ ker(A1). Assume b
l ∈ ker(Al). By (3.8), P

l
l+1b

l+1 = bl.

Since bl ∈ ker(Al), we have

(5.5) I ll+1b
l+1 = (I − αAl)P

l
l+1b

l+1 = (I − αAl)b
l = bl.

Hence Al+1b
l+1 = (I ll+1)

TAlI
l
l+1b

l+1 = (I ll+1)
TAlbl = 0. Thus, bl+1 ∈ ker(Al+1).

Hence by induction, bl ∈ ker(Al) holds for all levels l and as a consequence, (5.5)

holds for all levels l = 1, . . . , L − 1. By (5.5),
nl∑
i=1

bliϕ
l
i =

nl∑
i=1

πhI
1
l b

l
iei = πhI

1
l b

l =

πhb
1 = 1.

Let ΓD 6= ∅ again. If (5.4) is violated at the point x ∈ Ω, there must be a basis

function ϕl
j such that x ∈ suppϕl

j and ϕl
j is influenced by zero value on ΓD. This

means that on some level 1 6 k < l there is an aggregate Ak
p, p ∈ supp Ik+1

l ej

(support of the vector is understood as the list of indices of its nonzero entries) that

contains a degree of freedom q directly adjacent to ΓD in the sense that ∂ suppϕk
q ∩

ΓD 6= ∅. Clearly, q ∈ supp Ik+1
l ej and

suppϕl
j =

⋃

i∈supp Ik
l
ej

suppϕk
i ⊃ suppϕk

q .

Hence, ∂ suppϕl
j ∩ ΓD 6= ∅. Thus, we proved that if (5.4) is violated at x ∈ Ω, then

there is a basis function ϕl
j such that ∂ suppϕl

j ∩ ΓD 6= ∅, hence B
l

i ∩ ΓD 6= ∅ and
(5.4) follows. �
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Assume the system of aggregates {Al
i}nl

i=1, l = 1, . . . , L− 1 is given. We introduce

composite aggregates Ã l
i to be the aggregates Al

i understood as the corresponding

sets of degrees of freedom on the level 1. Formally, the composite aggregates are

defined recursively as

(5.6) Ã l
i ≡ Ã l,1

i with Ã l,j−1
i =

⋃

k∈Ã
j,l

i

Aj−1
k .

Further, define the discrete l2-(semi)norm of the vector x ∈ R
n by

‖x‖
l2(

˜A l
i
)
=

(∑

j∈Ãl
i

x2
j

)1/2
.

Clearly, the composite tentative prolongator P 1
l has a disjoint nonzero column struc-

ture corresponding to the aggregates Ã l
i ; for the i-th column P 1

l ei of P
1
l , we have

(denoting by ei the i-th canonical basis vector of R
nl)

suppP 1
l ei = Ã l−1

i , suppP 1
l ei ∩ suppP 1

l ej = ∅ for i 6= j,

as the aggregates Ã l−1
i and Ã l−1

j are disjoint.

For every domain Bl
i, define an index set I(B̂ l

i ) = {j : Bl
j ∩Bl

i 6= ∅} and consider
a domain B̂ l

i : Ω ⊃ B̂ l
i ⊃

⋃
j∈I(B̂ l

i
)

Bl
j . From Assumption 5.1 it follows that it is

possible to choose domains B̂ l
i so that diam(B̂ l

i ) 6 C3l−1h and each x ∈ R
d is

contained in at most N domains B̂ l
i (with C and N different from the ones in

Assumption 5.1). For all i 6∈ I(ΩD,l), define the local interpolation operators Π
l
i :

H1(B̂ l
i )→ H1(Bl

i) by

(5.7) Πl
iu =

∑

j∈I(B̂ l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

∫

Bl
j

u dΩ

)
ϕl
i

and the global interpolation operator Πl : H1
0,ΓD

(Ω)→ span{ϕl
i} ⊂ H1

0,ΓD
(Ω)

(5.8) Πlu =

nl∑

i=1

(
card(Ã l−1

i )1/2

µ(Bl
i)

∫

Bl
i

u dΩ

)
ϕl
i.

We define I(Ω̂D,l) to be the index set of all domains B
l
i intersecting ΩD,l and

consider a domain Ω̂D,l: Ω ⊃ Ω̂D,l ⊃
⋃

i∈I(Ω̂D,l)

Bl
i. Clearly, by Assumption 5.1, it is
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possible to choose Ω̂D,l so that dist(x,ΓD) 6 Ch3l−1 for all x ∈ Ω̂D,l and we have

by the Friedrichs inequality

(5.9) ‖u‖L2(Ω̂D,l)
6 Chl|u|H1(Ω̂D,l)

, hl = 3l−1h

for all u ∈ H1
0,ΓD

(Ω).

Next we prove that Πl is H1-seminorm stable on a boundary layer adjacent to ΓD.

Lemma 5.3. Assume λ1 has been obtained by the Gershgorin theorem. Then

there is a constant C > 0 independent of h, l and L such that

(5.10) ∀u ∈ H1
0,ΓD

(Ω): |Πlu|H1(ΩD,l) 6 C|u|H1(Ω̂D,l)
.

P r o o f. By bounded intersections of domains Bl
i and the Cauchy-Schwarz in-

equality we get

|Πlu|2H1(ΩD,l)
6 C

∑

i∈I(ΩD,l)

|Πl
iu|2H1(Bl

i
)(5.11)

= C
∑

i∈I(ΩD,l)

∣∣∣∣∣
∑

j∈I(B̂ l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

∫

Bl
j

u dΩ

)
ϕl
j

∣∣∣∣∣

2

H1(Bl
i
)

6 C
∑

i∈I(ΩD,l)

∑

j∈I(B̂ l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

∫

Bl
j

u dΩ

)2
|ϕl

j |2H1(Ω)

6 C
∑

i∈I(Ω̂D,l)

(
card(Ã l−1

i )1/2

µ(Bl
i)

∫

Bl
i

u dΩ

)2
|ϕl

i|2H1(Ω)

= C
∑

i∈I(Ω̂D,l)

(
card(Ã l−1

i )1/2

µ(Bl
i)

(u, 1)L2(Bl
i
)

)2
|ϕl

i|2H1(Ω)

6 C
∑

i∈I(Ω̂D,l)

(
card(Ã l−1

i )1/2

µ(Bl
i)

‖u‖L2(Bl
i
)‖1‖L2(Bl

i
)

)2
|ϕl

i|2H1(Ω)

6 C
∑

i∈I(Ω̂D,l)

card(Ã l−1
i )

µ(Bl
i)

‖u‖2L2(Bl
i
)|ϕl

i|2H1(Ω).

Further, taking the bound obtained by the Gershgorin theorem for λ1, we have

λ1 6 Chd−2
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and by (3.5) we get

(5.12) |ϕl
i|2H1(Ω) 6 ̺(Al) 6

(1
9

)l−1

λ1 6 C
(1
9

)l−1

hd−2.

In addition, since Ã l
i ⊂ Bl

i and the finest level mesh is quasiuniform, it also holds

that

(5.13)
card(Ã l−1

i )

µ(Bl
i)

6 Ch−d.

Substituting (5.13) and (5.12) into (5.11) and using hl = 3l−1h and (5.9) yields

|Πlu|2H1(ΩD,l)
6 Ch−2

l

∑

i∈I(Ω̂D,l)

‖u‖2L2(Bl
i
) 6 Ch−2

l ‖u‖2L2(Ω̂D,l)
6 C|u|2

H1(Ω̂D,l)
.

�

Next we prove that the local interpolation operator Πl
i, i 6∈ I(ΩD,l) preserves

a constant.

Lemma 5.4. Let i 6∈ I(ΩD,l) and let c be a constant function on B̂ l
i . Then

(5.14) Πl
ic = c on Bl

i.

(Note: it is irrelevant that potentially, c, being a constant function on B̂ l
i , does not

belong to H1
0,Γ(Ω), since Π

l
i is understood as a mapping from H1(B̂ l

i ) to H
1(Bl

i).)

P r o o f. By (3.8) and from the nonzero structure and orthogonality of the com-

posite tentative prolongator P 1
l , it follows that the vector b

l produced by Algorithm 2

satisfies blj = card(Ã l−1
j )1/2. We use Lemma 5.2 and the fact that only the supports

of the basis functions ϕl
j , j ∈ I(B̂l

i) intersect B
l
i:

(Πl
ic)|Bl

i
=

∑

j∈I(B̂l
i
)

card(Ãl−1
j )1/2

µ(Bl
i)

∫

Bl
j

c dΩϕl
j |Bl

i
= c

∑

j∈I(B̂l
i
)

card(Ãl−1
j )1/2ϕl

j |Bl
i

= c
∑

j∈I(B̂l
i
)

bljϕ
l
j |Bl

i
= c

nl∑

j=1

ϕl
j |Bl

i
= c.

�
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In the next lemma we show that the local interpolation operator Πl
i, i 6∈ I(ΩD,l)

is H1-seminorm stable.

Lemma 5.5. Let i 6∈ I(ΩD,l). Then there is a constant C > 0 independent of h,

i, l and L such that for every u ∈ H1
0,ΓD

(Ω)

(5.15) |Πl
iu|H1(Bl

i
) 6 C|u|H1(B̂l

i
).

P r o o f. Set c = argmin
q∈R

‖u − q‖L2(B̂l
i
) and û = u − c. Since diam(B̂l

i) 6 Chl,

hl = h3l−1, the Poincaré inequality yields

(5.16) ‖û‖L2(B̂l
i
) 6 Chl|û|H1(B̂l

i
).

By Lemma 5.4 we get

(5.17) |Πl
iu|H1(Bl

i
) = |Πl

iu− c|H1(Bl
i
) = |Πl

i(u− c)|H1(Bl
i
) = |Πl

iû|H1(Bl
i
).

Further, by the definition of Πl
i, (5.12) (5.13), the Cauchy-Schwarz inequality and

the Poincaré inequality (5.16) we get

|Πl
iû|2H1(Bl

i
) =

∣∣∣∣
∑

j∈I(B̂l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

∫

Bl
j

û dΩ

)2
ϕl
j

∣∣∣∣
2

H1(Bl
i
)

6 C
∑

j∈I(B̂l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

∫

Bl
j

ûdΩ

)2
|ϕl

j |2H1(Ω)

= C
∑

j∈I(B̂l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

(û, 1)L2(Bl
j
)

)2
|ϕl

j |2H1(Ω)

6 C
∑

j∈I(B̂l
i
)

(
card(Ã l−1

j )1/2

µ(Bl
j)

‖û‖L2(Bl
j
)‖1‖L2(Bl

j
)

)2
|ϕl

j |2H1(Ω)

6 C
∑

j∈I(B̂l
i
)

card(Ã l−1
j )

µ(Bl
j)

‖û‖2L2(Bl
j
)|ϕl

j |2H1(Ω)

6 Ch−2
l

∑

j∈I(B̂l
i)

‖û‖2L2(Bl
j
) 6 Ch−2

l ‖û‖2L2(B̂l
i
)
6 C|û|2

H1(B̂l
i
)

= C|u|2
H1(B̂l

i
)
.

The statement (5.15) follows by the previous estimate together with (5.17). �
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Define the operator Q̃l : R
n1 → R

nl by

(5.18) (Q̃lu)i =
card(Ã l−1

i )1/2

µ(Bl
i)

∫

Bl
i

πhu dΩ, i = 1, . . . , nl.

Then the operator Ql defined in (4.2) has a form Ql = π−1
h Πlπh, where Π

l is the

global interpolation operator defined in (5.8).

In the next lemma we verify condition (4.4).

Lemma 5.6. There is a constant C > 0 independent of h, l and L such that for

every u ∈ H1
0,ΓD

(Ω)

(5.19) |Πlu|H1(Ω) 6 C|u|H1(Ω).

As a consequence, the operator Ql = π−1
h Πlπh satisfies (4.4).

P r o o f. The proof of (5.19) follows from Lemma 5.3 and Lemma 5.5 using

bounded overlaps of the balls Bl
i and ΩD,l and bounded overlaps of the balls B̂

l
i and

Ω̂D,l, by

|Πu|2H1(Ω) 6 C

(
|Πlu|2H1(ΩD,l)

+
∑

i6∈I(ΩD,l)

|Πl
iu|2H1(Bl

i
)

)

6 C

(
|u|2

H1(Ω̂D,l)
+

∑

i6∈I(ΩD,l)

|u|2
H1(B̂l

i
)

)

6 C|u|2H1(Ω).

The estimate (4.4) is a direct consequence of (5.19). Indeed,

‖Qlu‖A = ‖π−1
h Πlπhu‖A 6 C|Πlπhu|H1(Ω) 6 C|πhu|H1(Ω) 6 C‖u‖A.

�

Clearly, the operator QP
l defined in (4.2) returns a vector that is constant on each

composite aggregate and on Â l−1
i has the value

(5.20) (QP
l u)j =

1

µ(Bl
i)

∫

Bl
i

πhu dΩ, j ∈ Ã l−1
i .

It remains to verify assumption (4.3).

Lemma 5.7. There is a constant C > 0 independent of h, l and L such that (4.3)

holds with CP = C.
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P r o o f. We set qi to be the value returned in (5.20) on the aggregate Al
i. Since

diam(B̂l
i) 6 Ch3l−1, we have by the Poincaré inequality

‖πhu− qi‖L2(B̂l
i
) 6 Ch3l−1|πhu|H1(B̂l

i
).

We estimate using the above inequality, (5.20) and the fact that the composite ag-

gregates form a disjoint covering of the set {1, . . . , n}:

‖u−QP
l u‖2 =

nl∑

i=1

‖u−QP
l u‖2l2(Âl−1

i
)
=

nl∑

i=1

‖u− qi‖2l2(Ã l−1

i
)

6 Ch−d
nl∑

i=1

‖πhu− qi‖2L2(B̂l
i
)
6 C9l−1h2−d

nl∑

i=1

|πhu|2H1(B̂l
i
)

6 C9l−1h2−d|πh|2H1(Ω) 6
C

hd−2/9l−1
‖u‖2A.

As λ1 we take the estimate of ̺(A) obtained by the Gershgorin theorem, hence

λ1 6 Chd−2. The estimate (4.3) now follows by (3.5). �

Now we are ready to formulate the final convergence theorem.

Theorem 5.8. Let prolongators I ll+1 be constructed by the smoothed aggregation

method as described in Section 3 with the prolongator smoother given by (3.3)

with ω = 4/3 and λ1 obtained by the Gershgorin theorem. Assume the multigrid

smoothers satisfy (2.6) and the aggregates are such that Assumption 5.1 holds. Then

Algorithm 1 converges with the rate of convergence

‖A−1f −MG(x, f)‖A 6

(
1− 1

(1 + C)2(L− 1)

)
‖A−1f − x‖A.

The constant C > 0 is independent of h and L. In addition, the preconditioner

P : x 7→MG(0,x) satisfies cond(A,P ) 6 (1 + C)2(L− 1).

P r o o f. The proof follows directly from Theorem 2.1, Theorem 4.1 and Lem-

mas 5.7 and 5.6. �
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