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Abstract. We propose a new localization result for the leading eigenvalue and eigenvector
of a symmetric matrix A. The result exploits the Frobenius inner product between A and
a given rank-one landmark matrix X. Different choices forX may be used, depending on the
problem under investigation. In particular, we show that the choice where X is the all-ones
matrix allows to estimate the signature of the leading eigenvector of A, generalizing previous
results on Perron-Frobenius properties of matrices with some negative entries. As another
application we consider the problem of community detection in graphs and networks. The
problem is solved by means of modularity-based spectral techniques, following the ideas
pioneered by Miroslav Fiedler in mid-’70s.
We show that a suitable choice of X can be used to provide new quality guarantees of

those techniques, when the network follows a stochastic block model.
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1. Introduction

Consider the following result, found in [10]:

Theorem 1.1. If a symmetric n× n matrix A satisfies

(1.1) 1
TA1 >

√

(n− 1)2 + 1‖A‖F,

then its spectral radius is a simple eigenvalue and the corresponding eigenvector is

nonnegative.

The first author has been supported by Istituto Nazionale di Alta Matematica (Italy)
and the second author by the ERC grant NOLEPRO.
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The symbol 1 above stands for a vector whose entries are 1’s. This theorem, whose

original proof relies upon studying specific convex cones of nonnegative matrices

and the solution of certain linear programming problems, shows various intriguing

aspects. For example, it reveals that a result which is typical of the Perron-Frobenius

theory of nonnegative matrices can be valid for matrices having some negative entries.

Moreover, it can establish a localization property of the dominant eigenvector with

respect to the central ray of the positive orthant, without involving the spectral

separation of the associated eigenvalue. On the other hand, the authors of [10] missed

other interesting consequences. For example, in the hypotheses of the aforementioned

theorem, the rightmost eigenvalue of A is larger than but quite close to r/n where r

denotes the right-hand side of (1.1), as we shall prove in the following.

The purpose of this paper is to shed light on some imaginable generalizations

of Theorem 1.1, along with a few more consequences and a possible application in

network analysis. It is well known that on many occasions the analysis of graphs

and networks interacts profitably with matrix theory, see e.g., [8]. Also in these

circumstances we discovered an unexpected contact between these subjects.

The paper is organized as follows. Before concluding this introduction, we col-

lect below some notation and preliminary results. In Section 2, we state, prove and

discuss our new localization result for the leading eigenvalue and an associated eigen-

vector of a symmetric matrix A. The result is given in terms of the angle between A

and a given nonzero rank-one matrix X = xxT, measured in terms of the Frobenius

inner product between A and X . The generality of the landmark matrix X allows

to apply the theorem in various contexts. In Section 3, we observe that the choice

X = 11
T can be used to obtain an improved version of Theorem 1.1, with an alter-

native proof and further details on the size of the leading eigenvalue of A, and on

the signature of the associated leading eigenvector. In the last section we apply our

main results to the analysis of a simple spectral method in community detection. We

consider the planted partition model, which is a widespread benchmark for commu-

nity detection methods, and estimate the fraction of correctly classified nodes that

is almost certainly attained in large graphs.

1.1. The Frobenius inner product and matrix norm. The space of n×n real

matrices is naturally endowed with the Frobenius inner product 〈A,B〉 = Tr(ABT)

and the associate matrix norm ‖A‖F = 〈A,A〉1/2. Correspondingly, the angle be-
tween A and B is defined by the respective cosine as follows:

(1.2) cos(A,B) =
Tr(ABT)

‖A‖F‖B‖F
.
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For any fixed matrix B let PB(A) denote the orthogonal projection of a generic

matrix A onto the linear space spanned by B. We have the explicit expression

PB(A) = τ(A)B, where

τ(A) =
Tr(ABT)

‖B‖2
F

.

Indeed, consider the decomposition A = τ(A)B + Z. The two terms of that decom-

position are orthogonal with respect to the Frobenius inner product. In fact,

〈A− PB(A), B〉 = 〈A,B〉 − 〈PB(A), B〉 = 〈A,B〉 − τ(A)‖B‖2F = 0,

and Z is the residual of the projection.

We conclude this introduction by recalling a few useful results. If A is symmetric,

we consider its eigenvalues in nonincreasing order, λ1(A) > λ2(A) > . . ., and we

have the formula ‖A‖2F =
n
∑

i=1

λi(A)
2. In what follows we will use a special case of

the Hoffman-Wielandt theorem, see e.g., [2], Theorem 9.21:

Theorem 1.2. Let A and B be symmetric n× n matrices, then

n
∑

i=1

(λi(A)− λi(B))2 6 ‖A−B‖2F.

Finally, we borrow from [11], Lemma 2, the following result.

Lemma 1.1. When B = vvT is a symmetric, positive semidefinite rank-one ma-

trix, equation (1.2) becomes

(1.3) cos(A, vvT) =
vTAv

vTv‖A‖F
.

In this case we also have τ(A) = vTAv/(vTv)2 and the only nontrivial eigenvalue of

PB(A) is v
TAv/(vTv).
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2. Localization of a dominant eigenpair

Hereafter we prove that if the angle between a symmetric matrix A and a symmet-

ric rank-one matrix is sufficiently small, then A has one simple, dominant eigenvalue,

and the associated spectral projector is close to a multiple of the rank-one matrix.

If u and v are vectors, the notation cos(u, v) has the obvious meaning given by the

Euclidean inner product.

Theorem 2.1. Let A be symmetric and let X = xxT be a nonzero rank-one

matrix. Moreover, let c = cos(A,X) > 0 and s =
√
1− c2. Then:

(1) λ1(A) > µ, where µ = c‖A‖F. In particular, if c > 1/
√
2, then λ1(A) is simple

and dominant;

(2) |λ1(A) − µ|/|λ1(A)| 6 s;

(3) let v1 be an eigenvector of λ1(A). If c
2 > 1/2, then cos(v1, x)

2 > ξ, where

ξ ∈ [1/2, 1] is the largest root of c2 = 2ξ2 − 2ξ + 1.

P r o o f. First, note the equivalent formulas

µ = cos(A,X)‖A‖F =
xTAx

xTx
.

Hence, the inequality λ1(A) > µ is due to the variational characterization of the

largest eigenvalue of a symmetric matrix, see e.g., [2], Theorem 2.30.

Let Z = A − PX(A). By simple trigonometry, ‖Z‖F = s‖A‖F. Owing to
Lemma 1.1, the matrix PX(A) has only one (positive) eigenvalue, which is equal

to µ. From Theorem 1.2 we have

s2
n
∑

i=1

λi(A)
2 = s2‖A‖2F = ‖Z‖2F = ‖A− PX(A)‖2F > (λ1(A) − µ)2 +

n
∑

i=2

λi(A)
2.

Consequently, s2λ1(A)
2 > (1 − s2)

n
∑

i=2

λi(A)
2 and if c > 1/

√
2, then 1 − s2 > 1/2,

and we obtain λ1(A)
2 >

∑

i6=1

λi(A)
2, completing the proof of the first claim. We

observe in passing that if c > 1/
√
2, then the numbers λi(A)

2 fulfill a reversed

polygonal inequality. In fact, Fiedler used to name the relation 2max
i

αi 6
∑

i

αi

among nonnegative numbers αi a polygonal inequality, see e.g. [4].

Rearranging terms we also get

(λ1(A) − µ)2 6 s2λ1(A)
2 − (1 − s2)

n
∑

i=2

λi(A)
2 6 s2λ1(A)

2,
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which proves the second claim. Finally, let

A =

n
∑

i=1

λiviv
T
i

be the spectral decomposition of A. For notational simplicity, let ci = vTi x/‖x‖ and
µi = λi/‖A‖F. Note that ci is the cosine of the angle between the vectors vi and x.

With this auxiliary notation we obtain

cos(A,X) =

n
∑

i=1

λi(v
T
i x)

2

xTx ‖A‖F
=

n
∑

i=1

µic
2
i .

Owing to the equations
n
∑

i=1

µ2
i =

n
∑

i=1

c2i = 1

and the inequalities µ1 > µ2 > . . . > µn, we have

(2.1) c = cos(A,X) 6 µ1c
2
1 + µ2(1− c21) 6 µ1c

2
1 +

√

1− µ2
1(1− c21).

Arguing by contradiction, suppose c21 < ξ. By hypothesis and the first claim, we

have µ2
1 > c2 > 1/2. Consequently

√

1− µ2
1 6 µ1 and

µ1c
2
1 +

√

1− µ2
1(1 − c21) < µ1ξ +

√

1− µ2
1(1− ξ).

Consider the function f(µ) = µξ+
√

1− µ2(1− ξ). Simple computations prove that

max
06µ61

f(µ) =
√

2ξ2 − 2ξ + 1.

Finally,

µ1c
2
1 +

√

1− µ2
1(1− c21) < f(µ1) 6

√

2ξ2 − 2ξ + 1 = c,

which contradicts (2.1). Hence we must have c21 > ξ. �

The foregoing theorem can be used as a localization tool for the extreme eigen-

values of A and the corresponding eigenvectors. In fact, the quantity cos(A, xxT)

is maximized when x is an eigenvector associated to the rightmost eigenvalue of A.

On the other hand, if cos(A, xxT) < 0 we obtain immediately a corresponding result

for the leftmost eigenvalue, by replacing A with −A. It is worth noting that, unlike

in Perron-Frobenius theory, Theorem 2.1 makes no assumption about the positivity
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of A. Furthermore, differently from classical results in spectral perturbation theory,

the estimate on cos(v1, x) does not depend on the spectral separation of λ1(A).

The following examples show that the hypotheses of Theorem 2.1 cannot be weak-

ened in general. Indeed, let n be an even integer, let x = (y, y)T, where y 6= 0 is

a vector with n/2 entries, and

A =

(

yyT O

O yyT

)

,

where all blocks have size n/2. This matrix has rank two and its two nonzero eigen-

values are equal to ‖y‖22. Moreover, A fulfills the equality cos(A, xxT) = 1/
√
2, thus

showing that the strict inequality c > 1/
√
2 in point (1) of Theorem 2.1 can be

necessary to have a simple eigenvalue. Furthermore, the vector v1 = (y, 0)T is an

eigenvector associated to the nontrivial eigenvalue, and we have cos(v1, x)
2 = 1/2.

That value meets the lower bound in point (3) of the theorem. Another counterex-

ample in the same vein is given by

A =

(

O yyT

yyT O

)

.

Here, the nonzero eigenvalues are simple but have opposite sign and the same mod-

ulus.

3. The signature of a leading eigenvector

In this section we derive Theorem 1.1 as a special case of a much more general

result, using arguments very different from those in [10]. Our proof, which is based

on Theorem 1.2, extends immediately to eigenvectors having a prescribed minimal

number of nonnegative entries.

In what follows we denote by 1 the all-ones vector of appropriate size, and we let

J = 11
T be an all-ones matrix. Moreover, we use the notation P

n
k to indicate the

set of real n-vectors having no more than k (strictly) positive entries, for 0 6 k 6 n.

In particular, Pn
n = R

n; Pn
n−1 is the complement of the positive orthant in R

n; and

P
n
k1

⊂ P
n
k2
for k1 < k2. In the following lemma we exploit a trick found in [11],

Lemma 1.

Lemma 3.1. For 0 < k 6 n it holds that

πk,n := max
x∈Pn

k

cos(x,1) =
√

k/n.

Moreover, we have cos(x,1) = πk,n if and only if x is any vector with exactly k

entries having the same positive value and the remaining n− k entries being zeros.
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P r o o f. Let x ∈ P
n
k and let m be the number of its positive entries. Let x

+ be

the positive m-dimensional vector made by the positive entries of x. By hypothesis

m 6 k, therefore

(3.1) cos(x,1) =
xT

1√
n‖x‖2

6
‖x+‖1√
n‖x+‖2

6
√

k/n.

The rightmost inequality follows from the fact that for any vector v ∈ R
m one

has ‖v‖1 6
√
m‖v‖2. The last part of the claim is verified by requiring that both

inequalities in (3.1) hold as equalities. �

Remark 3.1. By the preceding lemma, if a vector x ∈ R
n fulfills cos(x,1) > πk,n,

then either cos(x,1) = πk,n, whence x is a special nonnegative vector having k

positive entries, or x /∈ P
n
k , so it has at least k + 1 positive entries. In both cases x

has at least k + 1 nonnegative entries.

Theorem 3.1. Let A be a symmetric n× n matrix such that

(3.2) 1
TA1 >

√

(n− k)2 + k2 ‖A‖F

for some 1 6 k < n/2. Then, the spectral radius of A is a simple eigenvalue, and the

corresponding eigenvector can be oriented so that it has at least n−k+1 nonnegative

entries, of which at least n− k are positive.

P r o o f. Let c = cos(A, J). By hypothesis and (1.3),

c =
1
TA1

n‖A‖F
>

√

(n− k)2 + k2

n2
.

In particular, c > 1/
√
2. From Theorem 2.1 we derive that the rightmost eigenvalue

of A is positive, simple and dominant, therefore it coincides with ̺(A). Moreover,

the corresponding eigenvector v1 has cos(v1,1)
2 > ξ, where

ξ =
1

2
+

1

2

√

2c2 − 1 >
n− k

n
= π2

n−k,n.

By Remark 3.1, v1 must have at least n−k+1 nonnegative entries, of which at least

n− k are positive, and the proof is complete. �

The hypothesis of the last theorem cannot be weakened, as shown by the following

construction. Consider the matrix

A =

(

J O

O J

)

,
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whose diagonal blocks have order k × k and (n − k) × (n − k), respectively. With

this matrix the inequality (3.2) is fulfilled as equality. Moreover, an eigenvector

corresponding to the largest eigenvalue of A is (0, . . . , 0, 1, . . . , 1)T, with exactly n−k

positive entries, thus showing optimality of the claim. Finally, we see immediately

that Theorem 1.1 is exactly the case k = 1 of the foregoing theorem.

Any map A 7→ A + αI leaves unchanged the eigenvectors of A and translates

its eigenvalues without affecting their relative ordering. This fact suggests the next

consequence.

Corollary 3.1. Let A be a symmetric matrix such that for some α ∈ R and

1 6 k < n/2 we have

1
TA1 >

√

(n− k)2 + k2 ‖A+ αI‖F − nα.

Then the rightmost eigenvalue of A is simple, and the corresponding eigenvector can

be oriented so that it has at least n− k + 1 nonnegative entries.

P r o o f. It is sufficient to apply Theorem 3.1 to the matrix B = A+ αI. �

A convenient, almost optimal value for α to be used in the last corollary is

α = −Tr(A)/n. In fact, with that value the inequality simplifies considerably, as

shown below.

Corollary 3.2. Let µ and σ2 be the mean and variance of the eigenvalues of A,

µ =
1

n

n
∑

i=1

λi(A), σ2 =
1

n

n
∑

i=1

(λi(A)− µ)2.

If for some 1 6 k < n/2 we have

1

n

∑

i6=j

Aij > σ

√

(n− k)2 + k2

n
,

then the rightmost eigenvalue of A is simple, and the corresponding eigenvector can

be oriented so that it has at least n− k + 1 nonnegative entries.

P r o o f. Recall that Tr(A) =
∑

i

λi(A) and ‖A‖2F =
∑

i

λi(A)
2. Now,

‖A− µI‖2F = ‖A‖2F − 2µ
∑

i

Aii + nµ2 =
∑

i

λi(A)
2 − 2µ

∑

i

λi(A) + nµ2

=
∑

i

(λi(A) − µ)2 = nσ2.

The claim follows by rearranging terms and letting α = −µ in the preceding corollary.

�
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4. Spectral community detection in the stochastic block model

The stochastic block model, also referred to as the planted partition model, is

a popular generative model for random graphs having a prescribed clustering struc-

ture, see e.g., [5], [9]. It is often considered as a benchmark in the context of graph

clustering and community detection problems in networks.

Given a set of nodes V , the model in its most general form assumes that a partition

{C1, . . . , Ck} of V is given, together with a set of connection probabilities pij , for
1 6 i, j 6 k. Each pij defines the probability that any two nodes u ∈ Ci and v ∈ Cj

are connected. For our purposes the interesting case is that of a bipartition {C,C},
where |C| = |C| = n/2, C = V \ C, and a pair pin, pout of connection probabilities:
pin is the probability that there exists an edge between any two nodes both belonging

to the same subset, whereas pout is the probability that there exists an edge between

two nodes belonging to different banks of the bipartition.

According to this model, A is an n × n symmetric {0, 1}-matrix whose entry aij
takes the value 1 with probability pin if both i and j belong to the same cluster, or

pout if i and j belong to different clusters. When pin is bigger than pout, the edges

tend to accumulate inside the clusters C and C. This phenomenon tends to set up C

and C as communities inside the network, and the adjacency matrix of the graph

tends to show a block diagonal predominance.

Various popular and effective techniques for revealing the community structure of

a given graph or network with vertex set V = {1, . . . , n} are based on the spectral
analysis of M , the modularity matrix of the graph. Several formulations of this

matrix have been proposed in recent literature, see [1] for an overview. We consider

here the one based on the Erdős-Rényi random graph model, defined as follows:

M = A− PJ(A) = A− volV

n2
J

being A the adjacency matrix of the given graph and volV = 1
TA1 its volume. The

definition of this matrix is based on the following remark: Let 1S be the characteristic

vector of the set S ⊆ V . Then,

1
T
SM1S = 1

T
SA1S − volV

n2
(1T

1S)
2 = volS − volV

|S|2
n2

,

where volS = 1
T
SA1S is the volume of S, that is, the overall weight of internal

edges, and the term volV |S|2/n2 quantifies the expected number of edges lying in S,

if edges were placed uniformly at random in the graph. Hence, the maximization

of the Rayleigh quotient q(S) = 1
T
SM1S/1

T
S1S with respect to S arises naturally

as a theoretically based method to detect the presence of a cluster in the graph:
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If q(S) is “large” then the edge density in the subgraph induced by S is higher

than expected. However, the combinatorial nature of the maximization procedure

makes it an NP-hard problem. Effective algorithms can be based on a continuous

relaxation, leading to the so-called spectral methods.

Loosely speaking, spectral methods for community detection locate clusters in

a given graph according to the sign of the entries of the leading eigenvector of M .

The idea, first introduced in physics literature (see [7], [6]), mirrors the analogous

approach widely used for solving graph partitioning problems by exploiting spectral

properties of Laplacian matrices, as pioneered by Fiedler in [4], [3].

Given the bipartition {C,C} of the vertex set V = {1, . . . , n}, define the vector
z = (z1, . . . , zn)

T, where zi = 1 if i ∈ C and zi = −1 if not, and let Z = zzT. By

using Theorem 2.1 we can show that for certain values of pin and pout, the value of

cos(M,Z) is large, and the leading eigenvector of M is almost parallel to z. Conse-

quently, partitioning vertices on the basis of the sign of the corresponding entries of

the leading eigenvector yields a reliable approximation of the true bipartition.

Since zT1 = 0, we have

Tr(MZ) = zTMz = zTAz − 1
TA1

n2
zTJz = zTAz.

Moreover, aij ∈ {0, 1} implies a2ij = aij , therefore ‖A‖2F = 1
TA1 and

‖M‖2F = ‖A‖2F − (1TA1)2

n2
= (1TA1)

(

1− 1
TA1

n2

)

.

As the entries of A are independent Bernoulli random variables, the quantities 1TA1

and zTAz are independent random variables as well. In fact, let νC = 1
T
CA1C +

1
T

C
A1C and ∂C = 2(1T

CA1C). Then we have Tr(MZ) = νC−∂C and 1
TA1 = νC+∂C .

Both νC and ∂C are the sum of identically and independently distributed Bernoulli

trials, thus they follow a binomial distribution:

νC ∼ B
(n2

2
, pin

)

, ∂C ∼ B
(n2

2
, pout

)

.

Consequently, we have the following statistics:

E(1TA1) = E(νC) + E(∂C) = n2 pin + pout
2

,

E(zTAz) = E(νC)− E(∂C) = n2 pin − pout
2

,

Var(1TA1) = Var(νC) +Var(∂C) =
n2

2
(pin(1 − pin) + pout(1− pout)).
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Moreover, we also have Var(zTAz) = Var(1TA1). With the help of the foregoing

formulas, the subsequent lemma estimates the average value of cos(M,Z) whenM is

the modularity matrix of a graph belonging to the stochastic block model introduced

before.

Lemma 4.1. Let M = A − (volV/n2)J be the Erdős-Rényi modularity matrix

of a graph belonging to the stochastic block model with two equally sized clusters C

and C and edge probabilities pin and pout. Let z = (z1, . . . , zn)
T, where zi = 1 if

i ∈ C and zi = −1 if not. Moreover, let

γ =
pin − pout

√

(pin + pout)(2 − pin − pout)
.

For any fixed ε > 0, with probability converging to 1 as n → ∞ we have

cos(M,Z)2 > γ2 − ε.

P r o o f. Since zTz = n, we have the equivalent formulas

cos(M,Z) =
zTMz

n‖M‖F
=

zTAz

n2

n

‖M‖F
.

Hence, the inequality cos(M, zzT)2 > γ2 − ε is equivalent to the condition

(4.1)
(zTAz)2

n4
> (γ2 − ε)

‖M‖2F
n2

.

From the equation E((1TA1)2) = Var(1TA1)+E(1TA1)2 and the preceding expres-

sions we can obtain the expectation of ‖M‖2F/n2 in the considered stochastic block

model:

1

n2
E
(

‖M‖2F) =
1

n2
E(1TA1)− 1

n4
(Var(1TA1) + E((1TA1))2)

=
pin + pout

2
− 1

n4

(n2(pin − p2in + pout − p2out)

2
+

n4(pin + pout)
2

4

)

=
(pin + pout)(2− pin − pout)

4
+O(n−2).

Since Var(zTAz) = Var(1TA1), we also have

1

n4
E((zTAz)2) =

1

n4

(

Var(zTAz) + E(zTAz)2)

=
(pin − pout)

2

4
+O(n−2).

Owing to the independence of ‖M‖2F and (zTAz)2, with the value of γ given in the

claim the inequality (4.1) is certainly fulfilled in the limit of large n. �
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Finally, we exploit Theorem 2.1 and the preceding lemma to estimate certain

spectral properties of the modularity matrix M that are relevant for the community

detection problem. In particular, we focus on λ1(M), which is an important indicator

of the detectability of the planted partition {C,C} (see [5], [6]), and the overlap
between that partition and the nodal sets of a leading eigenvector of M .

Theorem 4.1. With the hypotheses and notations of Lemma 4.1, with probabil-

ity approaching 1 in the limit for large n we have:

(1) λ1(M) > µ and |λ1(M)− µ|/λ1(M) 6
√

1− γ2, where µ = (pin − pout)n/2.

(2) Let v1 be an eigenvector of λ1(M). If γ2 > 1/2, then cos(v1, z)
2 > ξ̄ where

ξ̄ =
1

2
+

1

2

√

2γ2 − 1.

(3) The fraction of vertices classified correctly by the partition {i : (v1)i > 0} and
{i : (v1)i < 0} is at least ξ̄.

P r o o f. The first two claims are easy consequences of Lemma 4.1 and Theo-

rem 2.1. In fact, the value of µ comes from the average value of zTMz/(zTz), which

is equal to zTAz/n, while ξ̄ is the largest root of γ2 = 2ξ2 − 2ξ + 1.

Let v1 be an eigenvector of λ1(M) oriented so that cos(v1, z) > 0. Define w ∈ R
n

as wi = 1 if vi > 0 and −1 if not. Clearly, 0 < cos(v1, z) 6 cos(w, z) = cos(w ◦ z,1),
where w ◦ z is the Hadamard (componentwise) product of w and z. Note that the

number of positive entries in w ◦ z gives exactly the number of correctly classified

vertices. Let k be the integer part of ξ̄n, so that we have
√

ξ̄ >
√

k/n = πk,n. Hence,

cos(w ◦ z,1) > cos(v1, z) > πk,n. The last claim follows from Remark 3.1. �
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