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Abstract. Doubly truncated data appear in some applications with survival and astro-
logical data. Analogous to the doubly truncated discrimination measure defined by Misagh
and Yari (2012), a generalized discrimination measure between two doubly truncated non-
negative random variables is proposed. Several bounds are obtained. It is remarked that
the proposed measure can never be equal to a nonzero constant which is independent of the
left and right truncated points. The effect of monotone transformations on the proposed
measure is discussed. Finally, a simulation study is added to provide the estimates of the
proposed discrimination measure.
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1. Introduction

Kullback and Leibler [9] were the first to introduce an information measure be-

tween two probability density functions (pdf’s). It is dubbed as discrimination infor-

mation, Kullback-Leibler (KL) divergence, relative information, Kullback’s informa-

tion. The discrimination information measure between two nonnegative absolutely

continuous random variables X and Y with respective pdf’s f(x) and g(x) is defined

as (see Kullback and Leibler, [9])

(1.1) JKL
X,Y =

∫
∞

0

f(x) ln
f(x)

g(x)
dx.

Note that (1.1) is shift and scale invariant. It measures the similarity of two pdf’s. It

is nonnegative and equal to zero if and only if f(x) = g(x) almost everywhere. The
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smaller value of (1.1) implies that the distributions corresponding to the random

variables X and Y are more similar. Note that (1.1) is not a distance, since it is

neither symmetric nor satisfies the triangle inequality. There is an extensive literature

regarding criteria for evaluating the best statistical model. One of them is KL

discrimination measure. For some results on discrimination information, we refer to

Wang et al. [22], Misagh and Yari [12], Park [13], Park and Shin [14], and Al-Rahman

and Kittaneh [1]. There have been several attempts on the generalizations of (1.1).

Based on Renyi’s entropy (see Renyi, [15]), the discrimination information measure

(1.1) is generalized as

(1.2) JR
X,Y =

1

α− 1
ln

∫
∞

0

fα(x)g1−α(x) dx, α (6= 1) > 0.

Note that as α → 1, (1.2) reduces to (1.1). Later, based on Varma’s entropy (see

Varma, [21]), the measure (1.2) is further generalized as

(1.3) JV
X,Y =

1

α− β
ln

∫
∞

0

fα+β−1(x)g2−α−β(x) dx, 0 6 β − 1 < α < β.

The measure (1.3) reduces to (1.2) when β = 1. Also, for β = 1 and α → 1, (1.3)

reduces to (1.1). In reliability and life testing studies, there are some experiments,

where the current age of a system needs to be incorporated. Also, somebody may be

interested in studying uncertainty which relies on the past lifetime of a component.

Thus the measures (1.1), (1.2), and (1.3) are not appropriate to handle these situa-

tions. To overcome such difficulty, several authors have proposed discrimination in-

formation measures and their generalized versions between two residual and past life-

time distributions and studied their properties. In this direction, we refer to Ebrahimi

and Kirmani [6], [7], Di Crescenzo and Longobardi [5], Asadi, Ebrahimi, Hamedant

and Soofi [2], Asadi, Ebrahimi and Soofi [3], Sunoj and Linu [19], Kundu [10], and

Kayal [8]. The generalized residual and past discrimination information measures

between two nonnegative random variables X and Y are given by

(1.4) JV
X,Y (t) =

1

α− β
ln

∫
∞

t

fα+β−1(x)

Fα+β−1(t)

g2−α−β(x)

G2−α−β(t)
dx

and

(1.5) JV
X,Y (t) =

1

α− β
ln

∫ t

0

fα+β−1(x)

Fα+β−1(t)

g2−α−β(x)

G2−α−β(t)
dx,

where F (x) and G(x) are cumulative distribution functions (cdf’s) and F (x) and

G(x) are survival functions of X and Y, respectively. The measures (1.4) and (1.5)
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are known as the relative entropy of residual lifetimes [X−t |X > t] and [Y−t |Y > t],

and past lifetimes [t−X |X < t] and [t− Y |Y < t], respectively.

Recently there have been growing interests in analyzing doubly truncated data in

statistical analysis of survival data as well as in other fields like astronomy or econ-

omy. Doubly truncated failure time arises if an individual is observed and its failure

time falls into a certain finite interval. An individual which is not observed in the

interval means that the investigator does not have any information about the indi-

vidual. Doubly truncated random variable appears in quasar survey, where an inves-

tigator assumes that the apparent magnitude is doubly truncated. Also, the times to

progression for patients with certain disease who received chemotherapy, experienced

tumor progression and subsequently died, are doubly truncated. For various results

on doubly truncated random variable we refer to Ruiz and Navarro [16], Betensky

and Martin [4], Sankaran and Sunoj [17], Sunoj, Sankaran and Maya [20], Misagh

and Yari [11], [12]. In this paper we consider discrimination information measure

between doubly truncated random variables [X |u < X < v] and [Y |u < Y < v]. It

is defined as

(1.6) JV
X,Y (u, v) =

1

α− β
ln

∫ v

u

fα+β−1(x)

(∆F )α+β−1

g2−α−β(x)

(∆G)2−α−β
dx,

where ∆F = F (v)−F (u), ∆G = G(v)−G(u), 0 < u < v, and 0 6 β− 1 < α < β. It

is easy to show that JV
X,Y (0, v) = JV

X,Y (v), J
V
X,Y (u,∞) = JV

X,Y (u) and J
V
X,Y (0,∞) =

JV
X,Y .Note that when β = 1, (1.6) reduces to Renyi’s doubly truncated discrimination

information measure

JR
X,Y (u, v) =

1

α− 1
ln

∫ v

u

fα(x)

(∆F )α
g1−α(x)

(∆G)1−α
dx, 0 < α < 1,

and (1.6) reduces to the doubly truncated discrimination information measure (see

Misagh and Yari [12]), when β = 1 and α → 1. In this work our aim is to obtain some

bounds and characterization results of the measure (1.6). Throughout the paper, we

assume that the random variables are nonnegative and absolutely continuous. The

terms increasing and decreasing are used in nonstrict sense. Henceforth, we denote

γ = α+ β − 1, where γ > 0.

The paper is arranged as follows. In Section 2, we present some preliminary results.

An example is presented to show that the measure given in (1.6) is not monotone in

general. We obtain some bounds of the measure (1.6) in Section 3. In Section 4, we

study the effect of the monotone transformations on (1.6). Monte-Carlo simulation

is carried out for the purpose of estimation of the doubly truncated generalized

discrimination measure given by (1.6) in Section 5. Finally, some concluding remarks

are added in Section 6.
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2. Preliminaries

In this section we present some definitions and theorems which are useful for

obtaining some of our main results.

Definition 2.1. Let X and Y be two nonnegative random variables with pdf’s

f(x) and g(x), respectively. Then X is said to be less than or equal to Y in likelihood

ratio ordering, denoted by X
lr
6 Y, if f(t)/g(t) is decreasing in t > 0.

Definition 2.2. LetX and Y be two nonnegative random variables with survival

functions F (x) and G(x), respectively. Then X is said to be less than or equal to Y

in usual stochastic ordering, denoted by X
st
6 Y, if F (t) 6 G(t), for all t > 0.

Theorem 2.1 (Shaked and Shanthikumar, [18]). If X and Y are two nonnegative

random variables such that X
lr
6 Y, then for any measurable set A ⊆ R we have

[X |X ∈ A]
lr
6 [Y |Y ∈ A].

Theorem 2.2 (Shaked and Shanthikumar, [18]). For two nonnegative random

variables X and Y, X
lr
6 Y holds if and only if [X |X ∈ A]

st
6 [Y |Y ∈ A] for all

measurable sets A ⊆ R.

Theorem 2.3 (Shaked and Shanthikumar, [18]). IfX
st
6 Y, and ϕ is any increasing

(decreasing) function, then E[ϕ(X)] 6 (>) E[ϕ(Y )].

For further reading on usual stochastic ordering one may refer to Shaked and

Shanthikumar [18]. We consider the following example to show the role of (1.6) for

comparison of life times.

E x am p l e 2.1. Suppose a nonnegative random variableX follows uniform distri-

bution in the interval (0, 1). Let Y and Z be two other nonnegative random variables

with pdf’s

(2.1) g(x) =

{
2
3 (1 + x), if 0 < x < 1,

0, otherwise,

and

(2.2) h(x) =

{
2
3 (2− x), if 0 < x < 1,

0, otherwise,
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respectively. Then it is easy to obtain that

(2.3) JV
X,Y =

1

α− β
ln
[(2

3

)1−γ 22−γ − 1

2− γ

]
= JV

X,Z ,

that is, the generalized discrimination information measure between X and Y, and

that between X and Z are equal.

Moreover, for 0 < u < v < 1,

(2.4) JV
X,Y (u, v) =

1

α− β
ln
[21−γ((1 + v)2−γ − (1 + u)2−γ)

(2− γ)(v − u)(2 + u+ v)1−γ

]

and

(2.5) JV
X,Z(u, v) =

1

α− β
ln
[21−γ((2− u)2−γ − (2 − v)2−γ)

(2− γ)(v − u)(4− u− v)1−γ

]
.

Now, from Fig. 1, it is not difficult to observe that in general the doubly truncated

generalized discrimination information measures between X and Y, and X and Z are

not equal.

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

(a) v

J
V
X,Y (v)

J
V
X,Z(v)

0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

(b) u

J
V
X,Y (u)

J
V
X,Z(u)

Figure 1. Fig. (a) represents the measures (2.4) and (2.5) for v ∈ (0.02, .99), with β = 1.2,
α = 0.3, when u = 0.01. Figure (b) represents the measures (2.4) and (2.5) for
u ∈ (0.02, 0.98), with β = 1.2, α = 0.3, when v = 0.99.

It is worthwhile to mention that the measure given in (1.6) is not monotone in

general. We consider the following example.

E x am p l e 2.2. Let X and Y be two nonnegative random variables with pdf’s

(2.6) f(x) =





1
4 (2x+ 1), if 0 6 x < 1,

1
2 , if 1 6 x < 2,

0, otherwise,
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and

(2.7) g(x) =





1

x2
exp

(1
2
−

1

x

)
, if 0 6 x < 2,

0, otherwise,

respectively. Then for u ∈ (0, 1) and v ∈ (1, 2) we have

(2.8) JV
X,Y (u, v)

=
1

α− β
ln

[∫ 1

u

( 2x+ 1

(v − u)(1 + u+ v)

)γ( x−2 exp(12 − x−1)

exp(12 − v−1)− exp(12 − u−1)

)1−γ

dx

+

∫ v

1

( 1

v − u

)γ( x−2 exp(12 − x−1)

exp(12 − v−1)− exp(12 − u−1)

)1−γ

dx

]
,

where β − 1 < α < β, β > 1, and γ 6= 1. From Fig. 2, it is clear that JV
X,Y (u, v) is

not monotone.

1.2 1.4 1.6 1.8 2

−0.25

−0.2
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−0.1

−0.05

0

0.05

J
V
X,Y (v)

v

(a)
0.4 0.6 0.8

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

J
V
X,Y (u)

u

(b)

Figure 2. Fig. (a) and (b) represent the plot of the measure given in (2.8) for u = 0.8 and
v = 1.8, respectively. We assume β = 2 and α = 1.5.

3. Main results

Different kinds of bounds on the discrimination measures have been studied for

truncated random variables recently. For some useful references, one may refer to

Ebrahimi and Kirmani [6], Di Crescenzo and Longobardi [5], Sunoj and Linu [19],

Kundu [10], and Kayal [8]. In this section we generalize some of their results based

on the measure (1.6) and study several properties of it. First, we present the fol-

lowing theorem which provides upper and lower bounds of (1.6) in terms of density

and distribution functions. The bounds of the discrimination information measure

has various applications in different areas of science and technology such as sensor

590



networks, regional segmentation, testing the order in a Markov chain and estimation

theory. Here, α < β implies α− β < 0.

Theorem 3.1. Let X
lr
6 Y. Then

γ − 1

α− β
ln
(f(u)/∆F
g(u)/∆G

)
6 (>) JV

X,Y (u, v) 6 (>)
γ − 1

α− β
ln
(f(v)/∆F
g(v)/∆G

)
, if γ > (<)1.

P r o o f. We obtain the inequality for γ > 1. Given X
lr
6 Y and u < x, then

fγ(x)g1−γ(x) 6 fγ−1(u)g1−γ(u)f(x). Hence, from (1.6) we obtain

JV
X,Y (u, v) >

1

α− β
ln

∫ v

u

fγ−1(u)

(∆F )γ
g1−γ(u)

(∆G)1−γ
f(x) dx =

γ − 1

α− β
ln
(f(u)/∆F
g(u)/∆G

)
.

Using X
lr
6 Y and x < v, we get fγ(x)g1−γ(x) > g1−γ(v)fγ−1(v)f(x). Therefore,

from (1.6)

JV
X,Y (u, v) 6

1

α− β
ln

∫ v

u

fγ−1(v)

(∆F )γ
g1−γ(v)

(∆G)1−γ
f(x) dx =

γ − 1

α− β
ln
(f(v)/∆F
g(v)/∆G

)
.

When γ < 1, the inequality inside the parenthesis can be obtained similarly. Hence,

the result follows. �

The following example is an application of Theorem 3.1.

E x am p l e 3.1. Let X and Y be two nonnegative random variables with pdf’s

(3.1) f(x) =

{ aba

xa+1
, if x > b > 0, a > 1,

0, otherwise,

and

(3.2) g(x) =





(a− 1)ba−1

xa
if x > b > 0, a > 1,

0, otherwise,

respectively. Then the generalized discrimination information measure between X

and Y can be obtained as

(3.3) JV
X,Y (u, v) =

1

α− β
ln
[ aγ(a− 1)1−γ(u1−a−γ − v1−a−γ)

(u−a − v−a)γ(u1−a − v1−a)1−γ(a+ γ − 1)

]
.
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Again,

(3.4)
γ − 1

α− β
ln
(f(u)/∆F
g(u)/∆G

)
=
γ − 1

α− β
ln
(av(va−1 − ua−1)

(a− 1)(va − ua)

)
= η(u, v)

and

(3.5)
γ − 1

α− β
ln
(f(v)/∆F
g(v)/∆G

)
=
γ − 1

α− β
ln
(au(va−1 − ua−1)

(a− 1)(va − ua)

)
= ζ(u, v).

From Fig. 3 and 4, the inequalities in Theorem 3.1 can be easily verified.
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(b) u
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Figure 3. Figures (a) and (b) represent the plot of the functions given in (3.3), (3.4),
and (3.5) for γ > 1. Assume α = 1.1, β = 1.2, a = 2, and u = 0.01 in Fig. (a). In
Fig. (b), we consider α = 1.1, β = 1.2, a = 2, and v = 1.
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(b) u

JV
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Figure 4. Figures (a) and (b) represent the plot of the functions given in (3.3), (3.4),
and (3.5) for γ < 1. Assume α = 0.3, β = 1.2, a = 2, and u = 0.01 in Fig. (a). In
Fig. (b), we consider α = 0.3, β = 1.2, a = 2, and v = 1.

Theorem 3.2. Let g(x) be decreasing in x. Then for

JV
X (u, v) =

1

β − α
ln

∫ v

u

fγ(x)

(∆F )γ
dx
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we have

1− γ

α− β
ln
(g(v)
∆G

)
− JV

X (u, v) 6 (>) JV
X,Y (u, v)

6 (>)
1− γ

α− β
ln
(g(u)
∆G

)
− JV

X (u, v), if γ > (<)1.

P r o o f. The function g(x) is decreasing in x and u < x. Therefore, for γ > 1 we

have g1−γ(u) 6 g1−γ(x). Hence,

JV
X,Y (u, v) 6

1

α− β
ln

∫ v

u

fγ(x)

(∆F )γ
g1−γ(u)

(∆G)1−γ
dx =

1− γ

α− β
ln
(g(u)
∆G

)
− JV

X (u, v).

Let x < v. Then for γ > 1 we have g1−γ(x) 6 g1−γ(v). Consequently,

JV
X,Y (u, v) >

1

α− β
ln

∫ v

u

fγ(x)

(∆F )γ
g1−γ(v)

(∆G)1−γ
dx =

1− γ

α− β
ln
(g(v)
∆G

)
− JV

X (u, v).

The other part (when γ < 1) can be proved similarly. Hence the result follows. �

In environmental and ecological science, the observations under study may be

nonexperimental or nonrandom. The theory of weighted distributions plays an im-

portant role in modeling these types of data. Somebody may be interested to measure

discrimination between a distribution and the corresponding weighted distribution.

The following remark provides the discrimination measure between f and its weighted

distribution fw in terms of the cdf and the conditional expectations.

R em a r k 3.1. Let X be a nonnegative random variable with pdf f(x) and

cdf F (x). Also, let Xw be a weighted random variable with respective pdf and cdf

being fw(x) = w(x)µ−1
w f(x) and Fw(x) = E(w(X) |X < x)µ−1

w F (x), where w(x)

is a nonnegative function with µw = E(w(X)) =
∫
∞

0
w(x)f(x) dx < ∞. Now from

(1.6) it can be shown that

JV
X,Xw

(u, v) =
1− γ

α− β
ln(∆F ) +

1

α− β
lnE[w1−γ(X) |u < X < v]

−
1− γ

α− β
ln[E(w(X) |X < v)F (v)− E(w(X) |X < u)F (u)].
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Proposition 3.1. Suppose X and Y are two nonnegative random variables with

pdf’s f(x) and g(x), respectively. The corresponding cdf’s are F (x) and G(x). Let

JV
X,Y (u, v) be increasing (decreasing) in u. Then

JV
X,Y (u, v) > (6)

γ − 1

β − α
ln
( g(u)/∆G
f(u)/∆F

)

+
1

β − α
ln
[
(α + β)

(
1−

g(u)/∆G

f(u)/∆F

)
+ 2

( g(u)/∆G
f(u)/∆F

)
− 1

]
.

P r o o f. Differentiating (1.6) with respect to u, the inequality follows under the

given conditions. �

Proposition 3.2. LetX and Y be two nonnegative random variables as described

in Proposition 3.1. Let JV
X,Y (u, v) be increasing (decreasing) in v. Then

JV
X,Y (u, v) 6 (>)

γ − 1

β − α
ln
( g(v)/∆G
f(v)/∆F

)

+
1

β − α
ln
[
(α+ β)

(
1−

g(v)/∆G

f(v)/∆F

)
+ 2

( g(v)/∆G
f(v)/∆F

)
− 1

]
.

P r o o f. Differentiating (1.6) with respect to v and using the given conditions,

the inequality follows. �

As an application of Propositions 3.1 and 3.2, we consider the following example.

E x am p l e 3.2. Consider two nonnegative random variables Y and Z with pdf’s

(2.1) and (2.2), respectively. Denote cdf’s of Y and Z as G(x) and H(x) and ∆H =

H(v)−H(u). It can be easily checked that

(3.6) JV
Y,Z(u, v) =

1

α− β
ln

∫ v

u

2
( 1 + x

(v − u)(2 + v + u)

)γ( 2− x

(v − u)(4− v − u)

)1−γ

dx.

Moreover,

(3.7) ξ1(u, v) =
γ − 1

β − α
ln
(h(u)/∆H
g(u)/∆G

)

+
1

β − α
ln
[
(α+ β)

(
1−

h(u)/∆H

g(u)/∆G

)
+ 2

h(u)/∆H

g(u)/∆G
− 1

]

=
γ − 1

β − α
ln
((2− u)(2 + v + u)

(4− v − u)(1 + u)

)

+
1

β − α
ln
[
(α+ β)

(
1−

(2− u)(2 + v + u)

(1 + u)(4− v − u)

)

+ 2
((2− u)(2 + v + u)

(1 + u)(4− v − u)

)
− 1

]
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and

(3.8) ξ2(u, v) =
γ − 1

β − α
ln
(h(v)/∆H
g(v)/∆G

)

+
1

β − α
ln
[
(α+ β)

(
1−

h(v)/∆H

g(v)/∆G

)
+ 2

h(v)/∆H

g(v)/∆G
− 1

]

=
γ − 1

β − α
ln
((2 − v)(2 + v + u)

(4 − v − u)(1 + v)

)

+
1

β − α
ln
[
(α+ β)

(
1−

(2− v)(2 + v + u)

(1 + v)(4 − v − u)

)

+ 2
((2− v)(2 + v + u)

(1 + v)(4 − v − u)

)
− 1

]
.

From Figs. 5 and 6, Propositions 3.1 and 3.2 can be easily verified.
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Figure 5. Figures (a) and (b) represent the plot of the functions given in (3.6) and (3.7).
We consider v = 0.99. Assume α = 1.2 and β = 2 in Fig. (a). In Fig. (b), we
take α = 0.2 and β = 1.
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Figure 6. Figures (a) and (b) represent the plot of the functions given in (3.6) and (3.8).
We fix u = 0.01. Assume α = 1.2 and β = 2 in Fig. (a). In Fig. (b), we consider
α = 0.3 and β = 1.
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In the next theorem we consider three random variablesX1, X2, andX3 and obtain

lower and upper bounds of JV
X1,X3

(u, v)− JV
X2,X3

(u, v).

Theorem 3.3. Let X1, X2, and X3 be three random variables with pdf’s f1(x),

f2(x), and f3(x), respectively. The corresponding cdf’s are given by F1(x), F2(x) and

F3(x). Also let X1

lr
6 X2. Then for ∆F1 = F1(v)− F1(u) and ∆F2 = F2(v) − F2(u),

γ

α− β
ln
(f1(u)/∆F1

f2(u)/∆F2

)
6 JV

X1,X3
(u, v)− JV

X2,X3
(u, v) 6

γ

α− β
ln
(f1(v)/(∆F1

f2(v)/∆F2

)
.

P r o o f. We have X1

lr
6 X2 and u < x. Therefore, fγ

1 (x) 6 fγ
2 (x)f

γ
1 (u)/f

γ
2 (u).

Now

JV
X1,X3

(u, v) =
1

α− β
ln

∫ v

u

fγ
1 (x)

(∆F1)γ
f1−γ
3 (x)

(∆F3)1−γ
dx

>
1

α− β
ln

∫ v

u

fγ
2 (x)f

γ
1 (u)

fγ
2 (u)(∆F1)γ

f1−γ
3 (x)

(∆F3)1−γ
dx

= JV
X2,X3

(u, v) +
γ

α− β
ln
(f1(u)/∆F1

f2(u)/∆F2

)
,

where ∆F3 = F3(v)− F3(u). Hence,

JV
X1,X3

(u, v)− JV
X2,X3

(u, v) >
γ

α− β
ln
(f1(u)/∆F1

f2(u)/∆F2

)
.

The right-hand inequality can be obtained using fγ
1 (x) > fγ

2 (x)f
γ
1 (v)/f

γ
2 (v) under

the conditions X1

lr
6 X2 and x < v. This completes the proof of the theorem. �

Theorem 3.4. Let X1, X2, and X3 be three random variables as described in

Theorem 3.3. Denote ∆F2 = F2(v)−F2(u) and ∆F3 = F3(v)−F3(u). Let X2

lr
6 X3.

Then for γ < (>)1

1− γ

α− β
ln
(f2(u)/∆F2

f3(u)/∆F3

)
6 (>) JV

X1,X2
(u, v)

− JV
X1,X3

(u, v) 6 (>)
1− γ

α− β
ln
(f2(v)/∆F2

f3(v)/∆F3

)
.

P r o o f. The proof is omitted as it follows along the arguments of that of The-

orem 3.3. �
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Theorem 3.5. Let X1, X2, and X3 be three random variables as described in

Theorem 3.4. Also let X1

lr
6 X2 and X1

lr
> X3. Then,

JV
X1,X3

(u, v)− JV
X2,X3

(u, v) > (6)
γ − 1

α− β
ln
(f1(u)/∆F1

f2(u)/∆F2

)
, if γ > (<)1.

P r o o f. Let γ > 1. From (1.6), we have

JV
X1,X3

(u, v)− JV
X2,X3

(u, v)

=
1

α− β

[
ln

∫ v

u

fγ
1 (x)

(∆F1)γ
f1−γ
3 (x)

(∆F3)1−γ
dx− ln

∫ v

u

fγ
2 (x)

(∆F2)γ
f1−γ
3 (x)

(∆F3)1−γ
dx

]

=
1

α− β

[
ln

∫ v

u

(f1(x)
f3(x)

)γ−1 f1(x)

∆F1
dx

− ln

∫ v

u

(f1(x)
f3(x)

)γ−1(f2(x)
f1(x)

)γ−1 f2(x)

∆F2
dx+ ln

(∆F2

∆F1

)γ−1
]

>
1

α− β

[{
ln

∫ v

u

(f1(x)
f3(x)

)γ−1 f1(x)

∆F1
dx− ln

∫ v

u

(f1(x)
f3(x)

)γ−1 f2(x)

∆F2
dx

}

+ (γ − 1) ln
(f1(u)/∆F1

f2(u)/∆F2

)]
>
γ − 1

α− β
ln
(f1(u)/∆F1

f2(u)/∆F2

)
,

where the first inequality is due to the fact that X1

lr
6 X2 and the second inequality

comes from the fact that the expression within the braces is nonpositive due to

E(ψ(X1 |u < X1 < v)) 6 E(ψ(X2 |u < X2 < v)) for ψ(x) = (f1(x)/f3(x))
γ−1.

This completes the proof of one part of the theorem. The other part can be proved

similarly. Hence, the result follows. �

Theorem 3.6. Let X1, X2, and X3 be three random variables as described in

Theorem 3.4. Also let X1

lr
6 X2 and X1

lr
6 X3. Then,

JV
X1,X3

(u, v)− JV
X2,X3

(u, v) > (6)
γ − 1

α− β
ln
(f1(v)/∆F1

f2(v)/∆F2

)
, if γ > (<)1.

P r o o f. Proof of this theorem is similar to that of Theorem 3.5, hence omitted.

�

It is a natural task for a reliability engineer to identify statistical models for which

generalized discrimination information measures in residual and past lifetimes are

independent of the time variable. In this regards, Kayal (in press) showed that the

generalized residual discrimination measure JV
X,Y (t) is independent of t for γθ −
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γ + 1 > 0 if and only if X and Y satisfy the proportional hazard rate model, that

is, the survival functions of X and Y are related by F (t) = [G(t)]θ , where t > 0 and

θ > 0. The constant θ is known as the proportionality constant. The author also

showed that the generalized past discrimination measure JV
X,Y (t) is independent of t

for γθ − γ + 1 > 0 if and only if X and Y satisfy the proportional reversed hazard

rate model, that is, the cumulative distribution functions of X and Y satisfy the

relation F (t) = [G(t)]θ, where t > 0 and θ > 0. In the following we study the above

facts for the doubly truncated generalized discrimination information measure. Let

(3.9) JV
X,Y (u, v) = A,

where the constant A is independent of both u and v. Let u → 0+. Then we get

JV
X,Y (v) = A which implies that the random variables X and Y satisfy the propor-

tional reversed hazards model. Let v → ∞. Then from (3.7) we get JV
X,Y (u) = A

which implies that X and Y satisfy the proportional hazards model. Hence, the

random variables X and Y have identical probability distribution, that is, A = 0.

Therefore, we conclude that JV
X,Y (u, v) cannot be equal to a nonzero constant which

is independent of u and v.

4. The effect of monotone transformations on JV
X,Y (u, v)

In this section we confine our attention to show how monotone transformation

effects the discrimination information measure (1.6).

Theorem 4.1. Let X and Y be two random variables with common support

(0,∞) having pdf’s f(x) and g(x), and cdf’s F (x) and G(x), respectively. Also let

ϕ be a bijective transformation from (0,∞) to (0,∞). Then

(i) JV
ϕ(X),ϕ(Y )(u, v) = JV

X,Y (ϕ
−1(u), ϕ−1(v)), if ϕ is strictly increasing and

(ii) JV
ϕ(X),ϕ(Y )(u, v) = JV

X,Y (ϕ
−1(v), ϕ−1(u)), if ϕ is strictly decreasing.

P r o o f. (i): Note that when ϕ is strictly increasing the pdf and cdf of ϕ(X) are

given by

(4.1) fϕ(x) =
f(ϕ−1(x))

ϕ′(ϕ−1(x))
and Fϕ(x) = F (ϕ−1(x)),

respectively, and those of ϕ(Y ) are given by

(4.2) gϕ(x) =
g(ϕ−1(x))

ϕ′(ϕ−1(x))
and Gϕ(x) = G(ϕ−1(x)).
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Denote ∆Fϕ = F (ϕ−1(v)) − F (ϕ−1(u)) and ∆Gϕ = G(ϕ−1(v)) − G(ϕ−1(u)).

From (1.6),

(4.3) JV
ϕ(X),ϕ(Y )(u, v) =

1

α− β
ln

∫ v

u

fγ
ϕ(x)

(∆Fϕ)γ
g1−γ
ϕ (x)

(∆Gϕ)1−γ
dx

=
1

α− β
ln

∫ v

u

fγ(ϕ−1(x))

(ϕ′(ϕ−1(x)))γ(∆Fϕ)γ
g1−γ(ϕ−1(x))

(ϕ′(ϕ−1(x)))1−γ(∆Gϕ)1−γ
dx

=
1

α− β
ln

∫ ϕ−1(v)

ϕ−1(u)

fγ(w)

(∆Fϕ)γ
g1−γ(w)

(∆Gϕ)1−γ
dw

= JV
X,Y (ϕ

−1(u), ϕ−1(v)),

where the third equality is a result of using the transformation w = ϕ−1(x).

(ii): To prove the second part we assume that ϕ is strictly decreasing. Therefore,

the pdf and cdf of ϕ(X) are given by

(4.4) fϕ(x) = −
f(ϕ−1(x))

ϕ′(ϕ−1(x))
and Fϕ(x) = F (ϕ−1(x)),

respectively, and those of ϕ(Y ) are given by

(4.5) gϕ(x) = −
g(ϕ−1(x))

ϕ′(ϕ−1(x))
and Gϕ(x) = G(ϕ−1(x)).

Denote ∆Fϕ = F (ϕ−1(v)) − F (ϕ−1(u)) and ∆Gϕ = G(ϕ−1(v)) − G(ϕ−1(u)).

From (1.6),

JV
ϕ(X),ϕ(Y )(u, v) =

1

α− β
ln

∫ v

u

fγ
ϕ(x)

(∆Fϕ)γ
g1−γ
ϕ (x)

(∆Gϕ)1−γ
dx

=
1

α− β
ln

∫ v

u

(−1)γfγ(ϕ−1(x))

(ϕ′(ϕ−1(x)))γ(∆Fϕ)γ
(−1)1−γg1−γ(ϕ−1(x))

(ϕ′(ϕ−1(x)))1−γ(∆Gϕ)1−γ
dx

=
1

α− β
ln

∫ ϕ−1(u)

ϕ−1(v)

fγ(w)

(F (ϕ−1(u))− F (ϕ−1(v)))γ
g1−γ(w)

(G(ϕ−1(u))−G(ϕ−1(v)))1−γ
dw

= JV
X,Y (ϕ

−1(v), ϕ−1(u)),

where the third equality is a result of using the transformation w = ϕ−1(x). This

completes the proof of the theorem. �

The next remarks immediately follow from Theorem 4.1. First and second remarks

show the effect of the cdf and the survival functions of a nonnegative random vari-

able X on (1.6), respectively. The third remark presents the effect of the scale and

shift transformations on (1.6).
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R em a r k 4.1. Let ϕ(x) = F (x), where F (x) is the cdf of X. Assume that F (x)

is strictly increasing in x. Then from Theorem 4.1 we have

JV
F (X),F (Y )(u, v) = JV

X,Y (F
−1(u), F−1(v)).

R em a r k 4.2. Let ϕ(x) = F (x), where F (x) is the survival function of X. Here,

assume that F (x) is strictly decreasing in x. From Theorem 4.1 we obtain

JV
F (X),F (Y )

(u, v) = JV
X,Y (F

−1(v), F−1(u)).

R em a r k 4.3. For two nonnegative random variables X and Y

JV
aX,aY (u, v) = JV

X,Y

(u
a
,
v

a

)
and JV

X+b,Y+b(u, v) = JV
X,Y (u− b, v − b),

where a > 0 and 0 < b < min(u, v).

As an application of Theorem 4.1, we consider the following example.

E x am p l e 4.1. Consider two nonnegative random variables X and Y with pdf’s

(4.6) f(x) =

{
exp(−x), if 0 < x <∞,

0, otherwise,

and

(4.7) g(x) =

{
2 exp(−2x), if 0 < x <∞,

0, otherwise,

respectively. Consider a decreasing transformation ϕ(x) = 1/x from (0,∞) to (0,∞).

Then for 0 < u < v <∞, it can be shown that

(4.8) JV
1/X,1/Y (u, v) = JV

X,Y (1/u, 1/v)

=
1

α− β
ln
[ 21−γ(γ − 2)−1(exp((γ − 2)/v)− exp((γ − 2)/u))

(exp(−1/u)− exp(−1/v))γ(exp(−2/u)− exp(−2/v))1−γ

]
.

Now consider an increasing transformation ϕ(x) = x1/a, where 0 < x < ∞ and

a > 0. Under this transformation and for 0 < u < v <∞, we obtain

(4.9) JV
X1/a,Y 1/b(u, v) = JV

X,Y (u
a, va)

=
1

α− β
ln
[ 21−γ(γ − 2)−1(exp((γ − 2)va)− exp((γ − 2)ua))

(exp(−ua)− exp(−va))γ(exp(−2ua)− exp(−2va))1−γ

]
.
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5. The simulation study

In this section, to present estimates of the doubly truncated generalized discrim-

ination measure between two exponential populations with means 1/λ1 and 1/λ2,

where λ1, λ2 > 0, a simulation study is carried out. Denote X ∼ Exp(λ1) and

Y ∼ Exp(λ2). Then the doubly truncated generalized discrimination measure be-

tween X and Y is given by

(5.1) JV
X,Y (u, v) =

1

α− β
[lnH1(λ1, λ2)− γ lnH2(λ1, λ2)− (1 − γ) lnH3(λ1, λ2)],

where γ = α+ β − 1, 0 6 β − 1 < α < β and

H1(λ1, λ2) = [exp(−(λ1γ + λ2(1− γ))u)− exp(−(λ1γ + λ2(1− γ))v)]

×
λγ1λ

1−γ
2

λ1γ + λ2(1− γ)
,

H2(λ1, λ2) = exp(−λ1u)− exp(−λ1v),

H3(λ1, λ2) = exp(−λ2u)− exp(−λ2v).

To estimate JV
X,Y (u, v) given by (5.1), we use the method of maximum likelihood.

First we estimate the unknown parameters λ1 and λ2 based on the doubly truncated

exponential data. Then we plug these in (5.1) to get the maximum likelihood es-

timator (MLE) of JV
X,Y (u, v). Here [u, v] is the truncated interval, where u is the

left truncation point and v is the right truncation point. Suppose that x1, x2, . . . , xn
are the realizations of identically, independently distributed random observations

from exponential population with mean 1/λ1 subject to the constraints xi ∈ [u, v],

i = 1, 2, . . . , n. Then the truncated density of xi subject to xi ∈ [u, v] is

(5.2) fT (xi |λ1) =





λ1 exp(−λ1xi)

exp(−λ1u)− exp(−λ1v)
, if xi ∈ [u, v],

0, if xi /∈ [u, v].

Thus, the log-likelihood function for the data (x1, x2, . . . , xn) is

(5.3) l(λ1 |x1, x2, . . . , xn) = ln

{ n∏

i=1

λ1 exp(−λ1xi)

exp(−λ1u)− exp(−λ1v)

}
.

Hence, the MLE of λ1 can be obtained after solving the equation dl/dλ1 = 0 in λ1,

which is given by

(5.4)
n

λ1
−

n∑

i=1

xi −
n(v exp(−λ1v)− u exp(−λ1u))

exp(−λ1u)− exp(−λ1v)
= 0.
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As the solution of (5.4) cannot be obtained explicitly, we use the Newton-Raphson

method. In analogy to the MLE of λ1, the MLE of λ2 can be obtained. Let

y1, y2, . . . , yn be the realizations of identically, independently distributed random

observations from exponential population with mean 1/λ2 subject to the constraints

yi ∈ [u, v], i = 1, 2, . . . , n. Then MLE of λ2 can be obtained as a solution of

(5.5)
n

λ2
−

n∑

i=1

yi −
n(v exp(−λ2v)− u exp(−λ2u))

exp(−λ2u)− exp(−λ2v)
= 0.

To obtain λ2, we use the Newton-Raphson method. We denote the MLEs of λ1,

λ2 and J
V
X,Y (u, v) as λ̂1, λ̂2 and Ĵ

V
X,Y (u, v), respectively. The MLE of J

V
X,Y (u, v) is

given by

ĴV
X,Y (u, v) =

1

α− β
[lnH1(λ̂1, λ̂2)− γ lnH2(λ̂1, λ̂2)− (1− γ) lnH3(λ̂1, λ̂2)],

where γ = α + β − 1, 0 6 β − 1 < α < β. To get the MLE of λ1 and λ2, we

generate the data from two exponential populations using Monte Carlo simulation.

The estimated values are computed based on 1000 samples with sample size 100

for different truncation limits and parameter values. The standard deviations of the

simulated estimates of JV
X,Y (u, v) have been added. In the following, we present a few

of them. From the simulated data presented in the tables we observe the following

points.

⊲ For fixed values of α and β, the doubly truncated generalized discrimination mea-

sure is more when two distributions are less similar (here, in terms of the values

of the parameters). It is true, since (1.6) measures the closeness between two

distributions.

⊲ The estimates are almost unbiased.

6. Concluding remarks

In this paper, we have proposed a generalized discrimination measure between two

doubly truncated nonnegative random variables. Using the concepts of likelihood

ratio order, we have obtained some bounds of the proposed measure. Some examples

have been provided in support of our results. It is shown that the measure can

never be equal to a nonzero constant, free from the left and right truncation points.

We have studied the effect of the monotone transformation on the proposed measure.

Finally, a simulation study is carried out for the purpose of estimation of the proposed

discrimination measure. It is worthwhile to mention that the results obtained in
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(λ1, λ2) (u, v) λ̂1 λ̂2 JV
X,Y (u, v) ĴV

X,Y (u, v) ĴV SD
X,Y (u, v)

(0.2,0.3) (1, 5) 0.185716 0.305027 0.001908 0.002722 0.003672

(1,10) 0.201858 0.303778 0.008088 0.008363 0.001409

(2, 5) 0.205211 0.324040 0.001095 0.001542 0.002396

(2,10) 0.204341 0.306743 0.006682 0.006953 0.012115

(4, 7) 0.253295 0.314577 0.001095 0.000408 0.001468

(4,10) 0.207764 0.311663 0.004056 0.004344 0.005015

(0.3,0.2) (1, 5) 0.302579 0.194589 0.001898 0.002214 0.001242

(1,10) 0.303595 0.200952 0.007901 0.008288 0.001433

(2, 5) 0.320192 0.204296 0.001092 0.001462 0.001302

(2,10) 0.306898 0.204585 0.006556 0.006803 0.001478

(4, 7) 0.311436 0.257802 0.001092 0.000312 0.001246

(4,10) 0.307800 0.208411 0.004011 0.003934 0.009219

(0.5,0.7) (1, 5) 0.509791 0.719982 0.006198 0.006768 0.013489

(1,10) 0.513021 0.721777 0.015015 0.015707 0.021671

(2, 5) 0.508163 0.698431 0.003879 0.003504 0.003951

(2,10) 0.516174 0.734642 0.013906 0.015753 0.018772

(4, 7) 0.548922 0.937266 0.003879 0.013647 0.016294

(4,10) 0.548683 0.874008 0.010655 0.024073 0.027963

(0.7,0.5) (1, 5) 0.720064 0.512822 0.006065 0.006421 0.001138

(1,10) 0.723613 0.513098 0.014068 0.014889 0.017683

(2, 5) 0.719813 0.505005 0.003828 0.004386 0.009101

(2,10) 0.667588 0.514261 0.013121 0.007906 0.009087

(4, 7) 0.836676 0.552059 0.003828 0.012984 0.020374

(4,10) 0.860928 0.545948 0.010229 0.021336 0.014429

(1.0,1.2) (1, 5) 1.026330 1.261371 0.003808 0.005030 0.012377

(1,10) 0.979469 1.256811 0.005074 0.009567 0.001489

(2, 5) 1.087236 1.307370 0.002839 0.006547 0.007262

(2,10) 1.098233 1.393130 0.005036 0.008701 0.007669

(4, 7) 1.182961 1.302354 0.002839 0.002954 0.004119

(4,10) 1.163243 1.325673 0.004774 0.002181 0.003237

(1.2,1.0) (1, 5) 1.259091 1.028553 0.003700 0.004678 0.004633

(1,10) 1.257250 1.034960 0.004838 0.005507 0.013748

(2, 5) 1.338270 1.091170 0.002784 0.003886 0.003976

(2,10) 1.301770 1.099900 0.004806 0.004135 0.005332

(4, 7) 1.319360 1.213200 0.002784 0.000693 0.001998

(4,10) 1.281960 1.471570 0.004580 0.002849 0.003564

Table 1. Estimates of JV
X,Y (u, v) when α = 0.5 and β = 1.2.
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(λ1, λ2) (u, v) λ̂1 λ̂2 JV
X,Y (u, v) ĴV

X,Y (u, v) ĴV SD
X,Y (u, v)

(1.5,1.7) (1, 5) 1.587580 1.824951 0.002217 0.002805 0.002743

(1,10) 1.599251 1.839232 0.002388 0.002985 0.003067

(2, 5) 1.463465 1.931831 0.001914 0.009857 0.013542

(2,10) 1.629754 1.837385 0.002387 0.004584 0.011638

(4, 7) 1.635623 1.877412 0.001914 0.002466 0.005189

(4,10) 1.670945 1.838124 0.002372 0.001377 0.001496

(1.7,1.5) (1, 5) 1.835670 1.597400 0.002156 0.002708 0.002758

(1,10) 1.836380 1.600860 0.002309 0.002772 0.002637

(2, 5) 1.901370 1.828440 0.001872 0.000201 0.000387

(2,10) 1.824570 1.607360 0.002308 0.002367 0.005213

(4, 7) 1.958580 1.749320 0.001872 0.001664 0.005011

(4,10) 2.108600 1.950190 0.002295 0.000904 0.002469

(0.1,2.0) (1, 5) 0.120810 2.200040 0.425101 0.469663 0.437601

(1,10) 0.101252 2.206350 0.915016 0.994609 0.901134

(2, 5) 0.127476 2.216070 0.287632 0.325704 0.424751

(2,10) 0.098347 2.191900 0.843525 0.922928 0.878996

(4, 7) 0.116580 1.939690 0.287632 0.267469 0.381946

(4,10) 0.105630 1.882850 0.663418 0.611375 0.695472

(2.0,0.1) (1, 5) 2.190770 0.101191 0.333439 0.367477 0.395110

(1,10) 1.812910 0.098228 0.580998 0.544335 0.564458

(2, 5) 2.085750 0.139836 0.243202 0.244011 0.278596

(2,10) 2.134000 0.096641 0.548960 0.578928 0.535176

(4, 7) 1.929890 0.120601 0.243202 0.225009 0.363851

(4,10) 1.958780 0.094239 0.463813 0.460499 0.570549

Table 2. Estimates of JV
X,Y (u, v) when α = 0.5 and β = 1.2.

the above sections are general in the sense that they reduce to some of the results

for doubly truncated discrimination information measure obtained by Misagh and

Yari [12] and Al-Rahman and Kittaneh [1], when β = 1 and α tends to 1. The

results in the present paper also hold for Renyi’s doubly truncated discrimination

information measure when β = 1. It is also noted that some results obtained by

Kundu [10] and Kayal [8] can be derived from the results of the present paper by

taking (u→ 0, v → t) and (u→ t, v → ∞).
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