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Abstract. We prove that a connected Riemannian manifold admitting a pair of non-
trivial Einstein-Weyl structures (g,±ω) with constant scalar curvature is either Einstein,
or the dual field of ω is Killing. Next, let (Mn, g) be a complete and connected Riemannian
manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures (g,±ω). Then
the Einstein-Weyl vector field E (dual to the 1-form ω) generates an infinitesimal harmonic
transformation if and only if E is Killing.
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1. Introduction

Let M be a smooth manifold with a Riemannian metric g. Then (M, g) is said

to be Einstein if there exists a real constant λ such that the Ricci tensor S of g

satisfies S = λg (see [1]). In this case, we say that g is an Einstein metric. In re-

cent years, much attention has been given to classification of Riemannian manifolds

admitting several generalizations of Einstein metric. An interesting generalization

of such metric is the so-called Einstein-Weyl metric. This is known as a conformal

generalization of Einstein metric, defined in the background of Weyl manifold. A

conformal structure onM is a class [g] = {e2fg : f ∈ C∞(M)} of conformally related

Riemannian metrics g ofM . By aWeyl structure on a manifoldM of dimension > 3

we mean a pair W = ([g], D), where D is a torsion free connection which preserves

the conformal class [g], i.e. Dg = −2ω ⊗ g for some 1-form ω. A Riemannian mani-

fold together with such a structure is known as a Weyl manifold. The Ricci tensor

associated with the Weyl connection D is not usually symmetric. Thus, to define
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Einstein-like structures in the framework of conformal geometry one needs to con-

sider the symmetrized Ricci tensor of the Weyl connection D. If this is proportional

to a Riemannian metric of the conformal class [g], then we say that the structure

is Einstein-Weyl. It is evident that every Einstein manifold can be regarded as an

Einstein-Weyl manifold. But there exists manifold having no Einstein metric which

admits an Einstein-Weyl structure (e.g. see [11], [4] and Example 5.1). As a conse-

quence, the Einstein-Weyl structure can be considered an apt generalization of the

Einstein metric (of Riemannian geometry) from the viewpoint of conformal geometry.

Compact Einstein-Weyl structures and their different aspects have been exten-

sively studied by several authors ([4], [5], [6], [9], [11], [14], [15], [20]). In particular,

applying a result of Gauduchon [6], Pedersen and Swann [15] proved that on a com-

pact manifold, the Einstein-Weyl equation can be split into a simplified Einstein-

Weyl equation and the Killing dual field equation. Such a metric is known as the

Gauduchon metric. In [15], Pedersen and Swann (see also Higa [9]) first constructed

Einstein-Weyl structure on the principal circle bundle over Einstein Kaehler man-

ifolds with positive scalar curvature. Thereafter, the existence and implication of

such structures have been confirmed in the framework of Sasakian and K-contact

manifolds by Narita [11], Boyer, Galicki and Matzeu [4] and the author [8]. Actually,

in the above mentioned papers, several existence results of Einstein-Weyl structures

have been constructed. In particular, by deforming the Sasakian Einstein metric (for

instance, odd dimensional unit sphere S2n+1 with standard metric) one can construct

families of Einstein-Weyl structures.

Recall that a Riemannian manifold admits both Einstein-Weyl structures (g,±ω)

if and only if it satisfies some additional conditions on the Ricci tensor and the dual

field of ω is conformal Killing. In this direction, Boyer, Galicki and Matzeu [4] proved

that any η-Einstein (i.e. the Ricci tensor S satisfies S = αg+βη⊗η for some constants

α, β and η is a contact form) K-contact manifold admits an Einstein-Weyl structure

(g, fη) with β < 0 and some constant f . In this case, it also admits an Einstein-

Weyl structure (g,−fη). More generally, they proved that “A Sasakian manifold

M2n+1(ϕ, ξ, η, g) admits a pair of Einstein Weyl structures (g,±ω) (where ω is the

1-form associated with the metric g of the conformal class [g]) if and only if it is

η-Einstein with Einstein constants (α, β), where β < 0 and ω = ±µη such that

µ2 = −β/(2n − 1)”. Later on, the author in [8] extended this result by proving

that “A K-contact manifold admits a pair of Einstein-Weyl structure (g,±ω) if and

only if it is η-Einstein with Einstein constants (α, β), where β < 0”. These results

imply that there is a strong connection between the pair of Einstein-Weyl structures

(g,±ω) and the η-Einstein K-contact (Sasakian) geometry.

In the literature, various aspects of compact Einstein-Weyl structure with Gaudu-

chon metric have been studied in depth by several authors. On the other hand, Rie-

316



mannian manifolds admitting a pair of Einstein-Weyl structures have been studied

mostly on K-contact and Sasakian manifolds. Thus, we are motivated to consider

complete Riemannian manifolds admitting a pair of the Einstein-Weyl structures

(g,±ω). The outline of the paper is as follows. In Section 2, we present a brief re-

view of Einstein-Weyl structures, infinitesimal harmonic transformations and contact

geometry. Section 3 will be devoted to proving that a complete and connected Rie-

mannian manifold admitting a pair of Einstein-Weyl structures (g,±ω) with constant

scalar curvature is either Einstein or the dual field of ω is Killing. Finally, we show

that the vector field E of a Riemannian manifold (of dimension at least 3) admit-

ting a pair of Einstein-Weyl structures (g,±ω) generates an infinitesimal harmonic

transformation if and only if it is Killing.

2. Einstein-Weyl structures, infinitesimal harmonic transformations

and contact geometry

Throughout this paper, we denote by R the Riemann curvature tensor, by S

the (0, 2) Ricci tensor and by Q the (1, 1) Ricci operator associated with S. We

have already mentioned that a Weyl structure on a Riemannian manifold M of

dimension > 3 is defined by the pair W = ([g], D) satisfying

(2.1) Dg = −2ω ⊗ g.

Equation (2.1) implies

DXY = ∇XY + ω(X)Y + ω(Y )X − g(X,Y )E,

where ∇ denotes the Levi-Civita connection of g and E the dual vector field of ω

with respect to g. We refer to the vector field E as Einstein-Weyl vector field. The

pair (g, ω) induces the same Weyl connection as the pair (e2fg, ω+df), f ∈ C∞(M).

This implies that if the 1-form ω is closed, then the Weyl connection becomes locally

Riemannian connection. A Weyl manifold (M, [g], D) is said to be Einstein-Weyl if

there exists a smooth function Λ on M such that:

(2.2) SD(X,Y ) + SD(Y,X) = Λg(X,Y ).

Let Mn admit the Weyl structure (g, ω). Then the Ricci tensor SD of D and S of ∇

are connected by the following equation (see Higa [9]):

(2.3) SD(X,Y ) = S(X,Y )− (n− 1)(∇Xω)Y + (∇Y ω)X

+ (n− 2)ω(X)ω(Y ) + (δω − (n− 2)|E|2)g(X,Y ),

317



where δω is the co-differential of ω and |E| is the length of the vector field with

respect to g. Thus, if M admits an Einstein-Weyl structure, then by virtue of (2.2)

and (2.3) it follows that (see Higa [9])

(2.4) S(X,Y )−
n− 2

2
((∇Xω)Y + (∇Y ω)X) + (n− 2)ω(X)ω(Y ) = σg(X,Y )

for every part of vector fields X ,Y on M , where σ is a smooth function on M .

Moreover, if E vanishes, then M becomes Einstein, and the Einstein-Weyl structure

is said to be trivial (Einstein).

Recall that M admits a pair of Einstein-Weyl structures (g,±ω) if and only if the

following two equations hold for every part of vector fields X ,Y in M (Higa [9]):

(∇Xω)Y + (∇Y ω)X +
2

n
δωg(X,Y ) = 0,(2.5)

S(X,Y )−
r

n
g(X,Y ) =

n− 2

n
|E|2g(X,Y )− (n− 2)ω(X)ω(Y ),(2.6)

where r is the scalar curvature of g. Equation (2.5) shows that ω is conformal Killing

form. This structure enjoys a nice property when M is compact. In fact, Gaudu-

chon [6] proved that on a compact Weyl manifold, up to homothety, there is a unique

metric g0 in the conformal class [g] such that the corresponding 1-form ω0 is co-closed

(i.e. δω0 = 0). We shall refer to this metric as the Gauduchon metric. Moreover,

Pedersen and Swann [15] (see also Tod [20]) proved that on a compact Einstein-Weyl

manifold this co-closed 1-form becomes the dual of a Killing field. It turns out that

on every compact manifold one can split the Einstein-Weyl equation (2.4) into the

simplified Einstein-Weyl equation and the Killing dual field equation.

We now present the notion of an infinitesimal harmonic transformation on a Rie-

mannian manifold. By an infinitesimal harmonic transformation on a Riemannian

manifold (Mn, g) we mean a vector field V such that the local 1-parameter group

of infinitesimal point transformations generated by V forms a group of harmonic

transformations (see [17], [12], [18]). An interesting characterization of such vector

field was given by Stepanov-Shandra in [17]. They proved the following:

Theorem 2.1 (Stepanov-Shandra). A necessary and sufficient condition for a vec-

tor field V to be an infinitesimal harmonic transformation on a Riemannian manifold

(Mn, g) is that it satisfies ∆V = 2QV .

The operator ∆ is known as the Laplacian and is determined by the Weitzenbock

formula

∆V = ∇∗∇V +QV,
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where ∇∗ is the formal adjoint of ∇. The rough Laplacian ∆ of a vector field V is

defined by ∆V = − tr∇2V, where

(∇2V )(X,Y ) = ∇X∇Y V −∇∇XY V.

In terms of any local orthonormal frame field {ei}, we have

(2.7) ∆V =
∑

i

{∇∇ei
ei −∇ei∇ei}V.

It is well-known that ∆V = ∇∗∇V , and therefore ∆V = ∆V +QV. Some well-known

examples of infinitesimal harmonic transformations are as follows:

⊲ Any Killing vector field on a Riemannian manifold generates an infinitesimal har-

monic transformation (see [17]).

⊲ The potential vector field V of the Ricci soliton is necessarily an infinitesimal

harmonic transformation (see [18]).

⊲ The Reeb vector field ξ of a K-contact manifold is Killing, and hence it generates

an infinitesimal harmonic transformation (see [16]).

⊲ Any vector field V on a contact metric manifold M2n+1(ϕ, ξ, η, g) that leaves

the tensor ϕ invariant (i.e., £V ϕ = 0) is necessarily an infinitesimal harmonic

transformation (see [7]).

Next, we recall the notion of K-contact and Sasakian manifold. Let M be an odd

dimensional Riemannian manifold with (ϕ, ξ, η, g) as an almost contact metric struc-

ture, where

ϕ2X = −X + η(X)ξ, g(X, ξ) = η(X), g(ξ, ξ) = 1

for any vector field X . This structure is said to be contact metric if dη(X,Y ) =

g(X,ϕY ). If the vector field ξ (called the Reeb vector field) of the almost contact

metric structure (ϕ, ξ, η, g) is Killing, then M is said to be K-contact. Moreover,

this almost contact metric structure will be Sasakian if it satisfies

(∇Xϕ)Y = g(X,Y )ξ − η(X)Y

for any vector field X,Y on M . From the definition it follows that η ∧ (dη)n is

nonvanishing everywhere on M , which is also the volume form of M . In other

words, a contact metric manifold M(ϕ, ξ, η, g) is Sasakian if and only if the metric

cone C(M)(dr2 + r2g, d(r2η)) is Kaehler. A Sasakian manifold is K-contact, but

the converse is not true, except in dimension 3. A contact metric manifold M of

dimension (2n + 1) is said to be η-Einstein in the wider sense, if there exist two

functions α, β such that the Ricci tensor can be expressed as

S(X,Y ) = αg(X,Y ) + βη(X)η(Y ).
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It is well-known (Okumura [13]) that α and β are constant ifM isK-contact manifold

of dimension at least 5. For details about contact manifolds and Sasakian geometry

we refer to Blair [2] and Boyer-Galicki [3].

3. Einstein-Weyl structures with constant scalar curvature

Theorem 3.1. Let M be a connected Riemannian manifold admitting a pair of

nontrivial Einstein-Weyl structures (g,±ω). If the scalar curvature ofM is constant,

then the vector field E is Killing.

P r o o f. Let us suppose that M admits a pair of Einstein-Weyl structures

(g,±ω). Then from (2.6) we have

(3.1) S(X,Y ) = fg(X,Y )− (n− 2)ω(X)ω(Y ),

where

(3.2) f =
r + (n− 2)|E|2

n
.

Covariant differentiation of (3.1) along Z gives

(∇ZS)(X,Y ) = (Zf)g(X,Y )− (n− 2){ω(X)(∇Zω)Y + ω(Y )(∇Zω)X}.

Taking cyclic sum over {X,Y, Z} and recalling (2.5) we get

(3.3)
⊕

X,Y,Z

{

(∇ZS)(X,Y )− (Zf)g(X,Y )−
2(n− 2)δω

n
ω(Z)g(X,Y )

}

= 0,

where
⊕

X,Y,Z

denotes the cyclic sum over X,Y, Z. Contracting (3.3) over Y and Z

provides

(3.4)
2

n+ 2
(Xr) = (Xf) +

2(n− 2)δω

n
ω(X).

Using (3.4) in (3.3) and recalling the hypothesis that the scalar curvature r is con-

stant, we get
⊕

X,Y,Z

(∇ZS)(X,Y ) = 0.

We now rewrite the equation (3.1) as

(3.5) S(X,Y ) = fg(X,Y ) + bν(X)ν(Y ),
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where b = −(n − 2)|E|2, ν(X) = g(X,V ) and V (= E/|E|) is a unit vector field.

Next, we differentiate (3.5) along an arbitrary vector field Z to obtain

(3.6) (∇ZS)(X,Y ) = (Zf)g(X,Y ) + (Zb)ν(X)ν(Y )

+ b{ν(Y )g(∇Zν)X + ν(X)g(∇Zν)Y }.

Taking cyclic sum over {X,Y, Z} and then recalling that the Ricci tensor is cyclic

parallel, the foregoing equation leads to

(3.7)
⊕

X,Y,Z

[(Zf)g(X,Y )+(Zb)ν(X)ν(Y )+b{ν(Y )g(∇Zν)X+ν(X)g(∇Zν)Y }] = 0.

Setting Y = Z = V in (3.7) we deduce that

(3.8) 2b(∇V ν)X +Xf +Xb+ 2(V f + V b)ν(X) = 0.

From (3.2) and since the scalar curvature is constant, we have

(3.9) n(Xf) +Xb = 0.

Further, contracting (3.7) over Y , Z and remembering the fact that r is constant,

we find

(3.10) Xf + (V b)ν(X) + b(∇V ν)X − bν(X)δν = 0.

On the other hand, putting X = V in (3.8) gives V f + V b = 0. Combining this

with (3.9) shows that V f = V b = 0. Moreover, putting X = V in (3.10) and using

the last equation we find that bδν = 0. By virtue of this and V b = 0, equation (3.10)

provides Xf+b(∇V ν)X = 0. Using this and V f = V b = 0, it follows from (3.8) that

Xb−Xf = 0 and hence, by virtue of (3.9), we ultimately conclude thatXf = 0 = Xb.

Consequently, the functions f and b are constant on M . This implies that |E|2 is

constant on M . Therefore from (2.5) we deduce

1

n
δω|E|2 = −g(∇EE,E) = 0.

Since |E|2 is constant, we have either |E|2 = 0, or |E|2 6= 0. By hypothesis, the

former is not possible while the latter implies that E is Killing. This completes the

proof. �
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E x am p l e 3.1. We shall now exhibit an example which satisfies the hypothesis

and conclusion of Theorem 5.1. It is known that any unit sphere S2n+1 with standard

contact metric admits K-contact (Sasakian) structure (e.g. see [2]). Since the unit

sphere S2n+1 is of constant sectional curvature 1, it is also Einstein. Following

Tanno [19], one can deform the metric of the unit sphere so that the resulting metric

will be η-Einstein. For this we set

g = ag + a(a− 1)η ⊗ η, η = aη, ξ̄ =
1

a
ξ, ϕ = ϕ

for a positive constant a. Here, we choose 0 < a < 1. Then

g =
1

a
g +

1

a

(1

a
− 1

)

η ⊗ η.

Applying this D-homothetic deformation, one can prove that the Ricci tensor S

satisfies (see [19])

S(X,Y ) =
1

a
[2(n− a+ 1)g + 2(a− 1)(n+ 1)]η(X)η(Y ),

which shows that the Sasakian structure (ϕ, ξ̄, η, g) is η-Einstein (but not of

constant curvature) with constant scalar curvature and α = 2(n− a+ 1)/a,

β = 2(a− 1)(n+ 1)/a. By a suitable choice of the D-homothetic constant a (e.g.,

a = 4/5), it can be shown that the deformed sphere metric admits a pair of Einstein-

Weyl structures with E = 2ξ̄(a− 1)(n+ 1)/a (as β < 0, for details see [4]). In this

case, E is nonzero and the deformed sphere metric has constant scalar curvature.

Moreover, the Einstein-Weyl vector field E is also Killing.

4. Infinitesimal harmonic transformations and

Einstein-Weyl structures

In this section, we study a pair of Einstein-Weyl structures when its Einstein-Weyl

vector field E generates an infinitesimal harmonic transformation. It is well known

(see [15]) that for a compact Einstein-Weyl manifold with Gauduchon metric, the

Einstein-Weyl vector field E is Killing. Therefore, using the formula (which holds

for every Killing vector field) (see page 24 of [21])

∇X∇Y E −∇∇XY E = R(X,E)Y,

and recalling the definition of rough Laplacian, we deduce ∆E = QE. Making use

of this in the Weitzenbock formula

∆E = ∆E +QE
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provides∆E = 2QE. This shows that E is an infinitesimal harmonic transformation.

Thus, we have the following:

Proposition 4.1. Let (M, g) be a compact Riemannian manifold. If g represents

a Gauduchon metric, then the Einstein-Weyl vector field E generates an infinitesimal

harmonic transformation.

In fact, any Killing vector field on a Riemannian manifold generates an infinitesi-

mal harmonic transformation (e.g. see [18]). So one may ask whether the last result

is valid for a Riemannian manifold admitting a pair of Einstein-Weyl structures.

Precisely we have:

Theorem 4.1. Let (Mn, g), n > 3 be a complete and connected Riemannian

manifold admitting a pair of Einstein-Weyl structure (g,±ω). Then the Einstein-

Weyl vector field E generates an infinitesimal harmonic transformation if and only

if E is Killing.

P r o o f. SinceM admits a pair of Einstein-Weyl structures, it follows from (2.5)

that the vector field E is conformal Killing. That is, £Eg = 2̺g, where ̺ = −δω/n.

First, we prove that a conformal Killing field gives rise to an infinitesimal harmonic

transformation if and only if ̺ (= −δω/n) is constant. Now, for a conformal vector

field we know that (see Yano [21])

(4.1) (£E∇)(X,Y ) = (X̺)Y + (Y ̺)X − g(X,Y )D̺,

where D is the gradient operator. Thus, using the identity (see [21])

(£E∇)(X,Y ) = ∇X∇Y E −∇∇XY E −R(X,E)Y

in (4.1), we receive

(4.2) ∇X∇Y E −∇∇XY E − R(X,E)Y = (X̺)Y + (Y ̺)X − g(X,Y )D̺.

At this point, we take an orthonormal frame {ei : i = 1, 2, . . . , n} and then replace

X and Y by ei in (4.2) to achieve

(4.3) ∆E −QE = (n− 2)D̺.

Now suppose that E generates an infinitesimal harmonic transformation. Then

∆E = 2QE. Using this in the Weitzenbock formula gives ∆E = QE. There-

fore (4.3) shows that D̺ = 0, i.e. ̺ is constant on M . Conversely, if ̺ is constant,
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then from (4.3) and Weitzenbock formula it follows that E generates an infinitesimal

harmonic transformation. To complete the proof we must show that ̺ is actually

zero. Now, (3.4) can be written as

d
(

r −
(n+ 2)

2
f
)

= (n+ 2)̺ω.

Applying d to this equation and using d2 = 0, we find ̺dω = 0. Since ̺ is constant,

we have either ̺ = 0, or ̺ 6= 0. First, suppose that ̺ 6= 0, then ω is closed, i.e.

g(∇XE, Y )− g(∇Y E,X) = 0. In view of this, (2.5) provides

(4.4) ∇XE = ̺X.

Making use of this in (4.2) and noting that ̺ is constant, we have R(X,Y )E = 0.

This gives S(Y,E) = 0. By virtue of this, (3.1) implies (f − (n − 2)|E|2)|E|2 = 0.

If E = 0, then as £Eg = 2̺g, we see that ̺ = 0. This leads to a contradiction.

Hence f = (n − 2)|E|2. Differentiating this along an arbitrary vector field X and

recalling (4.4) yields

Xf = 2(n− 2)g(∇XE,E) = 2(n− 2)̺g(X,E),

from which it follows that Df = 2(n − 2)̺E. Again, differentiating this and us-

ing (4.4) shows that

(4.5) ∇XDf = 2(n− 2)̺2X.

This shows that M admits a special concircular field f = (n − 2)|E|2. Since M is

complete and ̺ 6= 0, applying a result of Ishihara [10], we can conclude that M is

locally isometric to the Euclidean space. Hence R = 0 and this implies S = 0. As

a consequence, (3.1) entails that fg(X,Y ) − (n − 2)ω(X)ω(Y ) = 0. Tracing this

yields nf − (n− 2)|E|2 = 0. Combining this with f = (n− 2)|E|2, we observe that

f = (n − 2)|E|2 = 0. Again we arrive at a contradiction. Thus the only possibility

is that ̺ = 0, and hence E is Killing. This completes the proof. �

A c k n ow l e d g em e n t. The author is very much thankful to the reviewer for

some valuable comments.
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