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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 4 , P AGES 5 8 9 – 6 0 6

EVENT-TRIGGERED OBSERVER-BASED TRACKING
CONTROL FOR LEADER-FOLLOWER MULTI-AGENT
SYSTEMS

Pengxiao Zhang and Jinhuan Wang

This paper considers the consensus tracking problem for a class of leader-follower multi-agent
systems via event-triggered observer-based control. In our set-up, only a subset of the followers
can obtain some relative information on the leader. Assume that the leader’s control input is
unknown for the followers. In order to track such a leader, we design two novel event-triggered
observer-based control strategies, one centralized and the other distributed. One can prove that
under the proposed control strategies, the tracking problem can be solved if the communication
graph of the agents is connected. Furthermore, the Zeno-behavior of triggering time sequences
can be avoided. Finally, a numerical example is given to illustrate the effectiveness of the
obtained theoretical results.

Keywords: multi-agent systems, event-triggered control, leader-follower, observer
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1. INTRODUCTION

With the rapid development of communication technology, digital sensors and micropro-
cessors, multi-agent systems have attracted considerable attention from various fields. A
critical issue for multi-agent systems is how the dynamic characteristic of the agents and
the topology structure of the systems affect the collective behaviors, such as consensus
[5], formation [16], flocking [10]. Leader-follower consensus is one of the most interesting
behaviors which requires all followers will track the leader eventually. This issue has
received the most attention and related results can be found in [4, 6, 11, 19] and the
references therein, to name a few.

Traditional control strategies include continuous control [17] and sampling control
[15]. Continuous controller needs to be updated continuously, which may lead to large
communication load. For the sake of reducing the update frequency, sampling control
strategy is often considered, in which the controller is updated in a constant period T ,
independently from the state of the system. Periodic sampling control can save resources
to some extent. However, it seems “inefficient” since it preforms regularly regardless of
fluctuation of the states.
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In practice, the agents are often equipped with a small embedded micro processor
which has limited storage resources and communication bandwidth. These limitations
have resulted in a novel interest in event-based control for multi-agent systems, in which
the control is executed only when necessary rather than periodically. Event-triggered
control is becoming a hot field in control theory in recent years. For example, an effec-
tive event-triggered control strategy is introduced in [14]. The control actuation times
are determined by an event-triggering function which depends on the measurement er-
ror. When the error reaches the designed threshold, the event is triggered. In [1], both
the centralized and distributed event-triggered controls for single integrator model are
discussed. A new combinational measuring method is proposed in [2], in which the
measurement error of each agent not only depends on its own state, but also those
of its neighbors. In [7], the problem of leader-follower tracking control with commu-
nication delays is studied. The velocity of the leader is unknown for all the followers
and an observer-based consensus tracking control is considered. Recently, several event-
triggered control laws have been proposed for second-order multi-agent systems in such
as [8, 13, 20, 21]. On the basis of [7, 8] considers the leader-follower tracking problem
for a second-order dynamic model with an active leader. An observer-based control is
designed and then is applied to the event-triggered tracking problem. Yan et al. develop
a consensus control under a weighted directed network topology [21]. Furthermore, the
event-triggered control for linear systems is also considered [9, 12, 23, 24, 25, 26], such
as the event-triggered control for nonlinear systems [9], the event-based dynamic output
feedback [23], the event-triggered control and observer for the tracking problem [24], the
event-based control with time delay [26].

Following our previous work [18], in this paper, we consider the tracking problem for
a class of leader-follower multi-agent systems. Different from the existing results, in this
paper, the control input ul = Alxl + bl of the leader is not known to all the followers
and Al can be of any form, which allows the state variables of the leader coupled. With
different Al that is known to the followers, the leader can move along different trajecto-
ries. The contributions of this work are three-fold: 1) To track the leader, a distributed
observer is first constructed for each follower to estimate the control input of the leader,
based on which a distributed feedback controller is designed. 2) Compared with our
previous work [18] on which this paper is based, significant improvement is that this
paper focuses on the event-triggered control. Both the observer and the controller for
each follower are in an event-triggered way in the sense that they are updated when the
triggering condition is satisfied. Both the centralized and distributed event-triggered
feedback controllers are designed for each follower, respectively. By using the proposed
event-triggered observer-based controller, the tracking problem can be solved if the un-
derlying adjacency graph of the system is connected. 3) It is further shown that the
Zeno phenomena can be avoided in the event-triggered scheme. One can prove that two
adjacent inter-execution instants have a positive lower bound.

The remainder of this paper is organized as follows. Section 2 introduces some con-
cepts on algebraic graph theory and the system model considered in this paper. The
centralized event-triggered control design and convergence analysis are presented in Sec-
tion 3, and then Section 4 shows the distributed event-triggered control. An example is
given in Section 5 to validate the theoretical results. Section 6 is the conclusions.
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2. PROBLEM STATEMENT

This paper considers the tracking problem of multi-agent systems with N followers and
one leader moving on the plane. The topology relationship of the followers and the
leader can be described by a graph Ḡ. We assume the information transfer between
followers is undirected (denoted by an undirected graph G), while the agents in graph
G is connected to the leader by directed edges, that is, the information can only be
transferred from leader to followers (refer to Figure 1).

The undirected graph G = (V, ε, A) consists of a vertex set V = {v1, v2, . . . , vN}
denoting N agents and an edge set ε ⊆ V × V . Two nodes i and j are adjacent or
neighbors if (i, j) ∈ ε. The graph G is called connected if there is a path between any two
nodes in G. The neighbors set of agent i at time t is denoted by Ni(t) = {j ∈ V |(i, j) ∈
ε}. A = (aij)N×N is the weighted adjacency matrix of the undirected graph G, where
aii = 0 and aij = aji ≥ 0. aij > 0 if and only if (i, j) ∈ ε. D = diag{d1, d2, . . . , dN}
is the degree matrix of graph G, where di =

∑
j∈Ni

aij is the degree of agent i. The
Laplacian matrix L with respect to graph G is defined as

L = D −A (1)

The graph Ḡ is said to be connected if at least one agent in each component of graph
G is connected to the leader by a directed edge [6]. Note that graph Ḡ is connected
does not mean graph G is also connected. Define ∆ = diag{α1, . . . , αN} as the leader
adjacency matrix associated with graph Ḡ, where αi > 0 if the leader is a neighbor
of agent i (that is, there is a directed edge from agent i to the leader) and otherwise,
αi = 0.

Denote 1 = [1, 1, . . . , 1]T ∈ RN . The following two lemmas are very useful in the
theoretical analysis.

Lemma 2.1. (Godsil and Royle [3]) For an undirected graph, L is a symmetric and
positive semi-definite matrix. Since each row sum of L is zero, L has a zero eigenvalue
associated with the eigenvector 1, i. e., L1 = 0. Moreover, if the graph is connected, L
has only one zero eigenvalue and all the other eigenvalues are positive.

Lemma 2.2. (Hong et al. [6]) If graph Ḡ is connected, then the symmetric matrix
H = L+ ∆ associated with Ḡ is positive definite.

In this paper, the dynamics of each follower is

ẋi = ui, i = 1, . . . , N, (2)

where xi ∈ R2 is the state and ui ∈ R2 is the control input of the ith follower, i =
1, . . . , N .

The dynamics of the leader is
ẋl = ul, (3)

where xl = [x1l, x2l]T , ul ∈ R2 are the state and control input, respectively. For simplic-
ity, we choose

ul = Alxl + bl, (4)
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where Al ∈ R2×2, bl = [b1l, b2l]T ∈ R2×1 can be any matrix such that the leader can
move along different trajectories.

To track the leader, ui is designed only by the relative information between itself and
its neighbors. In our problem, ul is not known to any follower even if it is connected
to the leader during the tracking process. In this case, we have to estimate ul(t) for
each follower. An observer-based tracking control is designed by using their neighbors’
information. The estimated value of ul(t) by follower i is denoted by ûil(t) = Alx̂

i
l(t) +

bl, i = 1, . . . , N .

Remark 2.1. In some sense, Al and bl denote the shape and the translation of the
leader’s trajectory, respectively. We assume that Al and bl are known to each agent,
which means each follower may know the shape of the leader’s trajectory, but not the
initial value. In fact, it is necessary to know the shape of the target’s trajectory in the
tracking problem.

In this paper, the control is constructed based on event-triggering strategies. For
system (2) – (3), both centralized and distributed event-triggered control protocols are
investigated in the sequel.

3. CENTRALIZED EVENT-TRIGGERED CONTROL APPROACH

This section is devoted to solve the tracking problem with a centralized event-triggered
control strategy for system (2). In this case, all the agents update their control simulta-
neously. Assume that the time sequence of event triggering is t0 = 0, t1, . . . , tk, . . ., and
tk denotes the kth event instant of the system.

In event-triggered control, actuation times are determined by the event-triggering
condition which depends on the measurement error. In this section, we consider the
combinational measurement

qi(t) =
∑
j∈Ni

aij(xi(t)− xj(t)) + αi(xi(t)− xl(t)). (5)

At time tk, agent i measures the information of qi(t) and will keep it unchanged until
the next time tk+1 comes. Therefore, in the interval [tk, tk+1) the measurement of agent
i is qi(tk). Based on (5), the measurement error is defined as

ei(t) = qi(tk)− qi(t), t ∈ [tk, tk+1). (6)

With the stack vectors e(t) = [e1(t), . . . , eN (t)]T and x(t) = [x1(t), . . . , xN (t)]T , the
event-triggering condition is defined as f(e(t), x(t)) = 0, where the trigger function
f(e, x) will be determined later. As soon as the measurement error reaches the designed
value, an event for the system is triggered. At the same time, each agent will send their
states to their neighbors and the controller is updated.

Based on the measurement of qi(tk), for t ∈ [tk, tk+1), we propose the event-based
control input for agent i as follows

ui(t) = −Kqi(tk) +Alx̂
i
l(t) + bl, (7)
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and the observer
˙̂xil(t) = −Klqi(tk) +Alx̂

i
l(t) + bl, (8)

where the gain matrices K,Kl ∈ R2×2 need to be determined later. x̂il(t) is the estimate
value of xl(t) by agent i, i = 1, . . . , N .

Define the variables x̄i(t) = xi(t) − xl(t) and x̃i(t) = x̂il(t) − xl(t), denoting the
tracking error and estimation error of agent i, i = 1, . . . , N , respectively. The control
aim is to find appropriate gain matrices K and Kl such that the dynamic tracking
problem is solved and at the same time all ûil will converge to ul, that is,

x̄i → 0, ûil − ul = Alx̃i → 0, i = 1, . . . , N. (9)

Associate with (6), (7) and (8), we have the following error closed-loop system{
˙̄xi(t) = Alx̃i(t)−K[qi(t) + ei(t)]
˙̃xi(t) = Alx̃i(t)−Kl[qi(t) + ei(t)].

(10)

By defining the stack vectors

x̄(t) = [x̄1(t), . . . , x̄N (t)]T , x̃(t) = [x̃1(t), . . . , x̃N (t)]T , (11)

we have {
˙̄x(t) = (IN ⊗Al)x̃(t)− (H ⊗K)x̄(t)− (IN ⊗K)e(t)
˙̃x(t) = (IN ⊗Al)x̃(t)− (H ⊗Kl)x̄(t)− (IN ⊗Kl)e(t),

(12)

where H = L + ∆, L is the Laplacian matrix of graph G defined in (1) and ∆ is the
leader adjacency matrix of graph Ḡ defined in Section 2. ⊗ is the Kronecker product.

Since H is symmetric for the undirected graph G, there is an orthogonal matrix T
such that

THTT = Λ = diag{λ1, λ2, . . . , λN} (13)

is diagonal, where λi, i = 1, . . . , N , are the eigenvalues of H. By Lemma 2.2, if graph
Ḡ is connected, all λi > 0.

By the orthogonal transformation

ˆ̄x = (T ⊗ I2)x̄, ˆ̃x = (T ⊗ I2)x̃, ê = (T ⊗ I2)e, (14)

the system (12) can be rewritten as{ ˙̄̂x(t) = (IN ⊗Al)ˆ̃x(t)− (Λ⊗K)ˆ̄x(t)− (IN ⊗K)ê(t)
˙̃̂
x(t) = (IN ⊗Al)ˆ̃x(t)− (Λ⊗Kl)ˆ̄x(t)− (IN ⊗Kl)ê(t),

(15)

or the matrix style [
˙̄̂x
˙̃̂
x

]
=
[−Λ⊗K IN ⊗Al
−Λ⊗Kl IN ⊗Al

] [
ˆ̄x
ˆ̃x

]
−
[
IN ⊗K
IN ⊗Kl

]
ê. (16)
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The corresponding decoupled subsystems are[
˙̄̂xi
˙̃̂
xi

]
=
[−λiK Al
−λiKl Al

] [
ˆ̄xi
ˆ̃xi

]
−
[
K
Kl

]
êi, i = 1, . . . , N. (17)

Denote λmin = min{λi, i = 1, . . . , N} the smallest eigenvalue of the matrix H, then
by Lemma 2.2, if the adjacency graph Ḡ is connected, λmin > 0. The special norm of
a matrix A ∈ Rm×n is defined as ||A|| = max1≤i≤n

√
λi(ATA), where λi(ATA) are the

eigenvalues of ATA. Then we have the following main result.

Theorem 3.1. Consider the leader-follower multi-agent systems (2) and (3). Assume
the adjacency graph Ḡ is connected. Choose Kl = K + ATl and K = δ

λmin
I2, where

δ ≥ 4‖Al‖+ 1. Then the dynamic consensus tracking problem can be solved and at the
same time all ûil converge to ul asymptotically by the event-triggered control law (7)
and the observer (8) with the following event-triggering condition

‖ê‖ ≤ λmin

2σ
‖ˆ̄xλ‖2, (18)

where ê is defined in (14), σ = max{‖ˆ̄x‖, ‖ˆ̃x‖} and ‖ˆ̄xλ‖ = min{‖ˆ̄xi‖, i = 1, . . . , N}.
Furthermore, the event times can be written as

t0 = 0, tk+1 = inf{t | t > tk, ‖ê‖ ≥ λmin

2σ
‖ˆ̄xλ‖2}, k ∈ N.

P r o o f . By the above analysis, one needs to prove that ˆ̄xi → 0 and Al ˆ̃xi → 0.
Consider the system (16) (or (17)), construct the candidate Lyapunov function V =∑N
i=1 Vi with

Vi = ˆ̄xTi ˆ̄xi +
1
λi

(ˆ̄xi − ˆ̃xi)T (ˆ̄xi − ˆ̃xi).

Then V is positive definite and the time derivative of Vi along each subsystem (17) is

V̇i =ˆ̄xTi (−2λiK − 2K + 2Kl)ˆ̄xi

+ ˆ̄xTi (2Al + 2KT − 2KT
l )ˆ̃xi

+ ˆ̄xTi (−2K − 2
λi
K +

2
λi
Kl)êi + ˆ̃xTi

(
2
λi
K − 2

λi
Kl

)
êi.

By choosing Kl = K +ATl , we get

V̇i =ˆ̄xTi (−2λiK + 2ATl )ˆ̄xi + ˆ̄xTi

(
−2K +

2
λi
ATl

)
êi

+ ˆ̃xTi (− 2
λi
ATl )êi

≤ˆ̄xTi (−2λiK)ˆ̄xi + 2‖Al‖ˆ̄xTi ˆ̄xi + 2‖ˆ̄xi‖‖K‖‖êi‖
+

2
λi
‖ˆ̄xi‖‖Al‖‖êi‖+

2
λi
‖ˆ̃xi‖‖Al‖‖êi‖.
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By enforcing the triggering condition (18), one has

‖êi‖ ≤ ‖ê‖ ≤ λmin

2σi
ˆ̄xTi ˆ̄xi, (19)

where σi = max{‖ˆ̄xi‖, ‖ˆ̃xi‖}, and

V̇i ≤ˆ̄xTi (−2λiK)ˆ̄xi + 2‖Al‖ˆ̄xTi ˆ̄xi
+ λmin‖K‖ˆ̄xTi ˆ̄xi + 2‖Al‖ˆ̄xTi ˆ̄xi. (20)

Choose K = δ
λmin

I2 with δ ≥ 4‖Al‖+ 1, then inequality (20) further becomes

V̇i ≤ ˆ̄xTi (
−2λiδ
λmin

I2)ˆ̄xi + 4‖Al‖ˆ̄xTi ˆ̄xi + δ ˆ̄xTi ˆ̄xi

≤ −(δ − 4‖Al‖)ˆ̄xTi ˆ̄xi
≤ −ˆ̄xTi ˆ̄xi.

Hence,

V̇ =
N∑
i=1

V̇i ≤ −‖ˆ̄x‖2 ≤ 0.

By the LaSalle’s invariance principle, the solution of the system (16) will converge to
the largest invariant set contained in the set {ˆ̄x, ˆ̃x ∈ R2N | V̇ = 0}. From V̇ = 0, we have
ˆ̄x = 0 and then x̄ = 0 from (14). By the definition of the measurement error (6), one
has e = 0 and ê = 0. Associated with the system (16), we can obtain that the largest
invariant set of the set {ˆ̄x, ˆ̃x ∈ R2N | V̇ = 0} is {ˆ̄x, ˆ̃x ∈ R2N | ˆ̄x = 0, (IN ⊗ Al)ˆ̃x = 0},
which implies the conclusion. �

Under the above control protocol, the inter-event times {tk+1 − tk, k ∈ N} are lower
bounded by a positive number. This guarantees that there is no Zeno phenomenon. It
is proved in the following theorem.

Theorem 3.2. Under the condition of Theorem 3.1, in the centralized event-triggered
control (7), there is no Zeno behavior. That is, the inter-event times are lower bounded
by a positive time τ ≥ µ

a2+abµ > 0, where µ = λmin
2 > 0 since the graph Ḡ is connected,

a = max{λmax, ‖Al‖M + ‖Λ ⊗K‖} with M > 0 and b = max{1, ‖K‖}, λmin and λmax

are the smallest and the largest eigenvalues of the matrix H, respectively.

P r o o f . By the definition (6), the stack vector is e(t) = q(tk)−q(t), t ∈ [tk, tk+1), then
e(tk) = 0. From the triggering condition (18), one has ‖ê‖ ≤ λmin

2 ‖ˆ̄x‖. Therefore, the
range of ‖ê(t)‖‖ˆ̄x(t)‖ between two adjacent events is from 0 to µ = λmin

2 .
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Let y(t) = ‖ê(t)‖
‖ˆ̄x(t)‖ , similar to [22], the time derivative of y satisfies

ẏ =(
‖ê‖
‖ˆ̄x‖ )

′
= (

(êT ê)
1
2

(ˆ̄xT ˆ̄x)
1
2

)
′

=
(êT ê)−

1
2 ˙̂eT ê‖ˆ̄x‖ − (ˆ̄xT ˆ̄x)−

1
2 ˙̄̂xT ˆ̄x‖ê‖

(‖ˆ̄x‖)2

=
‖ê‖−1 ˙̂eT ê‖ˆ̄x‖ − ‖ˆ̄x‖−1 ˙̄̂xT ˆ̄x‖ê‖

(‖ˆ̄x‖)2

=
˙̂eT ê
‖ê‖‖ˆ̄x‖ − y

˙̄̂xT ˆ̄x
(‖ˆ̄x‖)2

≤‖
˙̂e‖‖êT ‖
‖ê‖‖ˆ̄x‖ + y

‖ ˙̄̂x‖‖ˆ̄xT ‖
(‖ˆ̄x‖)2

=
‖ ˙̂e‖
‖ˆ̄x‖ + y

‖ ˙̄̂x‖
‖ˆ̄x‖ .

By the definition e(t) = q(tk)− q(t) and ê(t) = (T ⊗ I2)e(t), one has

ê(t) = (T ⊗ I2)e = (T ⊗ I2)(q(tk)− q(t)),
˙̂e(t) = −(T ⊗ I2)q̇(t) = −(T ⊗ I2)(H ⊗ I2) ˙̄x(t)

= −(T ⊗ I2)(H ⊗ I2)(T−1 ⊗ I2) ˙̄̂x(t)

= −(Λ⊗ I2) ˙̄̂x(t).

Then, ‖ ˙̂e‖ ≤ λmax‖ ˙̄̂x‖ and ‖
˙̂e‖
‖ˆ̄x‖ ≤ λmax

‖ ˙̄̂x‖
‖ˆ̄x‖ . From (15), we get

‖ ˙̄̂x‖ ≤ ‖Al‖‖ˆ̃x‖+ ‖Λ⊗K‖‖ˆ̄x‖+ ‖K‖‖ê‖.
From the above inequality, it is easy to see that ‖ˆ̄x‖ can not converge to 0 unless
‖ˆ̃x‖ converges to 0. Therefore, there exists a finite positive number M > 0 such that
‖ˆ̃x‖
‖ˆ̄x‖ < M . We have

ẏ ≤ (λmax + y)(‖Al‖M + ‖Λ⊗K‖+ ‖K‖y)

≤ (a+ by)2,

where a = max{λmax, ‖Al‖M + ‖Λ⊗K‖} and b = max{1, ‖K‖}. Then the solution y(t)
with the initial condition y(0) = 0 satisfies y(t) ≤ φ(t, φ0), where φ(t, φ0) is the solution
of

φ̇(t) = (a+ bφ(t))2. (21)

Note that the minimal time τ between two adjacent events is given by the time it
takes for y(t) to evolve from the value 0 to µ. Then the time τ is no smaller than the
time τφ for φ(t) evolving from 0 to µ. The solution φ(t) of (21) with the initial condition
φ(0) = 0 is given by φ(t) = −a2t

−1+abt . Therefore, τφ = µ
a2+abµ > 0 and τ ≥ τφ > 0, which

shows that the time interval between two adjacent events is lower bounded. �
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4. DISTRIBUTED EVENT-TRIGGERED CONTROL APPROACH

In the centralized event-triggered control, the triggering condition depends on all the
agents’ states and the triggering times for all agents are the same, which obviously causes
unnecessary communication cost. In this section, we consider the distributed event-
triggered control approach where the event-triggered instants are different for each agent.
The distributed event-triggering strategy assigns each agent to update its own control
input. The sequence of event-triggered instants for agent i is denoted by {ti0, ti1, . . .},
and tik denotes the kth event time of agent i. The measurement error for agent i is given
by

ei(t) = xi(tik)− xi(t), t ∈ [tik, t
i
k+1). (22)

The distributed control input of agent i is designed as

ui(t) = −K
∑
j∈Ni

aij(xi(tik)− xj(tjk′(t))) + αi(xi(tik)− xl(t))
+Alx̂

i
l(t) + bl,

t ∈ [tik, t
i
k+1), (23)

where k′(t) = argminl∈N:t≥tjl
{t − tjl }. For each t ∈ [tik, t

i
k+1), tjk′(t) is the latest event-

triggered instant of agent j. Thus we have ej(t) = xj(t
j
k′(t)) − xj(t), t ∈ [tik, t

i
k+1).

That is, the control law for each agent depends on itself and its neighbors’ latest event-
triggering instant. And at the same time the distributed observer is designed as

˙̂xil(t) = −Kl[
∑
j∈Ni

aij(xi(tik)− xj(tjk′(t))) + αi(xi(tik)− xl(t))] +Alx̂
i
l(t) + bl,

t ∈ [tik, t
i
k+1). (24)

Applying the measurement error (22), the control law (23) and the observer (24) can
be rewritten as

ui(t) = −K
∑
j∈Ni

aij(xi(t)− xj(t) + ei(t)− ej(t)) + αi(xi(t) + ei(t)− xl(t))


+Alx̂il(t) + bl (25)

and

˙̂xil(t) = −Kl

∑
j∈Ni

aij(xi(t)− xj(t) + ei(t)− ej(t)) + αi(xi(t) + ei(t)− xl(t))


+Alx̂il(t) + bl. (26)

Set x̄i(t) = xi(t)− xl(t) and x̃i(t) = x̃il(t)− xl(t). Associating with (25) and (26), we
have the following error closed-loop system{

˙̄x(t) = −(H ⊗K)x̄(t)− (H ⊗K)e(t) + (IN ⊗Al)x̃(t)
˙̃x(t) = −(H ⊗Kl)x̄(t)− (H ⊗Kl)e(t) + (IN ⊗Al)x̃(t).

(27)
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By the same orthogonal transformation as (14),

ˆ̄x = (T ⊗ I2)x̄, ˆ̃x = (T ⊗ I2)x̃, ê = (T ⊗ I2)e,

the system (27) can be rewritten as follows{ ˙̄̂x(t) = −(Λ⊗K)ˆ̄x(t)− (Λ⊗K)ê(t) + (IN ⊗Al)ˆ̃x(t)
˙̃̂
x(t) = −(Λ⊗Kl)ˆ̄x(t)− (Λ⊗Kl)ê(t) + (IN ⊗Al)ˆ̃x(t),

(28)

that is, [
˙̄̂x
˙̃̂
x

]
=
[−Λ⊗K IN ⊗Al
−Λ⊗Kl IN ⊗Al

] [
ˆ̄x
ˆ̃x

]
−
[

Λ⊗K
Λ⊗Kl

]
ê. (29)

The corresponding decoupled subsystems are[
˙̄̂xi
˙̃̂
xi

]
=
[−λiK Al
−λiKl Al

] [
ˆ̄xi
ˆ̃xi

]
−
[
λiK
λiKl

]
êi, i = 1, . . . , N. (30)

Then we have

Theorem 4.1. For the leader-follower multi-agent systems (2) and (3), assume the
adjacency graph Ḡ is connected. Then by choosing Kl = K+ATl and K = δI2 with δ ≥

1
λmin

(4‖Al‖+ 1), the tracking problem is solved and at the same time all ûil converge to
ul asymptotically with the distributed event-triggered control law (25) and the observer
(26). In addition, the event-triggering condition is designed as

‖êi‖ ≤ ‖
ˆ̄xi‖2
2σi

, i = 1, . . . , N, (31)

where êi and ˆ̄xi are the components of vector ê and ˆ̄x defined in (14), respectively.
σi = max{‖ˆ̄xi‖, ‖ˆ̃xi‖}.

P r o o f . Take a Lyapunov function candidate V =
∑N
i=1 Vi with

Vi = ˆ̄xTi ˆ̄xi +
1
λi

(ˆ̄xi − ˆ̃xi)T (ˆ̄xi − ˆ̃xi).

The derivative of Vi along each subsystem (30) is

V̇i =ˆ̄xTi (−2λiK − 2K + 2Kl)ˆ̄xi

+ ˆ̄xTi (2Al + 2KT − 2KT
l )ˆ̃xi

+ ˆ̄xTi (−2λiK − 2K + 2Kl)êi

+ ˆ̃xTi (2K − 2Kl)êi.

Choose Kl = K +ATl , then

V̇i =ˆ̄xTi (−2λiK + 2ATl )ˆ̄xi
+ ˆ̄xTi (−2λiK + 2ATl )êi

+ ˆ̃xTi (−2ATl )êi.
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By enforcing the triggering condition (31) and choosing K = δI2 with δ ≥ 1
λmin

(4‖Al‖+
1), one has

V̇i ≤ˆ̄xTi (−2λiK)ˆ̄xi + λi‖K‖ˆ̄xTi ˆ̄xi + 4‖Al‖ˆ̄xTi ˆ̄xi
=− 2λiδ ˆ̄xTi ˆ̄xi + λiδ ˆ̄xTi ˆ̄xi + 4‖Al‖ˆ̄xTi ˆ̄xi
≤− (λminδ − 4‖Al‖)ˆ̄xTi ˆ̄xi
≤− ˆ̄xTi ˆ̄xi,

which implies

V̇ =
N∑
i=1

Vi ≤ −‖ˆ̄x‖2 ≤ 0.

By the LaSalle’s invariance principle, similar to the analysis of Theorem 3.1. the
solution of the system converge to the largest invariant set contained in {ˆ̄x, ˆ̃x ∈ R2N |
V̇ = 0}. From V̇ = 0, we have ˆ̄x = 0. Associated with the system (29), we can obtain the
largest invariant set of the set {ˆ̄x, ˆ̃x ∈ R2N | V̇ = 0} is {ˆ̄x, ˆ̃x ∈ R2N | ˆ̄x = 0, (IN ⊗Al)ˆ̃x =
0}, which implies the conclusion. �

Remark 4.1. From the proofs of Theorem 3.1 and Theorem 4.1, one can see that the
results of Theorem 3.1 and Theorem 4.1 are also true for any dimension of Al ∈ Rn×n
and bl ∈ Rn.

Similar to Theorem 3.2, we further show that there exists a positive lower bound of
the inter-event times {tik+1 − tik, k ∈ N}.
Theorem 4.2. In Theorem 4.1 with the distributed event-triggered control (23), the
inter-event times are lower bounded by a positive number τ ≥ µ

a2+abµ > 0, where
µ = 1

2η
√
N

with η > 1, N is the number of agents, a = max{1, ‖Al‖M + ‖Λ ⊗ K‖},
b = max{1, ‖Λ⊗K‖} for M > 0.

P r o o f . Considering the triggering condition (31), one has ‖êi‖
‖ˆ̄xi‖

≤ 1
2 . Note that there

exists a finite value η > 1 such that ‖ˆ̄x‖ ≤ η
√
N‖ˆ̄xi‖ for any i, then ‖êi‖

‖ˆ̄xi‖
≤ η

√
N‖ê‖
‖ˆ̄x‖ .

Hence, the time of ‖êi‖
‖ˆ̄xi‖

reaches 1
2 from 0 is longer than the time of η

√
N‖ê‖
‖ˆ̄x‖ . Denote τ ′

is the time of ‖ê‖‖ˆ̄x‖ grows from 0 to µ = 1
2η
√
N

. Let z(t) = ‖ê(t)‖
‖ˆ̄x(t)‖ , the time derivative of z

satisfies

ż ≤ ‖
˙̂e‖
‖ˆ̄x‖ + z

‖ ˙̄̂x‖
‖ˆ̄x‖ .

Since ei(t) = xi(tik)−xi(t), one has ėi(t) = −ẋi(t), and the stack style is ˙̂e = (T ⊗I2)ė =
−(T ⊗ I2)ẋ. Similar to the proof of Theorem 3.2, we get

ż ≤(1 + z)(‖Al‖M + ‖Λ⊗K‖+ ‖Λ⊗K‖z)
≤(a+ bz)2,
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where ‖x̃‖‖x̄‖ < M for M > 0, a = max{1, ‖Al‖M + ‖Λ ⊗ K‖}, b = max{1, ‖Λ ⊗ K‖}.
Therefore, φ(τ, 0) = a2τ

1−abτ , from which we get the lower bound τ ′ ≥ µ
a2+abµ > 0. It is

clear that the time interval τ ≥ τ ′ > 0 between two adjacent events is lower bounded.
�

5. SIMULATION EXAMPLE

In this section, we give an example to show the effectiveness of the proposed event-
triggered control.

Example 5.1. Consider the tracking problem of multi-agent systems with four followers

and one leader satisfying (2) and (3) with Al =
[

0 1
−1 0

]
and bl = 0. The communication

topology between the agents is shown in Figure 1.

Fig. 1. The adjacency graph Ḡ.

The adjacency matrix A and the degree matrix D of the adjacency graph G (without
leader) are

A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
and the Laplacian matrix and the leader adjacency matrix are

L =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 , ∆ = diag{1, 0, 1, 0}.

Firstly, for the centralized event-triggered control, choose Kl = K + ATl and K =
13.0890I2 in Theorem 3.1, then by the feedback control (7) and the observer (8) with
the event triggering condition (18), the tracking problem is solved. The simulation
results are shown in Figure 2 and Figure 3 with the initial values xl(0) = [1, 2]T , x1(0) =
[2, 3]T , x2(0) = [6, 4]T , x3(0) = [5,−1]T , x4(0) = [−1, 1]T . The tracking errors of the
followers are shown in Figure 2. All the followers can track the leader eventually. Figure 3

presents the estimation errors. The estimated value x̂il by agent i will converge to xl.
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In addition, the time instants when the event is triggered for all agents are shown in
Figure 4. In Figure 5, the blue line shows the evolution of ‖ê‖, which stays below the
threshold given by the triggering condition (18). The red line represents the function
λmin
2σ ‖ˆ̄xλ‖2 on the right side of (18).
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Fig. 2. The tracking errors of followers with centralized

event-triggered control.
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Fig. 3. The estimation errors of followers with centralized

event-triggered control-

Next we validate the distributed event-triggered control. Take Kl = K + ATl and
K = 14.3979I2 in Theorem 4.1, then by the feedback control (25) and the observer (26)
with the event triggering condition (31), the tracking problem can also be solved. The
tracking errors and the estimation errors of the followers are shown in Figure 6 and Fig-
ure 7 with the initial values xl(0) = [2, 2]T , x1(0) = [2,−12]T , x2(0) = [8,−2]T , x3(0) =
[−4, 1]T , x4(0) = [6, 3]T , respectively. The simulation result of event time instants for
each agent is shown in Figure 8. Figure 9 shows the evolution of ‖êi‖ in the triggering
condition (31) for i = 1, 2, 3, 4 (denoted by the blue line). In these figures, an event is
generated when the error ‖êi‖ reaches the threshold ‖ˆ̄xi‖2

2σi
, and thereafter the error ‖êi‖

is reset to zero immediately.
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Fig. 4. Event instants for the centralized event-triggered control.
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Fig. 5. Evolution of error for the centralized event-triggered control.
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Fig. 6. The tracking errors of followers with distributed

event-triggered control.
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Fig. 7. The estimation errors of followers with distributed

event-triggered control.
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2
(t

)||
0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

Time(s)

||ê
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Fig. 9. Evolution of error for four agents under the distributed

event-triggered control.

6. CONCLUSION

In this paper, the consensus tracking control for leader-follower multi-agent systems
was considered. The leader’s control input is assumed unknown to the followers even
if they are connected to the leader. We first constructed a neighbor-based observer
for each follower to estimate the control input of the leader, and then designed a dis-
tributed feedback controller. Both the observer and the controller are event-triggered.
We designed both the centralized and distributed event-triggered feedback control for
each follower. By applying the proposed event-triggered observer-based controller, the
tracking problem can be solved if the underlying communication graph of the system is
connected. It was also shown that the Zeno phenomena can be avoided in the event-
triggered scheme. A simulation example was presented to illustrate the effectiveness of
the proposed control law and the observer.
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