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Abstract. A digraph is associated with a finite group by utilizing the power map
f : G → G defined by f(x) = xk for all x ∈ G, where k is a fixed natural number. It
is denoted by γG(n, k). In this paper, the generalized quaternion and 2-groups are stud-
ied. The height structure is discussed for the generalized quaternion. The necessary and
sufficient conditions on a power digraph of a 2-group are determined for a 2-group to be
a generalized quaternion group. Further, the classification of two generated 2-groups as
abelian or non-abelian in terms of semi-regularity of the power digraphs is completed.
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1. Introduction

During the last century, the field of graph theory has flourished tremendously.

Algebraic graph theory is an important branch which makes an elegant connection

of graphs with algebraic structures. Let f : H → H be any map on a finite set H .

An iteration digraph is constructed by taking all the elements of H as the vertices

of the digraph such that there exists exactly one edge from a vertex x to a vertex y

if and only if f(x) = y. If, in particular, f(x) = xk is taken then these iteration

digraphs are called power digraphs. The power digraphs modulo n defined on Zn

are extensively studied by Lucheta et al. [9], Wilson [14], Somer and Křížek [11],

[12], [13], Ahmad and Husnine [2], [4], [7]. Further, Min Sha [10] explored the

properties of power digraphs on finite cyclic groups. Moreover, Ahmad and Hus-

nine [1] extended this work to abelian groups. The obvious motivation is to develop
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research grant (No. D/605/Est.I).
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this theory for non-abelian groups. The behavior of these digraphs on generalized

quaternion is discussed by Ahmad and Moeen [3]. In this paper, the groups under

discussion are generalized quaternion groups and finite 2-groups. The power digraph

is denoted by γG(n, k) such that the group G of order n is the set of vertices and

the set of edges is {(x, y) : xk = y, ∀x, y ∈ G}. For any vertex a ∈ G, Comp(a) is

the component of γG(n, k) containing a. The minimum distance from a to a cycle

vertex of Comp(a) is called the height of a and is denoted by height(a). The height

of a component is the height of a vertex which possesses maximum height among

the other vertices of that component. Also, the height of a digraph is the maximum

height of all components of that digraph. For every a ∈ G, let N(n, k, a) denote

the number of distinct solutions of the equation xk = a in G. Then, obviously,

N(n, k, a) = indegn(a). If the indegree of every vertex a ∈ G is 0 or q then γG(n, k)

is semi-regular of degree q. A digraph is said to be regular if every vertex acquires

the same indegree. A path from a to b is a sequence of directed edges which connect

the sequence of vertices from a to b; it is denoted by P a
b . A component of γG(n, k) is

a sub-digraph which is a maximal connected subgraph of the associated non-directed

graph. Also, γG(n, k) is connected if and only if the associated non-directed graph

is connected, i.e., γG(n, k) consists of only one component. It is well known that

2-groups can be classified as the quaternion free groups and groups containing an

isomorphic copy of the quaternion. Thus, to understand the behavior of the power

digraph of general 2-groups, it is important to know the structure of the power

digraph of generalized quaternion groups. The paper is organized as follows: in

Section 2, the formulae for the height of vertices and height for the digraphs of gen-

eralized quaternion groups are established. With help of these results, some basic

results for generalized quaternion 2-groups are deduced. In Section 3, necessary and

sufficient conditions on a power digraph of 2-group are established for a 2-group to

be a generalized quaternion group. Further, 2-groups generated by 2 elements are

classified with help of the power digraph into abelian and non-abelian groups.

Let Q4n be a quaternion group of order 4n with identity element 1. The generators

relation form of Q4n can be written as

Q4n = 〈a, b : a2n = 1, b2 = an, b−1ab = a−1〉.

The maximal subgroups are 〈a〉, 〈a2, b〉, and 〈a2, ab〉, where the first is a cyclic sub-

group and the other two are generalized quaternion subgroups. If we take n = 2l−2,

then the generalized quaternion group of order 4n becomes the generalized quater-

nion 2-group of order n = 2l. Let

δ(k) =

{

1 if k is odd,

0 otherwise,
(1.1)
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α(k, i) =

{

1 if k ≡ 2 (mod 4), i = n,

0 otherwise,
(1.2)

β(k) =

{

1 if k ≡ 0 (mod 4),

0 otherwise,
(1.3)

and

(1.4) 2n = 2δ(k)λµ,

where 2δ(k)λ is the highest factor of 2n such that gcd(2δ(k)λ, k) = 1.

Theorem 1.1 ([1]). The power digraph γG(n, k) is connected if and only if there

exists a positive integer m such that Exp(G) | km.

Lemma 1.2 ([1]). Let G ∼= Cn1
× Cn2

× . . .× Cns
, where Cni

are cyclic groups

of order ni. Then the indegree of any vertex a of γG(n, k) is either 0, or

N(n, k, a) = indegn(a) =

s
∏

i=1

gcd(ni, k).

Theorem 1.3 ([3]). The indegree of any vertex aibj of γQ4n
(2n, k) is either 0, or

N(Q4n, k, a
ibj) =











gcd(2n, k) + 2nα(k, i) if j = 0,

1 if j = 1,

gcd(2n, k) + 2nβ(k) if i = 0, j = 0,

where α(k, i) and β(k) are defined in (1.2) and (1.3), respectively.

Theorem 1.4 ([3]). The vertex ai of γQ4n
(4n, k) is a cycle vertex if and only

if ord(ai) | 2δ(k)λ, where 2δ(k)λ is defined in (1.4). Further, the length t of a cycle

containing ai is given by

t = orddi
k,

where di is some divisor of 2
δ(k)λ.
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Theorem 1.5 ([3]). The vertex aib is a cycle vertex if and only if k is odd. In

particular, there exists no cycle of length t > 2 containing the vertex aib.

2. Height structure of γQ4n
(4n, k)

Consider the factorization of k as

(2.1) k = ̺β1

1 ̺β2

2 . . . ̺βq

q ,

where βi > 0 for all i ∈ {1, . . . , q} and ̺1 < ̺2 < . . . < ̺q. Since π(µ) ⊆ π(k), where

π(x) denotes the set of distinct prime divisors of x, we can write

(2.2) µ = ̺α1

1 ̺α2

2 . . . ̺αq

q ,

where αi > 0 for all i ∈ {1, . . . , q}. Now if ord(x) denotes the order of x in Q4n, then

ord(ai) | 2n and it can be written as

(2.3) ord(ai) = λ1̺
γ1̺γ2

2 . . . ̺γq

q ,

where γi > 0 for all i ∈ {1, . . . , q} and λ1 | 2δ(k)λ.

Theorem 2.1. Let n and k be any positive integers defined in (1.4) and (2.1),

respectively. Then

height(aibj) =











max
16i6q

⌈ν̺i
(2n/ gcd(2n, i))

ν̺i(k)

⌉

for j = 0,

(1− δ(k))
⌈ 2

β1

⌉

for j = 1,

where ν̺i
(x) denotes the highest power of ̺i in x.

P r o o f. Suppose h = height(aibj). Then there exists a cycle vertex c in

γQ4n
(4n, k) such that

(aibj)k
h

= c.

If j = 0, then the vertex c must be some power of a, i.e. c = as, for some 0 6 s 6

2n− 1. This along with the equations (2.1) and (2.3) implies that

ord(c) = ord((ai)k
h

) =
ord(ai)

gcd(kh, ord(ai))
,

=
λ1̺

γ1

1 ̺γ2

2 . . . ̺
γq
q

̺
min(γ1,β1h)
1 ̺

min(γ2,β2h)
2 . . . ̺

min(γq,βqh)
s

.
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By virtue of Theorem 1.4, the vertex c = as is a cycle vertex if and only if

ord(c) | 2δ(K)λ, i.e. gcd(ord ai, k) = 1. Hence, for c = as to be a cycle vertex, we

must have

βih > γi for i ∈ {1, . . . , q}, h > max
16i6q

⌈γi
βi

⌉

= max
16i6q

⌈ν̺i
(ord ai)

ν̺i
(k)

⌉

.

Since we are considering the minimum value,

h = max
16i6p

⌈γi
βi

⌉

= max
16i6q

⌈ν̺i
(ord(ai))

ν̺i
(k)

⌉

.

Now if j = 1, then

ord(c) = ord((aib)k
h

) =
ord(aib)

gcd(kh, ord(aib))
.

Hence,

ord(c) =
4

gcd(kh, 4)
.

This implies

(2.4) ord(c) =
4

gcd(̺β1h
1 ̺β2h

2 . . . ̺
βqh
q , 4)

.

Now if ̺1 = 2, i.e. k is even, then by Theorem 1.5, aib is not a cycle vertex for all i

and by Theorem 1.4, an is not a cycle vertex either. This along with the fact that

aib maps onto 1, an or ajb implies that c = 1. Hence, ord(c) = 1. Therefore, from

equation (2.4),

ord(c) =
22

gcd(2β1h, 4)
= 1.

This implies

β1h > 2, h >

⌈ 2

β1

⌉

.

Now if k is odd then by Theorem 1.5, aib is a cycle vertex and hence, height(aib) = 0.

Thus, height(aib) = (1− δ(k))⌈2/β1⌉. �

Corollary 2.2. Let G be a generalized quaternion 2-group of order 2n and k = 2.

Then

height(aibj) =











n− 1 for j = 0 and i odd,

n− 1−min(n− 1,m) for j = 0 and i = 2ms, (s, 2) = 1,

2 for j = 1.
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Theorem 2.3. Let k be a positive integer defined in (2.1). Then the height of

γQ4n
(4n, k) is

max
{

(1 − δ(k))
⌈ 2

β1

⌉

, max
06i6q

⌈ν̺i
(2n)

ν̺i(k)

⌉}

,

where δ(k) is defined in (1.1) and ν̺i
(x) denotes the highest power of ̺i in x.

P r o o f. Since Q4n = A ∪B and A ∩B = ϕ, it is easy to see that

(2.5) height(γQn
(2n, k)) = max{height(γA(2n, k)), height(γB(2n, k))}.

Due to Theorem 2.1 for any vertex aj

height(aj) = max
16i6q

⌈ν̺i
(2n/ gcd(2n, j))

ν̺i(k)

⌉

.

Since ord(aj) | 2n, we have

⌈ν̺i
(ord(aj))

ν̺i
(k)

⌉

6

⌈ν̺i
(2n)

ν̺i
(k)

⌉

, 1 6 i 6 q,

max
16i6q

⌈ν̺i
(ord(aj))

ν̺i
(k)

⌉

6 max
16i6q

⌈ν̺i
(2n)

ηϕi
(k)

⌉

,

height(aj) 6 max
16i6q

⌈ν̺i
(2n)

ν̺i
(k)

⌉

, 0 6 j 6 2n− 1.

Since 〈a〉 is a cyclic subgroup of Q4n such that ord(a) = 2n, the existence of such

vertex shows that

(2.6) height(γA(2n, k)) = max
16i6q

⌈ν̺i
(2n)

ν̺i
(k)

⌉

.

Theorem 2.1 yields

(2.7) height(γB(2n, k)) = (1− δ(k))
⌈ 2

β1

⌉

.

(2.5), (2.6), and (2.7) complete the proof. �

Corollary 2.4. Let G be a generalized quaternion 2-group of order 2n. Then

height(γQ2n
(2n, 2)) = n− 1.

Lemma 2.5. Let G be a generalized quaternion 2-group of order 2n and k = 2.

Then NQ2n
(2n, ai, 2) = 0, i.e., (ai is an end vertex) if and only if i is an odd integer.
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P r o o f. Suppose i is an odd integer but NQ2n
(2n, ai, 2) 6= 0. This implies that

there must exist a vertex x such that

(x)2 = ai.

Since (ajb)2 = a2
n−2

for all 0 6 j 6 2n−2 and i is odd, x must be equal to ar for

some 0 6 r 6 2n−2. Therefore,

(ar)2 = ai,

a2r−i = 1,

2n−1 | 2r − i.

This contradicts the assumption that i is an odd integer.

Conversely, assumeN(2n−1, ai, 2) = 0 but i is an even integer. Thus, i can be writ-

ten as i = 2r for some integer 0 < r < i. This implies that ar is a vertex of γQ4n
(4n, k)

such that (ar)2 = ai. This contradicts the assumption that N(2n−1, ai, 2) = 0. �

Corollary 2.6. Let G be a generalized quaternion 2-group of order 2n and k = 2.

Then

NQ2n
(2n, ai, 2) =

{

(1 − δ(i))2 if i 6= 2n−2,

2 + 2n−1 otherwise,

where δ(i) is defined in (1.1).

P r o o f. It is evident from Theorem 1.3 and Lemma 2.5. �

Lemma 2.7. Let G be a generalized quaternion 2-group of order 2n and k = 2.

Then all vertices ai, where i is odd and 1 6 i < 2n−2, are at of the same height.

P r o o f. It is clear from Lemma 2.5 and Corollaries 2.2, 2.6. �

Corollary 2.8. Let G be a generalized quaternion 2-group and k = 2. Then the

vertex ai is of the maximum height if and only if i is odd, where 1 6 i < 2n−2.

P r o o f. It is obvious from Lemma 2.5 and Lemma 2.7. �
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3. Classification of 2-groups

Theorem 3.1. Let G be a finite 2-group. Then G ∼= Q2n if and only if γG(2
n, 2) is

isomorphic to the digraph S given in Figure 1 such that the sub-digraphH containing

2n−1 vertices is a binary digraph rooted at the fixed point and having height n − 1

with all end vertices at the same height.

H

2
n−1

vertices

Figure 1. The digraph S.

P r o o f. Suppose G ∼= Q2n . We label the digraph S as in Figure 2. Let f :

V (S) → V (γQ2n
(2n, 2)) be a digraph mapping. Since k = 2, Theorem 1.1 implies

that γQ2n
(2n, 2) is a connected digraph. Since 1 (identity of Q2n) is always a fixed

point of γQ2n
(2n, 2), it consists of only one component containing the fixed point 1.

Therefore, we can take f(x) = 1. Futher, Q2n has only one involution, i.e., only one

nontrivial element a2
n−2

such that (a2
n−2

)2 = 1. This implies that there is an edge

between a2
n−2

and 1 in γQ2n
(2n, 2). Hence, we can take f(y) = a2

n−2

. Now it is

easy to see that aib goes to a2
n−2

for all 1 6 i 6 2n−1. Thus, we define f(xi) = aib.

From Corollary 2.6 we have N(ai, 2, 2n−1) = 0 when i is odd while for even i, ai has

indegree 2 except a2
n−2

whose indegree is 2 + 2n−1 so that all the vertices aib for

0 6 i 6 2n−1 are adjacent to a2
n−2

. From Lemma 2.7, all the end vertices are of

the same height. Also from the proof of Theorem 2.3, height(〈a〉) = n − 1. Thus,

γ〈a〉(2
n−1, 2) is a binary digraph of height n − 1 such that all the end vertices are

of the same height. Therefore, H ∼= γ〈a〉(2
n−1, 2) and for hi ∈ V (H), we can define

f(hi) = aj for some j, where 1 6 i 6 2n−3 and 1 6 j 6 2n−3. Now it is easy to see

that f is a graph isomorphism.
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H

y

x

x1

x2

x3

x2n−1

2
n−1

vertices

Figure 2. The labeled digraph S.

Conversely, suppose γG(2
n, 2) is isomorphic to the digraph S. The digraph S

shows that there is only one nontrivial element x of G such that x2 = 1. Since G is

a 2-group and has only one element of order 2 (i.e., only one involution) G must be

cyclic or a generalized quaternion 2-group. Suppose that G is a cyclic group. Then,

from Lemma 1.2, for any vertex b having nonzero indegree in γG(2
n, 2),

N(2n, b, 2) = gcd(2n, 2) = 2.

But the digraph S shows that there is a vertex having degree 2n−1 + 2 which is

greater than 2. Thus, G is a generalized quaternion 2-group, i.e. G ∼= Q2n . �

Corollary 3.2. Let G be a generalized quaternion 2-group, k = 2 and Q a maxi-

mal subgroup of G. Then Q = 〈a〉 if and only if

γQ(|Q|, 2) =
⋃

height(x)=n−1

P x
1 .

P r o o f. It is obvious from the proof of Theorem 3.1 that the sub-digraph H in

Figure 1 is isomorphic to γ〈a〉(2
n−1, 2) and H =

⋃

height(x)=n−1

P x
1 . �

Corollary 3.3. Let G be a generalized quaternion 2-group, k = 2 and let Q1, Q2

be two generalized quaternion subgroups of G. Then

γQ1∪Q2
(|Q1 ∪Q2|, 2) =

⋃

h6l

P h
1 ,

where l = max{n− 2, 2}.
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P r o o f. Since Q1 = 〈a2, b〉 and Q2 = 〈a2, ab〉,

Q1 ∪Q2 = 〈a2〉 ∪B.

The subgroup 〈a2〉 must contain elements of the form ai such that i is even. This

implies that γQ1∪Q2
(|Q1 ∪Q2|, 2) contains all the vertices of G except a

j , where j is

odd. From Lemma 2.5, all ai, where i is odd, are of the maximum height which is

n − 1. Now the vertices from B are of height 2. Let l = max{n− 2, 2}. Therefore,

γQ1∪Q2
(|Q1 ∪ Q2|, 2) is the union of all paths from the vertices of height at most l

to identity 1. Hence,

γQ1∪Q2
(|Q1 ∪Q2|, 2) =

⋃

h6l

P h
1 .

�

Lemma 3.4. Let G be a semi-dihedral 2-group. Then γG(2
n, 2) is not a semi-

regular digraph.

P r o o f. Suppose G is a semi-dihedral 2-group. The group representation is

given as

SD2n = 〈a, b : a2
n−1

= b2 = 1, bab = a2
n−2−1〉.

Now consider the indegree of a2
n−2

, i.e., the number of solutions of equation

x2 = a2
n−2

. It is easy to see that for k = 2,

⊲ ai goes to some aj for all 1 6 i 6 2n−1,

⊲ aib goes to 1 if i is even otherwise it maps to a2
n−2

. This shows that either x = ai

or x = ajb, where j is an odd number between 1 and 2n−1. The solutions of

the form ai belong to the cyclic subgroup 〈a〉 = {1, a, a2, . . . , a2
n−2

}. Thus, the

number of solutions of the form ai, by Theorem 1.2, is gcd(2n−1, 2). Hence,

N(SD2n , a
2n−2

, 2) = gcd(2n−1, 2) + 2n−2.

If all vertices ai are adjacent to either a2
n−2

or 1 then the orders of all these

vertices are 4 or 2, respectively. This contradicts the fact that 〈a〉 is a finite cyclic

subgroup of order 2n−1 and corresponding to each divisor m of 2n−1, there exists

an element of order m. Therefore, there must exist vertices aj and ar such that

(aj)2 = ar and ar 6= 1 or a2
n−2

. This shows that N(SD2n , a
r, 2) 6= 0. Also, as

ar 6= a2
n−2

or 1, all the solutions of the equation x2 = ar are of the form ai and

hence lie in 〈a〉. By using Theorem 1.2, N(SD2n , a
r, 2) = gcd(2n, k). This implies

that

N(SD2n , a
2n−2

, 2) 6= N(SD2n , a
r, 2).

Hence, γG(2
n, 2) is not a semi-regular digraph. �
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Lemma 3.5. Let G be a generalized dihedral 2-group. Then γG(2
n, 2) is not

a semi-regular digraph.

P r o o f. The proof is similar to that of Lemma 3.4. �

Theorem 3.6. Let G be a finite two generated 2-group of order 2n. Then G ∼=

Cn1
× Cn2

× . . . × Cnk
if and only if γG(2

n, 2) is a connected semi-regular digraph

of degree 2k.

P r o o f. Suppose γG(2
n, 2) is a connected semi-regular digraph of degree 2k but

G ∼= Cn1
× Cn2

× . . . × Cnk
for any integers n1, n2, . . . , nk, i.e., G is a non-abelian

group. Also γG(2
n, 2), by Theorem 1.1, consists of only one component containing

the fixed point 1 (identity of G). Now two cases arise:

Case 1 : Let G be a non-abelian non-metacyclic 2-group. Then it can be further

classified into two categories: in the first all proper subgroups of G are metacyclic

and in the other G has at least one proper non-metacyclic subgroup. In either case,

by using Theorem 3.2 of [5] and the main theorem of [6], G must be generated by

three generators, which contradicts our assumption.

Case 2 : If G is meta cyclic then there are three possibilities of involutions:

⊲ Exactly one involution in G.

⊲ More than three involutions in G.

⊲ Exactly three involutions in G.

From Theorem 2.1 of [8], if G has one involution then G must be cyclic or general-

ized quaternion. The assumption that G is a non abelian group having a semi-regular

digraph along with the fact that the digraph γQ2n
(2n, 2) is not semi-regular due to

Theorem 3.1, imply that G cannot be isomorphic to a cyclic or generalized quater-

nion. Hence, the case of exactly one involution is not possible. In the situation

of more than three involutions, again from Theorem 2.1 of [8], G is equivalent to

a dihedral or semi-dihedral group. This is not possible as the digraphs of a dihe-

dral and semi-dihedral group are not semi-regular for k = 2 due to Lemmas 3.4

and 3.5. Hence, we may assume that G has exactly three involutions such that

S = {x1, x2, x3} is the set of nontrivial involutions. Since the center of G is nontriv-

ial, by the Cauchy theorem, the center of G must contain at least one involution,

say ‘x1’. Since the power digraph is semi-regular and a
2 = 1 has four solutions (three

involutions and identity 1), γG(|G|, 2) is semi-regular of degree 4. Now as G is non

abelian, therefore, cardinality of the set of vertices must be greater than 4. Hence,

there is at least one involution x ∈ S such that N(x, 2τ , 2) 6= 0. Let a1 be one of

the vertices adjacent to x, then it is very easy to see that the set of vertices adjacent

to x is P = {a1, a
−1
1 , a1x1, a

−1
1 x1}, where the order of each element of P is 4. Now
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two cases arise: either [a1, x2] = 1 or [a1, x2] 6= 1. If [a1, x2] = 1, then

a1x2a
−1
1 x−1

2 = 1,

a1x2 = x2a1,

(a1x2)
2 = a21x

2
2 = a21 = x.

Similarly, a1x
−1
2 is also adjacent to x. It is easy to see that a1x2 and a1x

−1
2 are

different from the members of P . This shows that indeg(x) > 6, which contradicts

the fact that γG(|G|, 2) is semi-regular of degree 4. Hence, we may assume that

[a1, x2] 6= 1. Now consider (x2)
a1 which is an involution, therefore, (x2)

a1 = a−1
1 x2a1

can be x1, x2 or x3. Since [a1, x2] 6= 1 and x1 is a central element, a
−1
1 x2a1 6= x1

or x2. Hence, a
−1
1 x2a1 = x3, where x3 = x1x2. Therefore,

a−1
1 x2a1 = x1x2,

a31x2a1 = x1x2,

a1xx2a1 = x1x2.

Since x is an involution, there are the following three possibilities:

If x = x2, then
a1x

2
2a1 = x1x2,

a21 = x1x2,

x = x1x2,

x2 = x1x2.

This contradicts the assumption that x1 is a nontrivial involution.

If x = x1, then as x1 is a central element, we can write

a1x1x2a1 = x1x2,

a1x2a1 = x2,

a1x2a1x
−1
2 = 1,

a1x2a1x2 = 1.

This shows that a1x2 = 1, x1, x2, x3. In all cases, we get either a1 = 1 or a1 is an

involution, which contradicts the choice of a1 (nontrivial element of order 4).

Now, if x = x3 = x1x2, then as x1 is a central element and x2 is an involution, we

get
a1x1x

2
2a1 = x1x2,

a1x1a1 = x1x2,

a21 = x2,

x1x2 = x = x2.
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This implies that x1 = 1, which is not possible as x1 is a nontrivial involution. All

the cases lead to a contradiction. Hence, G is an abelian 2-group.

Conversely, suppose G can be written as

G ∼= Cn1
× Cn2

× . . .× Cnk
,

where Cni
is a cyclic group for all 1 6 i 6 k, i.e. G is abelian. Then by Lemma 1.2,

the indegree of any vertex a of G is either 0 or

N(G, 2, a) =

k
∏

i=1

gcd(ni, 2) =

k
∏

i=1

2 = 2k.

This shows that γG(|G|, 2) is a semi-regular power digraph. Now, since the order of

each element of G is a power of 2 for all a ∈ G, a2
m

= 1 for some positive integer m.

This implies that every vertex a has a path from a to 1 which is a fixed point. This

further shows that a ∈ Comp(1) for all a ∈ G. Hence, γG(|G|, 2) = Comp(1). Thus,

γG(|G|, 2) is a connected power digraph. This completes the proof. �

Example. Let G be a non-abelian group of order 25 such that

G = 〈a, b : a16 = b2 = 1, aba = b〉.

From Figure 3 we can see that the power digraph γG(2
5, 2) is not semi-regular.

Whereas, if we take G = C8 × C4, then the power digraph of γG(2
5, 2) is semi-

regular of degree 4. This is shown in Figure 4.

a0b0

a8b0

a12b0
a4b0

a0b1

a12b1

a14b1

a7b1

a6b1

a3b1

a13b1

a8b1

a11b1

a4b1
a5b1

a10b1

a2b1

a9b1

a1b1

a6b0

a11b0 a3b0

a14b0

a7b0

a15b0

a2b0

a9b0

a1b0

a10b0

a5b0

a13b0

Figure 3. The power digraph of a non-abelian group of order 32.
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a4b0

a0b0

a6b0

a6b2

a2b0

a2b2

a4b2

a0b2

a7b0

a3b2
a7b2

a3b0

a7b3

a3b3

a7b1

a3b1

a5b2

a5b0

a1b2
a1b0

a5b1
a1b3

a1b1

a5b3
a2b3

a2b1

a6b3

a6b1

a4b1

a0b1

a4b3
a0b3

Figure 4. The power digraph of an abelian group of order 32.

Acknowledgment. The authors would like to thank the referees for providing

valuable comments and suggestions for improving this paper.

References

[1] U.Ahmad, S. Husnine: The power digraphs of finite groups. To appear in Util. Math.

[2] U.Ahmad, S. Husnine: Characterization of power digraphs modulo n. Commentat.
Math. Univ. Carol. 52 (2011), 359–367.

[3] U.Ahmad, M.Moeen: The digraphs arising by the power maps of generalized quaternion
groups. To appear in J. Algebra Appl. DOI:10.1142/S0219498817501791.

[4] U.Ahmad, H. Syed: On the heights of power digraphs modulo n. Czech. Math. J. 62
(2012), 541–556.

[5] N.Blackburn: Generalizations of certain elementary theorems on p-groups. Proc. Lond.
Math. Soc. (3) 11 (1961), 1–22.
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