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Abstract. We consider the question of preservation of Baire and weakly Baire category
under images and preimages of certain kind of functions. It is known that Baire category
is preserved under image of quasi-continuous feebly open surjections. In order to extend
this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class
of quasi-interior continuous functions. We show that Baire and weakly Baire categories are
preserved under image of feebly open quasi-interior continuous surjections. We also give a
new definition for countably fiber-completeness of a function. We prove that Baire category
is preserved under inverse image of a countably fiber-complete function provided that it is
feebly open and feebly continuous.
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1. Introduction

Following Bourbaki [2], page 75, a topological space is called Baire if its nonempty

open subsets are of the second category. This notion plays a fundamental role in the

proof of some important results in functional analysis such as the Uniform Bound-

edness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem, see,

e.g. [3], [4], [7], [10], [11], [15], [18].

Unfortunately, even continuous surjections do not preserve Baire category under

images. For example, the space of rational numbers is the continuous image of any
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countable set with discrete topology. Moreover, the image of a Baire space under an

open mapping may fail to be a Baire space [8].

Thus it is natural to ask under what condition(s) a function preserves Baire cate-

gory under its image.

It is known that Baire spaces are invariant under continuous open surjections

(see [8], Theorem 1.10). Frolík [9], Theorem 1, improved this result by showing

that the result remains true if the function is only assumed to be quasi-continuous

and feebly open. Neubrunn [12] proved that Baire category is preserved by feebly

open, feebly continuous injections, and finally Dobos [5] showed that the injectivity

condition in Neubrunn’s result is necessary by exhibiting a Baire space X and a

feebly continuous, feebly open function f : X → f(X) such that f(X) is not a Baire

space.

The question whether the Cartesian product (or a square) of Baire spaces is again

a Baire space, was one of the most difficult questions in General Topology. Siko-

rski [19] asked this question in 1947. The Product Problem is closely related to

the question of the preservation of Baire category under preimages. In fact, if the

product of Baire spaces is not a Baire space, then the natural projection of, say,

X2 onto X , which is open and continuous, would show that Baire category is not

preserved under preimages by open continuous functions. A completely satisfactory

answer, i.e. in ZFC, came in [7], where a metric Baire space X was given whose

square is of the first category. So, Baireness is not preserved under preimages of

open continuous function, even if both the domain and the range of the function are

metric.

In 1961, Oxtoby [14] proved that if a Baire space X has countable pseudo-base

(= a collection of open sets such that every nonempty open subset contains a member

of the collection), then X2 is Baire. Frolík [8], Theorem 2, page 383, probably

unaware of Oxtoby’s result, showed:

Let f : X → Y be an open continuous function from a metrizable separable

space X onto a space Y . If Y is a Baire space and the fibers are Baire, then X

is Baire.

In 1989, Noll [13] proved that under certain conditions, Baire category is preserved

under preimage of special functions, which we call quasi-interior continuous. In the

next section, we show that every feebly open quasi-continuous mapping is quasi-

interior continuous but that the converse is not true in general. Moreover, we prove

that quasi-interior continuous functions preserve Baire category under images. This

will improve Neubrunn’s theorem mentioned above.

In 1988, Beer and Villar [1] defined the notion weakly Baire spaces. Rose et al.

in [17] proved that the image of a weakly Baire space under quasi-continuous feebly
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open fiber countable function is weakly Baire. We improve this result by showing

that this result is true if the function is fiber countable quasi-interior continuous.

2. Preservation of Baire category under images

Throughout this paper, we assume that X , Y and Z are Hausdorff topological

spaces. We start by recalling some definitions.

Definition 2.1. A function f from X to Y is called

(a) feebly open if for every open subset U of X , int(f(U)) is nonempty,

(b) feebly continuous if for every open subset W of Y , int(f−1(W )) is nonempty,

(c) a feeble homeomorphism if it is a feebly open and feebly continuous bijection.

Definition 2.2. A function f : X → Y is called quasi-continuous at x0 ∈ X

if for every neighborhood U of x0 and every neighborhood W of f(x0), there is a

nonempty open subset U ′ of U such that f(U ′) ⊆ W . The function f is called

quasi-continuous if it is quasi-continuous at each point of X .

The following class of functions was introduced by Noll in [13].

Definition 2.3. A feebly continuous function f : X → Y is called quasi-interior

continuous if for every nonempty open set U in X and every nonempty open set

W ⊆ int f(U), the set U ∩ int f−1(W ) is nonempty.

Theorem 2.1. If f : X → Y is quasi-continuous and feebly open, then it is

quasi-interior continuous.

P r o o f. Let U be a nonempty open subset of X andW a nonempty open subset

of int f(U). Then there is an x0 ∈ U such that f(x0) ∈ W . Thanks to quasi-

continuity of f at x0, there is a nonempty open set U
′ ⊆ U such that f(U ′) ⊆ W . It

follows that U ′ ⊆ U ∩ f−1(W ). Thus, the set U ∩ f−1(W ) is not empty. �

The following example shows that the converse of the above result is not true in

general.

E x am p l e 2.1. Let f : R → R be defined by

f(x) =











x− 1, x < 0,

0, x = 0,

x+ 1, x > 0.

Then f is quasi-interior continuous and feebly open, but it is not quasi-continuous

at zero.
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In order to state the main result of this section, we need the following auxiliary

result.

Lemma 2.1. If f : X → Y is quasi-interior continuous and feebly open and V is

a dense open subset of Y , then int f−1(V ) is a dense subset of X .

P r o o f. Let U be an open subset of X . By feeble openness of f , int f(U) is

nonempty. Since V is dense in Y , the set G = int f(U) ∩ V is nonempty. The

inclusion G ⊆ int f(U) together with quasi-interior continuity of f implies that

U ∩ int f−1(G) 6= ∅. It follows that U ∩ int f−1(V ) ⊃ U ∩ int f−1(G) 6= ∅. Hence,

int f−1(V ) is dense in X . �

Now, we are ready to state the main result of this section.

Theorem 2.2. Let f : X → Y be a quasi-interior continuous feebly open surjec-

tion. Then f preserves Baire category under image, i.e. if X is Baire, then so is Y .

P r o o f. Let {Wn} be a sequence of dense open subsets of Y and G an arbitrary

nonempty open subset of Y . Thanks to Lemma 2.1, {int f−1(Wn)} is a sequence

of dense subsets of X . Since G ⊆ int f(X) = Y , there is a nonempty open subset

U of X such that f(U) ⊂ G. By the Baireness of X , U ∩
(

⋂

i>1

int f−1(Wn)
)

6= ∅.

Therefore, we have

∅ 6= f

(

U ∩

(

⋂

i>1

int f−1(Wn)

))

⊆ f(U) ∩ f

(

⋂

i>1

int f−1(Wn)

)

⊆ G ∩

(

⋂

i>1

Wn

)

.

This completes our proof. �

The following result follows immediately from Theorems 2.1 and 2.2.

Corollary 2.1 ([8]). Let f : X → Y be a quasi-continuous feebly open surjection.

If X is Baire, then so is Y .

3. Preservation of Baire category under preimage

In 1989, Noll [12] introduced a notion of fiber-completeness of a function to show

that Baire category is preserved under preimage of such a function provided that f

is quasi-interior continous. He asked if a fiber-complete feebly open and feebly con-

tinuous function preserves Baire category under preimage. Piotrowski and Reilly

in [16] provided an example to show that this conjecture is not true in general. In

this section, we give another type of fiber-completeness. We show that this kind of

fiber-completeness preserves Baire category under inverse image provided that the

function is feebly open and feebly continuous.
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Definition 3.1. Let X and Y be topological spaces. A function f : X → Y is

called countably fiber-complete if for every centered sequence {Ui}i>1 of open subsets

of X ,
∞
⋂

i=1

Ui 6= ∅, provided that there is y ∈ Y such that f−1(y) ∩ Ui 6= ∅ for each

i > 1.

Lemma 3.1. Let f be a feebly open and feebly continuous function from a topo-

logical space X to a topological space Y and let U be an open dense subset of X .

Then int f(U) is dense in Y .

P r o o f. Let G be a nonempty open subset of Y . Since f is feebly continuous,

int f−1(G) is a nonempty open subset of X . Therefore, U ∩ int f−1(G) is a nonempty

open subset of X . Since f is feebly open, int f(U ∩ int f−1(G)) 6= ∅. We have

∅ 6= int f(U ∩ int f−1(G)) ⊆ int f(U ∩ f−1(G)) ⊆ int f(U) ∩G.

This completes our proof. �

Theorem 3.1. Let f be a feebly open and feebly continuous countably fiber-

complete function from a topological space X onto a Baire space Y . Then X is a

Baire space.

P r o o f. Let {Ui}i>1 be a sequence of dense open subsets of X . We will show

that
∞
⋂

i=1

Ui is dense in X . Let V be a nonempty open subset of X . LetW = int f(V ).

Thanks to feeble openness of f , W is a nonempty open subset of Y . By the above

lemma, {int f(Ui)}i>1 is a sequence of dense open subsets of Y . Since Y is Baire,
∞
⋂

i=1

int f(Ui) is dense in Y . Hence
∞
⋂

i=1

int f(Ui) ∩ W is nonempty. Let y belong to

this set. It follows that f−1(y) ∩ (Ui ∩ V ) 6= ∅ for each i > 1. Since f is countably

fiber-complete,
∞
⋂

i=1

Ui ∩ V 6= ∅. This completes our proof. �

Since every one to one mapping satisfies the properties of Theorem 3.1, we have

the following result.

Corollary 3.1 ([6], [12]). If f : X → Y is a feeble homeomorphism, then X is a

Baire space if and only if Y is a Baire space.
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4. Preservation of weakly Baire spaces under image

The notion of a weakly Baire space was introduced by Beer and Villar in [1]. Rose

et al. in [17] gave the following equivalent condition of a weakly Baire space.

Definition 4.1. Let (X, τ) be a topological T1-space. Let M(τ) and C(X)

denote meager and countable subsets of X , respectively. Then (X, τ) is called weakly

Baire if M(τ) ∩C(X) ∩ τ = ∅.

Definition 4.2. Let (X, τ) be a topological space. Define XC =
⋃

U∈C(X)∩τ
U

with the relative topology.

Rose et al. [17] proved that if f : X → Y is a quasi-continuous feebly open surjec-

tion such that f−1(y) is countable for each y ∈ XC , then Y is weakly Baire if X is

weakly Baire. In order to give a generalization of this result, we need the following

lemma.

Lemma 4.1. Let f : X → Y be a quasi-interior continuous feebly open function

and E a nowhere dense subset of Y . Then f−1(E) is a nowhere dense subset of X .

P r o o f. By Lemma 2.1, f−1(Y \ E) is a dense subset of X . Therefore f−1(E)

is nowhere dense in X . �

Theorem 4.1. Let (X, τ) be a weakly Baire space and f : (X, τ) → (Y, σ) a

quasi-interior continuous feebly open surjection. Then (Y, σ) is a weakly Baire space

provided that f−1(y) is countable for each y ∈ YC .

P r o o f. Let V ∈ M(σ) ∩ C(Y ) ∩ σ. By Lemma 4.1, f−1(V ) ∈ M(τ). Since V

is countable and, by our assumption, f−1(y) is countable for each y ∈ V , we have

int f−1(V ) ∈ M(τ) ∩ C(X) ∩ τ . The last set is empty, since Y is weakly Baire.

Therefore, by the weak openness of f , V = ∅. This completes our proof. �

Corollary 4.1. Let f : X → Y be a feeble homeomorphism. Then X is weakly

Baire if and only if Y is weakly Baire.

P r o o f. The result follows from the fact that if f is a feeble homeomorphism,

both f and f−1 are quasi-interior continuous feebly open. �

A c k n ow l e d g em e n t. We would like to thank the referee for carefully reading

our manuscript and the valuable comments, which provided insights that helped to

improve our paper.

480



References

[1] G.Beer, L. Villar: Weakly Baire spaces. Southeast Asian Bull. Math. 11 (1988), 127–133.
[2] N.Bourbaki: Topologie Générale – Chapitre 9: Utilisation des Nombres Réels en Topolo-
gie Générale. Éléments de Mathématique I: Les Structures Fondamentales de L’analyse –
Livre III. Actualités Scientifiques et Industrielles, No. 1045, Hermann & Cie, Paris, 1948.
(In French.)

[3] J.Cao, W.B.Moors: A survey on topological games and their applications in analysis.
RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), 39–49.

[4] G.Choquet: Lectures on Analysis, vol. 1: Integration and Topological Vector Spaces.
Mathematics Lecture Note Series, W. A. Benjamin, New York-Amsterdam, 1969.

[5] J.Doboš: A note on the invariance of Baire spaces under mappings. Časopis Pěst. Mat.
108 (1983), 409–411.

[6] J.Doboš, Z. Piotrowski, I. L. Reilly: Preimages of Baire spaces. Math. Bohem. 119
(1994), 373–379.

[7] W.G. Fleissner, K.Kunen: Barely Baire spaces. Fundam. Math. 101 (1978), 229–240.
[8] Z.Frolík: Baire spaces and some generalizations of complete metric spaces. Czech.
Math. J. 11 (1961), 237–248.

[9] Z.Frolík: Remarks concerning the invariance of Baire spaces under mappings. Czech.
Math. J. 11 (1961), 381–385.

[10] A.K.Mirmostafaee: Continuity of separately continuous mappings. Math. Slovaca 64
(2014), 1019–1026.

[11] W.B.Moors: The product of a Baire space with a hereditarily Baire metric space is
Baire. Proc. Am. Math. Soc. 134 (2006), 2161–2163.

[12] T.Neubrunn: A note on mappings of Baire spaces. Math. Slovaca 27 (1977), 173–176;
correction in 442 (1977).

[13] D.Noll: On the preservation of Baire category under preimages. Proc. Am. Math. Soc.
107 (1989), 847–854.

[14] J.C.Oxtoby: Cartesian products of Baire spaces. Fundam. Math. 49 (1961), 157–166.
[15] J.C.Oxtoby: Measure and Category—A Survey of the Analogies between Topological

and Measure Spaces. Graduate Texts in Mathematics. Vol. 2, Springer, New York, 1971.
[16] Z.Piotrowski, I. L. Reilly: Preimages of Baire spaces—an example. Quest. Answers Gen.

Topology 11 (1993), 105–107.
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