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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 5 , P AGES 7 3 5 – 7 5 6

ON CONVERGENCE OF KERNEL DENSITY ESTIMATES
IN PARTICLE FILTERING

David Coufal

The paper deals with kernel density estimates of filtering densities in the particle filter.
The convergence of the estimates is investigated by means of Fourier analysis. It is shown
that the estimates converge to the theoretical filtering densities in the mean integrated squared
error. An upper bound on the convergence rate is given. The result is provided under a certain
assumption on the Sobolev character of the filtering densities. A sufficient condition is presented
for the persistence of this Sobolev character over time.

Keywords: particle filter, kernel methods, Fourier analysis

Classification: 65C35

1. INTRODUCTION

The particle filter enables its user to efficiently compute integral characteristics (mo-
ments) of distributions of interest. In the filtering problem, these distributions are
traditionally referred to as the filtering distributions. In the particle filter, the filtering
distribution is approximated by an empirical measure. This measure is constructed in
the form of a weighted sum of Dirac measures located at randomly (empirically) gener-
ated points called particles. Particles are generated sequentially by the algorithm which
is an instance of the sequential Monte Carlo methods [4, 5].

The theoretical result that justifies the application of the particle filter is that the
generated empirical measures converge to the theoretical filtering distribution as the
number of particles goes to infinity [2, 4]. Approximating the filtering distribution by
an empirical measure is useful for estimating moments of the distribution because they
correspond to weighted sums of the values of moment functions over generated particles.

The filtering distribution has typically a density with respect to the corresponding
Lebesgue measure. This density is called the filtering density. Knowing an analytical
approximation of the filtering density has advantages. For example, the possibility of
computing analytical approximations of densities of the related conditional distributions.

From these practical, and of course also theoretical, reasons the issue of the analytical
approximation of the filtering densities is the subject of ongoing research. The problem
has been addressed in [10, 11, 13] and recently in [3].
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In [13], the authors refer to their previous works in which they introduced the particle
filters that employ kernel estimates at different places in their computational schemes.
The filters are called the pre-regularized and post-regularized particle filters, respec-
tively; and differ in where exactly the kernel density estimate is applied in the classical
particle filtering algorithm. They further introduce the local rejection regularized parti-
cle filter (L2RPF filter) and show that it generalizes the post-regularized particle filter
and the KF filter introduced in [9]. The convergence analysis of the post-regularized
filter is presented in details in [11].

In [10], the author investigates configurations when the acceptance-rejection method
and importance sampling with an additional resampling step are used in the particle
filter. The author shows that rejection sampling has a smaller asymptotic variance
than the standard importance sampling resampling method. However, generally the
computational effort for rejection sampling is greater than for the importance sampling.
The author provides several convergence results for a kernel estimate to converge to the
corresponding filtering density in terms of convergence in probability; and a version of
the central limit theorem. However, the assumptions of Theorem 2 in [10], which applies
to the importance sampling resampling method, exclude the common filtering settings
that consider an additive Gaussian noise.

The summary discussion of the above papers is also presented in Section 3.1 of [3].
In fact, the paper [3] is the closest to our work as it addresses the application of kernel
density estimation in particle filtering in a very similar way to what we do. However,
our work, which is inspired by the book of Tsybakov [17], builds on Fourier analysis of
kernel density estimates. This fact enables us to obtain a stronger version of certain
results presented in [3], see Section 6 for a detailed discussion.

The paper presents two main results. The first result is the convergence of the kernel
density estimates to the theoretical filtering density at any fixed time of the operation
of the filter, provided that the number of generated particles goes to infinity. In fact, we
present an upper bound on the MISE convergence rate which consequently implies the
convergence of the estimates with an increasing number of generated particles. The result
is based on the notion of the Sobolev character of the filtering density.

The second result gives the condition under which this Sobolev character is retained
over time. Thus, the first result applies at any time of filter operation. As mentioned
above, both results draws on the techniques of Fourier analysis.

The rest of the paper is organized as follows. In the next section, we review the basics
of the particle filter’s theory together with the related convergence results. Section 3
deals with a review of kernel methods with the focus on the Fourier analysis approach.
Sections 4 and 5 present the announced main results. Section 6 discusses our results in
the context of the results provided in [3] as these address the same problem, but using
different assumptions; and the paper is concluded by Section 7.

2. PARTICLE FILTER

The basics of the particle filter and general filtering theory can be found, for example, in
[2, 4, 5, 6] and [15]. Nevertheless, we present here the essential framework of the related
methodology in order that the paper be self-contained.
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2.1. Filtering problem

The filtering problem lies in determining the optimal estimate of the inaccessible state of
a stochastic process on the basis of accessible observations. The observations constitute
a stochastic process called the observation process. The observation process is intercon-
nected with a principal stochastic process which is called the signal process. The states
of the signal process are then subject to estimation. Let us be more specific.

Let {Xt}∞t=0, {Y t}∞t=1 be two stochastic processes specified on a common probabilistic
space (Ω,A, P ). The first process {Xt}∞t=0, Xt : (Ω,A)→ (Rdx ,B(Rdx)), t ∈ N0, dx ∈ N
is the signal process. It represents generally an inhomogeneous Markov chain with a con-
tinuous state space Rdx , endowed with its standard Borel σ-algebra B(Rdx). The prob-
abilistic behavior of the chain is determined by the initial distribution π0(dx0) of X0

and by the set of transition kernels Kt−1 : B(Rdx) × Rdx → [0, 1], t ∈ N. We denote
by Kt−1(dxt|xt−1) the measure induced by the transition kernel Kt−1 for xt−1 ∈ Rdx
being fixed.

The second process {Y t}∞t=1, Y t : (Ω,A) → (Rdy ,B(Rdy )), t ∈ N, dy ∈ N is the
observation process. As above, Rdy is the state space of the process and B(Rdy ) the
corresponding Borel σ-algebra. The process is specified on the basis of the signal process
by the formula

Y t = ht(Xt) + V t, t ∈ N (1)

where ht : Rdx → Rdy , t ∈ N are Borel functions and V t : (Ω,A) → (Rdy ,B(Rdy )) are
i.i.d. random variables that are independent from X0:t = (X0, . . . ,Xt) for all t ∈ N.
The independence of V t transfers on observations, due to (1) and the Markov character
of {Xt}∞t=0, in the following way:

P (Y t ∈ dyt|X0:t,Y 1:t−1) = P (Y t ∈ dyt|Xt). (2)

For t=1, the left-hand side reads as P (Y 1 ∈ dy1|X0:1).
In the paper, the colon is used to denote finite sequences, e. g., Y 1:t−1 = (Y 1, . . . ,Y t−1)

or y1:t = (y1, . . . ,yt), etc.

2.2. Filtering distribution and filtering density

As stated, the purpose of filtering is to provide the optimal estimate of the current
state xt ∈ Rdx of the signal process using the current and past observations y1:t =
(y1, . . . ,yt). This is done at each time instant t ∈ N. It is a classical result that
under the assumption of L2 integrability of Xt, the L2-optimal estimate corresponds
to the conditional expectation E[Xt|Y 1:t]. In what follows we will assume that Xt ∈
L2(Ω,A, P ) for each t ∈ N0.

For fixed observations Y 1:t = y1:t, the conditional expectation E[Xt|Y 1:t = y1:t]
is determined by the related conditional distribution P (Xt ∈ dxt|Y 1:t = y1:t). This
distribution then represents the filtering distribution at time t ∈ N and is approximated
by an empirical measure generated by the particle filter.

For the filtering problem discussed in this paper, it is assumed that all the involved
finite-dimensional distributions have bounded densities with respect to the corresponding
Lebesgue measures. Namely, we assume that π0(dx0) = p0(x0) dx0, Kt−1(dxt|xt−1) =
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Kt−1(xt|xt−1) dxt and P (V t ∈ dvt) = gvt (vt) dvt. For the purposes of the convergence
results in Section 2.5, it is assumed the gvt is strictly positive, i. e., gvt (vt) > 0 for
all t. This enables us to express the respective filtering density, i. e., the density of
P (Xt ∈ dxt|Y 1:t = y1:t).

The conditional density of P (Y t ∈ dyt|Xt = xt) is determined by formula (1). The
density is denoted by gt(yt|xt) and writes

gt(yt|xt) = gvt (yt − ht(xt)). (3)

The joint density of (X0:t,Y 1:t) has the form

p(x0:t,y1:t) = p0(x0)
t∏

k=1

gk(yk|xk)Kk−1(xk|xk−1). (4)

These specifications are induced by the conditional independence of observations (2) and
by the standard theory of Markov chains with a continuous state space.

The filtering density at time t ∈ N is denoted by p(xt|y1:t). Employing the joint
density (4), it is expressed as

p(xt|y1:t) =
p(xt,y1:t)
p(y1:t)

=
∫
p(x0:t,y1:t) dx0:t−1∫
p(x0:t,y1:t) dx0:t

. (5)

The above integrals are generally inexpressible in a closed form. However, certain
recursive analytical relations can be stated. These relations are called the filtering
equations and are addressed in the next section.

2.3. Filtering equations

The filtering equations describe recursively development of the filtering density p(xt|y1:t)
over time. They consist of the prediction formula (6) and the update formula (7).

The prediction formula gives the expression for the so-called prediction density which
is the density of P (Xt ∈ dxt|Y 1:t = y1:t−1). The update formula then gives the
specification of the filtering density p(xt|y1:t).

Lemma 2.1. Let the joint density of (X0:t,Y 1:t) be given by formula (4), then

p(xt|y1:t−1) =
∫
Kt−1(xt|xt−1)p(xt−1|y1:t−1) dxt−1, (6)

p(xt|y1:t) =
gt(yt|xt)p(xt|y1:t−1)∫
gt(yt|xt)p(xt|y1:t−1) dxt

, t ∈ N (7)

with p(x1|y1:0) understood as p(x1) and p(x0|y1:0) as p(x0).

P r o o f . The basic proof can be found, for example, in [15], see Theorem 4.1 on page
54; or in Section 2.6.2 of [4] where it is presented in a more general form. �

Development of the filtering density over time is split into two sub-steps by the
filtering equations. The prediction density p(xt|y1:t−1) is obtained in the first sub-step
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and, in the second one, is updated to the filtering density p(xt|y1:t) on the basis of the
current observation yt ∈ Rdy .

Speaking in the language of distributions, the filtering distribution is usually denoted
by πt, i. e., πt(dxt) = p(xt|y1:t) dxt. The filtering distribution is also alternatively
referred to as the update distribution (measure). The prediction density then corresponds
to the density of the so-called prediction distribution (measure) denoted by πt, i. e.,
πt(dxt) = p(xt|y1:t−1) dxt.

2.4. Particle filter

Time development of the filtering distribution can be seen as a recursive alternation
between the prediction and update distributions πt and πt. This characterization fits to
particle filter operation because the filter alternately generates empirical prediction and
update measures.

In the particle filter, empirical measures are constructed as weighted sums of Dirac
measures localized at particles generated by the filter. The justification of this rep-
resentation stems from the Strong Law of Large Numbers (SLLN). Assuming that
{Xi = xi}ni=1, n ∈ N is an i.i.d. sample from a given distribution µ, i. e., Xi ∼ µ,
and constructing the empirical measure δn(dx) as

δn(dx) =
1
n

n∑
i=1

δxi(dx) =
1
n

n∑
i=1

δXi(dx) (8)

the SLLN states that for any integrable function f , the integral over this empirical
measure converges a.s. to the integral over the distribution µ. Note that in (8), the sec-
ond expression points out the random character of δn(dx), in fact, δn(dx) is a random
measure.

Dealing with the filtering problem practically, we are not able to directly generate
i.i.d. samples from πt because we do not have any closed-form representation of the
filtering density at our disposal. However, due to the product character of the joint
density p(x0:t,y1:t), one can state an algorithm which recursively generates samples
(particles) that are used for constructing empirical counterparts of πt and πt.

The construction of empirical measures proceeds sequentially. The particles generated
in the previous cycle of operation are employed in the current cycle. A stochastic
update of particles and their weights is taken in each cycle. The weights are updated
on the basis of the current observation. The procedure is in fact an instance of the
sequential Monte Carlo methods applied in the context of the filtering problem [4]; and
the algorithm follows the recursion described by the filtering equations. However, there
is one extension.

In the raw mode of operation, the update measure is constructed as a non-uniformly
weighted sum of Dirac measures. As explained in [4], as t ∈ N increases, the distribution
of weights becomes more and more skewed and after a few time steps only a single particle
has a non-zero weight. To avoid this degeneracy, the resampling step is introduced.

During the resampling step, a non-uniformly weighted empirical measure is resam-
pled into its uniformly weighted counterpart. The basic type of resampling draws on
the idea of discarding particles with low weights (with respect to 1/n) and promote
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Algorithm 1 : Operation of the particle filter.

0. declarations
n ∈ N - the number of particles,
T ∈ N - the computational horizon,
p0 - the initial density of X0,
Kt−1( · |xt−1), t = 1, . . . T - the transition densities.

1. initialization
t = 0,
sample {xi0 ∼ p0}ni=1,
constitute π̂n0 (dx0) = 1

n

∑n
i=1 δxi0(dx0),

set πn0 (dx0) = π̂n0 (dx0), i. e., {xi0 = xi0}ni=1.

2. sampling
t = t+ 1,
sample {xit ∼ Kt−1( · |xit−1)}ni=1,
for i = 1:n compute

w̃(xit) =
gt(yt − ht(xit))∑n
j=1 gt(yt − ht(x

j
t ))

,

constitute π̂nt (dxt) =
∑n
i=1 w̃(xit) δxit(dxt).

3. resampling
using M(n, w̃(x1

t ), . . . , w̃(xnt )), resample {xit}ni=1 from {xit}ni=1 and constitute
πnt (dxt) = 1

n

∑n
i=1 δxit(dxt).

4. if t = T end, else go to step 2.

those with high weights. Practically it is done by sampling with replacement from the
set of original particles with the probabilities of selection given by the original par-
ticles’ weights. It means that the resampled particles might be duplicated. In fact,
the numbers of duplicates corresponds to a sample from the multinomial distribution
M(n, w̃(x1

t ), . . . , w̃(xnt )). Let us stress here that the resampled particles does not con-
stitute an i.i.d. sample.

We are now ready to present the operation of the particle filter in the algorithmic
way, see Algorithm 1. Note that in the presented pseudocode the particles, i. e., points
from Rdx , are denoted by bold lowercase letters with the i superscript.

The particle filter sequentially generates three empirical measures in each single cycle
of its operation. These are the empirical prediction measure πnt , the empirical update
measure before resampling π̂nt and the empirical update measure after resampling πnt .
The third measure then forms the empirical counterpart of the filtering distribution πt.

A comparison of developments of the empirical measures and the theoretical distri-
butions is presented in Figure 1.
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π0 → πn1 → π̂n1 → πn1 → . . .→ πnt → π̂nt → πnt
π0 → π1 → π1 → . . .→ πt → πt

Fig. 1. Development of the empirical and theoretical distributions

in the particle filter.

2.5. Convergence results

In the particle filter, it is known that the empirical measures πnt and πnt converge weakly
a.s. (they are the random measures) to their theoretical counterparts as the number
of generated particles goes to infinity. We will not go into details of the proof of the
assertion, we only mention the result and its L2 variant related to our research. To
present the convergence theorems, we denote the class of real bounded functions on
Rdx by B(Rdx), the class of real bounded and continuous functions on Rdx by Cb(Rdx),
the supremum norm of a function f : Rdx → R by ||f ||∞ and the integral of f over
the measure µ by µf . Further, it is assumed that the transition kernels of the signal
process possess the Feller property. That is, Kt−1f ∈ Cb(Rdx) for any f ∈ Cb(Rdx) and
t ∈ N where (Kt−1f)(xt−1) =

∫
f(xt)Kt−1(dxt|xt−1). The other assumption is that the

densities gt(yt|xt) of (3), t ∈ N are bounded, continuous and strictly positive functions.

Theorem 2.2. Let {πnt }Tt=1 and {πnt }Tt=1 be the sequences of empirical measures gen-
erated by the particle filter for some fixed observation history {Y t = yt}Tt=1, T ∈ N.
Then for all t ∈ {1, . . . , T} and f ∈ B(Rdx),

lim
n→∞

|πnt f − πtf | = 0 a.s., lim
n→∞

|πnt f − πtf | = 0 a.s.

P r o o f . See [4], Chapter 2 for a broader discussion of the convergence theorems. Other
source is [2], Section IV. Paper [3] has even the proof of the a.s. convergence for certain
unbounded functions, see Proposition 1(b). �

Theorem 2.3. Let {πnt }Tt=1 be the sequence of empirical measures generated by the
particle filter for some fixed observation history {Y t = yt}Tt=1, T ∈ N. Then for all
t ∈ {1, . . . , T} and f ∈ B(Rdx),

E[|πnt f − πtf |2] ≤ c2t ||f ||2∞
n

(9)

with ct > 0 being a constant for fixed t ∈ {1, . . . , T}.

P r o o f . In this formulation, the theorem is presented in [2], Section V (the authors
use ct instead ours c2t ). �

Corollary. Theorem 2.3 holds also if f ∈ BC(Rdx), i. e., if f is a bounded complex
function of real variables on Rdx .
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P r o o f . If f ∈ BC(Rdx), then f(x) = h(x) + ig(x), where i denotes the imaginary
unit; and f, g ∈ B(Rdx). Inequality (9) then holds because for the squared modulus of
πnt f − πtf one has |πnt f − πtf |2 = (πnt h− πth)2 + (πnt g − πtg)2. �

Remark that the L1 version of Theorem 2.3, i. e., E[|πnt f − πtf |], is treated in [4],
Theorem 2.4.1. The theorem is further mentioned for general Lp norm, p ≥ 1 in [3],
Proposition 1(a).

3. KERNEL METHODS

Kernel methods are widely used for nonparametric estimation of densities of probability
distributions with the vast literature available on the topic. Here we review the very
basics of the related methodology. We focus in more details on the application of Fourier
analysis in this field. Our review is mainly based on the standard works of [16] and [18],
and the recent book by Tsybakov [17].

3.1. Basics of kernel methods

Let X1, . . . ,Xn, n ∈ N be a set of independent random variables identically distributed
as the real random variable X : (Ω,A)→ (Rd,B(Rd)), d ∈ N. Let the distribution of X
have the density f : Rd → [0,∞) with respect to the d-dimensional Lebesgue measure.
A nonparametric kernel density estimate of f is constructed on the basis of an i.i.d.
sample {Xi = xi}ni=1 from the distribution of X. The estimate is constructed as a gen-
eralization of the classical histogram by replacing the indicator function, which specifies
individual bins of the histogram, by a more general function K : Rd → R that is com-
monly referred to as the kernel function or simply as the kernel.

The definition formula of the standard d-variate nonparametric kernel density esti-
mate writes as

f̂n(x) =
1
nhd

n∑
i=1

K

(
x− xi
h

)
=

1
nhd

n∑
i=1

K

(
x−Xi

h

)
. (10)

In the formula, the second expression points out the random character of the estimate.
That is, for each x ∈ Rd, the estimate f̂n(x) constitutes a random variable whose
distribution is determined by the distribution of X and by the value of the parameter
h > 0 which is called the bandwidth.

Due to the random character of f̂n(x), there is relevant the question on consistency
and unbiasedness of the estimate. In the univariate case, the classical result of Parzen
[14] (see also [16]) states the conditions under which the estimate is consistent. The
result extends to the multivariate case, see e. g. [7]. Certain conditions are imposed
on the properties of the kernel function and on development of the bandwidth h as
a function of the sample size n ∈ N. We mention only that h is required to develop in
such a way that 1) limn→∞ h(n) = 0 and 2) limn→∞ nhd(n) =∞.

The investigation on the bias of f̂n(x) is closely related to the investigation on the
quality of the estimate in terms of the mean squared error (MSE). For a fixed point
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x ∈ Rd, the error is specified as MSEx(f̂n) = E[(f̂n(x)− f(x))2]. Employing properties
of mean and variance, it writes as

MSEx(f̂n) = (E[f̂n(x)]− f(x))2 + var[f̂n(x)] = (bf̂n(x))2 + σ2f̂n(x) (11)

where the term bf̂n(x) = E[f̂n(x)] − f(x) is the bias and σ2f̂n(x) = var[f̂n(x)] the
variance of the kernel density estimate f̂n(x) at the point x ∈ Rd.

The MSEx(f̂n) is the local measure of the quality of the estimate. It is desirable
to introduce also a corresponding global measure. Expectedly, such measure deals with
local errors accumulated over the whole domain of the estimated density. Mathemat-
ically, the accumulation is performed by integration. This leads to the notion of the
mean integrated squared error (MISE) of a kernel density estimate.

The MISE of the kernel density estimate f̂n is expressed on the basis of (11) using
the Fubini’s theorem as

MISE(f̂n) = E
∫

(f̂n(x)− f(x))2 dx =
∫

(bf̂n(x))2 dx +
∫
σ2f̂n(x) dx. (12)

The formula consists of two summands which are the integrated versions of the squared
bias and variance terms of the MSEx(f̂n). The value of the MISE(f̂n) depends on the
value of the bandwidth h.

Because MISE(f̂n) represents the global error of the estimate, one tries to minimize it
by localizing the minimizer h∗MISE of (12). Analytical solution to this task is known only
in some specific cases, e. g., when the estimated density corresponds to a convex sum
of normal densities, see [16] or [18] for exact formulas. To deal with the minimization
problem generally, the widely used approach is to investigate the asymptotic behavior
of the MISE(f̂n) with respect to the sample size n ∈ N going to infinity. This is called
AMISE analysis and leads to the specification of the asymptotic minimizer h∗AMISE.

However, in Section 1.2.4 of his book [17], Tsybakov provides a deeper criticism of the
asymptotic approach. It stems from the fact that the optimality of h∗AMISE is related to
a fixed density f and not to a well defined class of densities. In Proposition 1.7, Tsybakov
shows that for the fixed density f , it is possible to construct such a kernel estimate that
the MISE(f̂n) diminishes, but this cannot be done uniformly over a sufficiently broad
class of densities. Examples of such classes, e. g., Hölder, Sobolev or Nikol’ski classes,
are presented in [17]. The Sobolev class is treated in Definition 3.4 below.

Based on this criticism, Tsybakov presents a different approach to the MISE analysis
in Section 1.3 of [17]. The approach relies on Fourier analysis.

3.2. Fourier analysis

In the probability theory, Fourier analysis is intimately interconnected with the notion
of the characteristic function. Let X : (Ω,A)→ (Rd,B(Rd)) be a d-variate real random
vector with the joint distribution µ(dx). The characteristic function φX(ω) : Rd → C
of X is defined as the integral transform

φX(ω) = E[ei〈ω,X〉] =
∫
ei〈ω,x〉 µ(dx), ω ∈ Rd (13)



744 D. COUFAL

where 〈·,·〉 denotes the standard dot product in Rd. It is well known that the transform
provides the complete characterization of the distribution of X; and we often speak
about the Fourier transform of the random vector X or the distribution µ.

The other quite common view of the Fourier transform comes from the area of ap-
plied mathematics. Let f : Rd → R be an integrable function (a signal in electrical
engineering), i. e., let f ∈ L1(Rd), then its Fourier transform is specified as

F [f ](ω) =
∫
ei〈ω,x〉f(x) dx, ω ∈ Rd. (14)

Formula (14) can be treated as the special case of formula (13) when the distribution
of X is absolutely continuous with respect to the d-dimensional Lebesgue measure and
has the density f , i. e., µ(dx) = f(x) dx. On the other hand, in (14) f need not be
necessarily a density.

Let f, g ∈ L1(Rd) ∩ L2(Rd), i. e., we consider functions both L1 and L2 integrable
over Rd, then the following properties of the multivariate Fourier transform are relevant
to our research:

• continuity: F [f ] is uniformly continuous on Rd

• linearity: F [af + bg](ω) = aF [f ](ω) + bF [g](ω), a, b ∈ R

• shifting: F [f(x− s)](ω) = ei〈ω,s〉F [f ](ω), s ∈ Rd

• scaling: F [f(x/h)/hd](ω) = F [f ](hω), h > 0

• shifting & scaling: F [f((x− s)/h)/hd] = ei〈ω,s〉F [f ](hω), s ∈ Rd

• complex conjugate: F [f ](ω) = F [f ](−ω)

• convolution: F [f ∗ g](ω) = F [f ](ω)F [g](ω)

• symmetry: if f(−x) =f(x), then F [f ](−ω)=F [f ](ω)

• isometry, due to the Plancheler’s formula:∫
f2(x) dx =

1
(2π)d

∫
|F [f ](ω)|2 dω.

Now, the uniformly weighted sum of Dirac measures δn(dx) introduced in formula (8)
represents a probability distribution which does not have a density with respect to
the corresponding Lebesgue measure. Its characteristic function is denoted φn(ω) and
specified as

φn(ω) =
∫
ei〈ω,x〉δn(dx) =

1
n

n∑
j=1

ei〈ω,Xj〉, ω ∈ Rd. (15)

Note that φn(ω) constitutes a random variable for every ω ∈ Rd being fixed.
Under the assumption of L1(Rd) integrability of the employed kernel K, we can

consider the Fourier transform of the kernel density estimate (10). Using the linearity
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and the shifting & scaling property of the Fourier transform, F [f̂n](ω) is specified by
formula

F [f̂n](ω) =
1
n

n∑
j=1

F
[

1
hd
K

(
x−Xj

h

)]
=

1
n

n∑
j=1

ei〈ω,Xj〉F [K](hω). (16)

Writing KF (ω) for F [K](ω), we obtain the compact expression of F [f̂n](ω) in the
form

F [f̂n](ω) = φn(ω)KF (hω). (17)

This shows that the standard kernel estimator, which is based on an i.i.d. sample, is
obtained by the convolution of the employed kernel with the uniformly weighted sum of
Dirac measures corresponding to the sample.

Let us assume that both density f and kernel K belong also to L2(Rd). Then em-
ploying the Plancherel’s theorem and (17), we get for the MISE of (12) the expression

MISE(f̂n) =
1

(2π)d
E
∫
|φn(ω)KF (hω)− φ(ω)|2 dω. (18)

The next theorem provides the exact MISE(f̂n) for any fixed n ∈ N.

Theorem 3.1. Let f ∈ L2(Rd) be a density and K ∈ L1(Rd) ∩ L2(Rd) a kernel. Then
for all n ≥ 1 and h > 0 the MISE of the kernel estimator f̂n of (10) has the form

MISE(f̂n) =
1

(2π)d

[∫
|1−KF (hω)|2|φ(ω)|2 dω +

1
n

∫
|KF (hω)|2 dω

]
− 1

(2π)d
1
n

∫
|φ(ω)|2|KF (hω)|2 dω. (19)

P r o o f . The proof is just a copy of the original univariate Tsybakov’s proof, see [17],
p. 22 (generally, we do not need the symmetry of the kernel here). It rests on developing
the formula (18) using the facts that |z|2 = zz for z ∈ C and E[φn(ω)] = φ(ω). �

Now, we are going to discuss the individual terms in the Fourier MISE formula (19).
We start with the notion of the order of a kernel.

Definition 3.2. Let ` ≥ 1 be an integer. We say that the kernel K : Rd → R is
of order `, if K is in L1(Rd) ∩ L2(Rd), its Fourier transform KF (ω) is real, satisfies
KF (0) = 1 and has continuous all partial derivatives K(m)

F,i1,...id = ∂mKF/∂i1 . . . ∂id ,
m = i1 + · · · + id, m ∈ N, ij ∈ {0, . . . ,m}, j = 1, . . . , d up to the `th order at point 0
such that K(m)

F,i1,...id(0) = 0 for all m = 1, . . . , `.

Remark that the above definition imposes the following conditions on a multivariate
kernel to be of order ` ≥ 1, ` ∈ N:

•
∫
K(u) du = 1,

•
∫
ui11 · · ·u

id
d K(u) du = 0 for m = 1, . . . , `.
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Indeed, at the origin we have KF (0) =
∫
ei〈0,u〉K(u) du =

∫
K(u) du = 1. For the

mth partial derivative, we get K(m)
F,i1,...id(ω) =

∫
(iu1)i1 · · · (iud)id ei〈ω,u〉K(u) du, hence

0 = K
(m)
F,i1,...id(0) = im

∫
ui11 · · ·u

id
d K(u) du.

As an example, mention that the standard multivariate Gaussian kernel K(u) =
(2/π)−d/2 exp(− 1

2 ||u||
2) has the Fourier transform KF (ω) = exp(− 1

2 ||ω||
2) and is of

order ` = 1.

3.2.1. The first term

For the first term in the Fourier MISE formula (19), we are able to say something more
specific if we consider the order of the kernel involved in the estimate.

Lemma 3.3. Let K : Rd → R be a kernel of order ` ≥ 1, ` ∈ N and || · || denote the
Euclidean norm in Rd. Then there exists a constant A > 0 such that

supω∈Rd\{0}
|1−KF (ω)|
||ω||`

≤ A (20)

and ∫
|1−KF (hω)|2|φ(ω)|2dω ≤ A2h2`

∫
||ω||2`|φ(ω)|2dω (21)

for any function f with the Fourier transform φ(ω) and h > 0.

P r o o f . We employ the multidimensional Taylor’s theorem [1]. Because the kernel K is
of order ` ≥ 1, its Fourier transform KF (ω) is real and we have by the Taylor’s theorem

KF (ω) = KF (0) +
1
1!

d∑
i=1

K
(1)
F,i(0)ωi + · · ·+ 1

`!

d∑
i1,...,id=1

K
(`)
F,i1,...,id(0)ωi1 . . . ωid +R`(ω)

with limω→0R`(ω)/||ω||` = 0 for the reminder, i. e., R`(ω) = o(||ω||`).
As the partial derivatives vanish at origin, the remainder writes R`(ω) = KF (ω) −

KF (0) = KF (ω)− 1 and limω→0 |1−KF (ω)|/||ω||` = 0 by the Taylor’s theorem.
Let us define A`(ω) = |1 −KF (ω)|/||ω||` for ω 6= 0, and A`(0) = 0. The function

A` : Rd → [0,∞) is continuous on Rd and attains its maximum on the unit ball ||ω|| ≤ 1.
We denote this maximum by M1, i. e., M1 = max{ω:||ω|| ≤ 1}{A`(ω)}. Because K ∈
L1(Rd), we have 0 ≤ |KF (ω)| ≤ M2 < ∞. Indeed, |KF (ω)| ≤

∫
|ei〈ω,u〉| |K(u)|du ≤∫

|K(u)|du = M2 < ∞. Therefore, |1 −KF (ω)|/||ω||` ≤ 1 + M2 for ||ω|| > 1. Com-
posing both cases one gets A`(ω) ≤ max{M1, 1 +M2} = A <∞ for ω ∈ Rd.

The inequality (21) is implied by (20) as follows:

supω∈Rd\{0} |1−KF (hω)|/||hω||` ≤ A,

|1−KF (hω)|2 ≤ A2||hω||2`,∫
|1−KF (hω)|2|φ(ω)|2dω ≤ A2h2

∫̀
||ω||2`|φ(ω)|2dω.

This concludes the proof. �

The other terms in formula (19) refer to properties of the kernel and density under
considerations. We mention only two straightforward observations.
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3.2.2. The second term

The second term can be translated from the frequency to the “time” domain using
the Plancherel’s theorem and the scaling property of the Fourier transform. Change of
variables gives the final result:

1
n

∫
|KF (hω)|2 dω =

(2π)d

nh2d

∫
K2(x/h) dx =

(2π)d

nhd

∫
K2(u) du. (22)

3.2.3. The third term

The third term is actually the correction term. We have the following inequality for it:

1
(2π)d

1
n

∫
|φ(ω)|2|K(hω)|2 dω ≤ ||KF ||

2
∞

n

∫
f2(x) dx.

3.3. The upper bound on the Fourier MISE formula

Concerning an upper bound on the Fourier MISE formula (19), we sum up the above
results. First of all, to obtain the upper bound we can omit the correction (the third)
term in (19). The second term is solely determined by the properties of the kernel, which
is expressed by formula (22). Finally, to obtain a bound on the first term, the properties
of the density the data are sampled from and the properties of the kernel have to be
matched somehow. To do this we introduce the so-called Sobolev class of densities.

Definition 3.4. Let β ≥ 1 be an integer and L > 0 a real. The Sobolev class of densities
PS(β,L) consists of all probability density functions f : Rd → [0,∞) satisfying∫

||ω||2β |φ(ω)|2 dω ≤ (2π)dL2 (23)

where φ(ω) = F [f ](ω) and || · || is the Euclidean norm.

The condition (23) is related to the boundedness of partial derivatives of densities
in the Sobolev class; e. g., it can be shown that if

∫
(∂f/∂xj)2 dx ≤ Lj < ∞ for all

j = 1, . . . , d, then (23) holds for β = 1 and L = ||(L1, . . . , Ld)||. Furthermore, if
f ∈ PS(β, L), for some β ∈ N and L > 0, then f ∈ L2(Rd).

If f ∈ PS(β, L), we say that f is β-Sobolev for given β and L.
Now, the announced matching is provided by fitting the order of the kernel to the

Sobolev character of the estimated density. The next theorem, which is the variant of
Theorem 1.5 in [17], provides the final result.

Theorem 3.5. Let n ∈ N be the number of i.i.d. samples from a distribution with the
density f : Rd → [0,∞) which is β-Sobolev for some β ∈ N and L > 0. Let K be a
kernel of order β. Assume that the inequality (20) holds for some constant A > 0. Fix
α > 0 and set h(n) = αn−

1
2β+d . Then for any n ≥ 1 the kernel density estimate f̂n

satisfies
sup

f∈PS(β,L)

E
∫

(f̂n(x)− f(x))2 dx ≤ C ·n−
2β

2β+d (24)

where C > 0 is a constant depending only on α, β, d,A, L and the kernel K.
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P r o o f . The proof is a multidimensional version of the original univariate proof pre-
sented in [17]. Nevertheless, let us give a sketch of it. By Lemma 3.3 and from the
definition of the Sobolev class of densities, one has∫

|1−KF (hω)|2|φ(ω)|2 dω ≤ (2π)dA2h2βL2.

Plugging this into the Fourier MISE formula (19) with the correction term omitted,
employing 1

(2π)d n

∫
|KF (hω)|2dω = 1

nhd

∫
K2(u) du and using h2β = α2βn−

2β
2β+d and

(nhd)−1 = n−1α−dn
d

2β+d = α−dn−
2β

2β+d we get the assertion of the theorem. �

4. PARTICLE FILTER AND KERNEL METHODS

This section presents our own research in the area of combination of the particle filter
and kernel methods. The main question here is if the kernel density estimates con-
structed on the basis of empirical measures approximate the related filtering densities
reasonably well. The main obstacle to a direct application of the presented kernel esti-
mation methodology is the fact that the generated empirical measures are not based on
i.i.d. samples due to the resampling step of the filter.

Our results are twofold. First, we show that despite the mentioned obstacle the stan-
dard kernel density estimates still converge to the related filtering densities. The proof
of the assertion is based on Fourier analysis of the convergence result for the particle
filter.

The second result concerns a deeper analysis of the obtained convergence formula.
The convergence result is based on the assumption on the Sobolev character of the
filtering densities. We present a sufficient condition for the persistency of this Sobolev
character over time.

4.1. Convergence of kernel density estimates

To start, we recall that the particle filter generates at each time step t = 1, . . . , T , T ∈ N
the empirical measure πnt (dxt) = 1

n

∑n
i=1 δxit(dxt). This measure approximates the

related filtering distribution πt that is assumed to have the density pt(xt) = p(xt|y1:t)
with respect to the d-dimensional Lebesgue measure, i. e., πt(dxt) = pt(xt) dxt.

A carrier of the empirical measure πnt is the set of particles {xit}ni=1, n ∈ N. This
set does not constitute an i.i.d. sample from πt. If one constructs the standard kernel
density estimate on the basis of {xit}ni=1 and the selected kernel K, i. e., the estimate

p̂nt (xt) =
1
nhd

n∑
i=1

K

(
xt − xit

h

)
, (25)

we ask if p̂nt converges in the MISE to the filtering density pt, provided that the number
of particles goes to infinity.

Theorem 4.1. In the filtering problem, let {πt}Tt=0, {pt}Tt=0, T ∈ N be the sequences of
filtering distributions and corresponding filtering densities. Let pt, t ∈ {0, 1, . . . , T} be
β-Sobolev for some β ∈ N and Lt > 0, i. e., pt ∈ PS(β,Lt). Let {πnt }Tt=1, {p̂nt }Tt=1, n ∈ N
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be the sequences of the empirical measures generated by the particle filter and related
kernel density estimates (25) with the bandwidth varying as h(n) = αn−

1
2β+d for some

α > 0. Let the kernel K employed in the estimates be of order β. Then we have the
following upper bound on the MISE of p̂nt for t ∈ {1, . . . , T}:

E
[∫

(p̂nt (xt)− pt(xt))2 dxt

]
≤ C2

t · n
− 2β

2β+d (26)

where
Ct = ALtα

β + ctα
−d/2||K||. (27)

In (27), A is the constant of Lemma 3.3, ct, t ∈ {1, . . . , T} are the constants of Theo-
rem 2.3 and ||K|| is the L2 norm of the kernel K.

P r o o f . The proof employs the Fourier transform. We start by the assertion of Theo-
rem 2.3:

E[|πnt f − πtf |2] ≤ c2t ||f ||2∞
n

(28)

where we replace a general function f ∈ BC(Rdx) by the complex exponential on Rd.
Note that dx = d.

Let f(xt) = ei〈ω,xt〉, then ||f ||∞ = 1. Denoting ψnt and ψt the characteristic functions
of πnt and πt, respectively, which are defined according to formula (13), we get from (28)

E[|ψnt (ω)− ψt(ω)|2] ≤ c2t
n
,

|KF (hω)|2 · E[|ψnt (ω)− ψt(ω)|2] ≤ |KF (hω)|2 · c
2
t

n
,

E [|ψnt (ω)KF (hω)− ψt(ω)KF (hω)|2] ≤ |KF (hω)|2 · c
2
t

n
,

E
[∫
|ψnt (ω)KF (hω)− ψt(ω)KF (hω)|2 dω

]
≤ c2t

n

∫
|KF (hω)|2 dω,

E
[∫

(p̂nt (xt)− p∗t (xt))2 dxt

]
≤ c2t

nhd

∫
K2(u) du. (29)

For any density pt and its convolution p∗t = pt ∗ (h−dK(·/h)),∫
(p∗t (xt)− pt(xt))2 dxt =

1
(2π)d

∫
|ψt(ω)KF (hω)− ψt(ω)|2 dω

=
1

(2π)d

∫
|1−KF (hω)|2|ψt(ω)|2 dω. (30)

We assume that the employed kernel has order β and pt ∈ PS(β,Lt). Therefore the
right-hand side of (30) is bounded according to Lemma 3.3. Further, there is nothing
random here and we can apply the expectation with no effect to obtain

E
[∫

(p∗t (xt)− pt(xt))2 dxt

]
≤ A2h2βL2

t . (31)
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To proceed, let us consider the product measure λd ⊗ P with the corresponding
L2 norm || · ||λd⊗P = [

∫ ∫
| · |2d(λd ⊗ P ) ]1/2. We have

||p̂nt (xt)− pt(xt)||λd⊗P ≤ AhβLt +
ct

(nhd)1/2
||K|| (32)

by (29), (31) and the triangle inequality for || · ||λd⊗P .
Let the bandwidth h develop with n as h(n) = αn−

1
2β+d for some α > 0. We have

hβ = αβn−
β

2β+d . Further, (nhd)−1 = n−1α−dn
d

2β+d = α−dn−
2β

2β+d , thus (nhd)−1/2

= α−d/2n−
β

2β+d . Inequality (32) then reads as

||p̂nt (xt)− pt(xt)||λd⊗P ≤ ALtα
βn−

β
2β+d + ctα

−d/2n−
β

2β+d ||K||

≤ (ALtαβ + ctα
−d/2||K||) · n−

β
2β+d .

Squaring to obtain the MISE we get

E
∫

(p̂nt (xt)− pt(xt))2 dxt ≤ (ALtαβ + ctα
−d/2||K||)2 · n−

2β
2β+d

or in the more compact form

E
∫

(p̂nt (xt)− pt(xt))2 dxt ≤ C2
t · n

− 2β
2β+d

where Ct = ALtα
β + ctα

−d/2||K||. �

Let us discuss the theorem.

1) First of all, the theorem is proved without any assumption on the i.i.d. character
of particles constituting the empirical measures πnt . This is the crucial observation, as
we know that due to the resampling step the generated particles are not i.i.d.

2) Convergence. For t ∈ N fixed, we immediately see from (26) that the MISE of
kernel estimates goes to zero as the number of particles increases and the bandwidth
decreases accordingly, i. e., limn→∞ E

∫
(p̂nt (xt)− pt(xt))2 dxt = 0.

3) Consistency. The theorem proposes that the bandwidth develops with the number
of particles n as h(n) = αn−

1
2β+d for some α > 0, β, d ∈ N. Obviously, limn→∞ h(n) = 0,

and limn→∞ nh(n) = limn→∞ αn
2β+d−1
2β+d =∞.

4) The dimension matters. We have n−
2β

2β+d1 < n−
2β

2β+d2 for d1 < d2, and therefore
we must increase the number of particles in order to assure a given accuracy as the
dimension increases.

5) The order helps. Contrary to the previous result, we have n−
2β1

2β1+d > n−
2β2

2β2+d for
β1 < β2. Hence the greater is the order of the employed kernel, the tighter is the bound
on the related MISE, in fact, it tends towards n−1. There are techniques available for
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constructing kernels of arbitrary orders [17], however, the order of the employed kernel
is primarily driven by the Sobolev character of the filtering densities.

6) The theorem assumes that the filtering densities pt are β-Sobolev for some Lt > 0,
t ∈ {0, . . . , T}, T ∈ N and β ∈ N being constant over time. It is the question when
this assumption holds. In Section 5, we show that the Sobolev character of the filtering
densities is retained over time, if a certain condition holds on the transition kernels of
the signal process.

7) For α = 1, the specification of Ct simplifies to Ct = ALt+ct||K|| and Ct consists of
four terms. Two of them, A and ||K|| = [

∫
K2(u) du]1/2 are the constants determined

by the employed kernel. The other two, Lt and ct, develop with time. The Lt term is
discussed in Section 5.

8) The ct constant (with respect to the number of particles) comes from Theorem 2.3.
It can be computed recursively as ct = ct−1 (1 + 4||gvt ||∞/πtgt) , c0 = 1. The integral πtgt
depends on the values of the observation process and ct generally develops exponentially
with time, see the remark in concluding Section 7.

5. SOBOLEV CHARACTER OF FILTERING DENSITIES

In Theorem 4.1, we have assumed that the filtering densities pt, t ∈ {0, . . . , T}, T ∈ N
are β-Sobolev over time. This assumption can be verified for p0, but for other time
instants t > 0 a direct verification is typically impossible. That is why we are interested
in a practical tool for performing the verification indirectly so that the assumptions for
the convergence result of Theorem 4.1 were fulfilled. As a result, we present a sufficient
condition on the densities of transition kernels of the signal process such that the Sobolev
character of the filtering densities is retained over time.

In the statement below, we work with the prediction and update formulas, (6) and
(7), respectively, of Section 2.3. We rewrite these formulas in the more compact form
using the following shortcuts: pt(xt) = p(xt|y1:t−1), pt(xt) = p(xt|y1:t) (in fact, this
shortcut was already used in Theorem 4.1) and gt(xt) = gt(yt|xt) = gvt (yt− ht(xt)) for
the respective densities; and πtgt =

∫
gt(yt|xt)p(xt|y1:t−1) dxt =

∫
gt(xt)pt(xt) dxt for

the normalizing integrals. As we assume that gvt are bounded and strictly positive we
have πtgt finite and πtgt > 0. Using the introduced shortcuts, (6) and (7) write as

pt(xt) =
∫
Kt−1(xt|xt−1)pt−1(xt−1) dxt−1, (33)

pt(xt) =
gt(xt)pt(xt)

πtgt
. (34)

Let us recall explicitly, that we assume that the transition kernel has a density, i. e.,
Kt−1(dxt|xt−1) = Kt−1(xt|xt−1) dxt. With a slight abuse of notation we use the same
symbol Kt−1 for denoting the kernel, the corresponding conditional measure and its
density. However, the density is always indicated as a function including its argument
xt, i. e., as Kt−1(xt|xt−1). The conditional distribution induced by the kernel Kt−1 is
then denoted as Kt−1(dxt|xt−1).
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Definition 5.1. Let Kt−1 be the transition kernel in the filtering problem for time t−1,
t− 1 ∈ N0. As the conditional characteristic function F [Kt−1](ω|xt−1) of the transition
kernel Kt−1 we denote the characteristic function of the conditional distribution induced
by this kernel, i. e.,

F [Kt−1](ω|xt−1) =
∫
ei〈ω,xt〉Kt−1(xt|xt−1) dxt =

∫
ei〈ω,xt〉Kt−1(dxt|xt−1).

Theorem 5.2. In the filtering problem, let p0 ∈ PS(β,L0). Let {Kt−1, t ∈ N} be the
set of the transition kernels and {F [Kt−1], t ∈ N} be the set of the corresponding
conditional characteristic functions. For all t ∈ N, let F [Kt−1] be bounded by a function
Kb : Rd → C in such a way that for any xt−1 ∈ Rd and ω ∈ Rd

|F [Kt−1](ω|xt−1)| ≤ |Kb(ω)|. (35)

Let the function Kb satisfy (23) for some β ∈ N and LKb > 0. Then the filtering densities
pt are β-Sobolev for all t ∈ N, i. e., pt ∈ PS(β,Lt), with the recurrence for Lt written as

Lt = ||gvt ||∞LKb/πtgt (36)

where ||gvt ||∞ = supu{|gvt (u)|}.

P r o o f . The theorem holds for p0 by the assumption. Let t ∈ N, then multiplying both
sides of (33) by the complex exponential we get from the prediction formula

ei〈ω,xt〉 pt(xt) = ei〈ω,xt〉
∫
Kt−1(xt|xt−1)pt−1(xt−1) dxt−1.

By integration, the left-hand side gives the characteristic function ψt(ω) of pt(xt), i. e.,

ψt(ω) =
∫
ei〈ω,xt〉pt(xt) dxt.

The right-hand side has then form∫ ∫
ei〈ω,xt〉Kt−1(xt|xt−1)pt−1(xt−1) dxt−1 dxt

=
∫
pt−1(xt−1)

(∫
ei〈ω,xt〉Kt−1(xt|xt−1) dxt

)
dxt−1,

=
∫
pt−1(xt−1)F [Kt−1](ω|xt−1) dxt−1.

The equality of two complex numbers is equivalent to the equality of their complex
conjugates. Hence we can multiply both sides by their complex conjugates with the
equality retained. This gives us the expression

|ψt(ω)|2 =
∣∣∣∣∫ pt−1(xt−1)F [Kt−1](ω|xt−1) dxt−1

∣∣∣∣2 .
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Now, by the Jensen’s inequality for the absolute value and assumed boundedness of
F [Kt−1], we have

|ψt(ω)|2 ≤
(∫
|F [Kt−1](ω|xt−1)| pt−1(xt−1) dxt−1

)2
≤

(
|Kb(ω)|

∫
pt−1(xt−1) dxt−1

)2
= |Kb(ω)|2.

Thus, ∫
||ω||2β |ψt(ω)|2 dω ≤

∫
||ω||2β |Kb(ω)|2 dω ≤ (2π)dL2

Kb
. (37)

The above formula shows that pt ∈ P(β,LKb )
for any t ∈ N. We proceed with the

specification of the Sobolev constant Lt of the update (filtering) density pt.
In Section 2.2 in formula (3), there was stated that the function gt(xt) of the update

formula (34) has the form gt(xt) = gvt (yt − h(xt)). Function gvt is the density of the
noise term in the observation process and is assumed to be bounded and strictly positive.
Thus, regardless of the form of ht, we have supxt,yt

{|gvt (yt − h(xt))|} = ||gvt ||∞ < ∞
and 0 < πtgt <∞.

Again, multiplying the update formula (34) by the complex exponential, integrating
and multiplying by the respective conjugates gives us

(πtgt)
∫
ei〈ω,xt〉pt(xt) dxt =

∫
ei〈ω,xt〉gt(xt) pt(xt) dxt,

||ω||2β |ψt(ω)|2 ≤ ||gvt ||2∞
(πtgt)2

||ω||2β |ψt(ω)|2,

(2π)−d
∫
||ω||2β |ψt(ω)|2 dω ≤

||gvt ||2∞L2
Kb

(πtgt)2
= L2

t ,

which concludes the proof. �

The theorem tells us that, in the particle filter, the β-Sobolev character of the filtering
densities is retained over time if the set of the conditional characteristic functions of
transition kernels {F [Kt−1](ω|xt−1), t ∈ N} is uniformly bounded.

6. DISCUSSION

When finalizing our paper we became aware about publishing the paper [3] (available also
at arXiv:1111.5866 ). This paper is particularly important for us as its topic significantly
overlaps with the one presented herein. Given this fact, it is worth to discuss explicitly
the differences between the results of the two works.

The results of [3] in Section 4 split into two groups. The first comprises a.s. con-
vergence results – Theorems CM-4.1, CM-4.2, CM-4.3 and CM-4.5; all drawing on
Lemma CM-4.11. The second group comprises the results for integrated versions (w.r.t.

1Coincidentally, the concerned theorems of [3] happen to be numbered as 4.x, which is also the case
of the main theorems of this paper. To make a clear distinction between them, we denote the theorems
of [3] as CM-4.x and the theorems of this paper as DC-4.x and DC-5.x.
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the probability and Lebesgue measures) – Theorems CM-4.4 and CM-4.6. Note that
Theorem CM-4.5 falls into the first group as integration is provided only w.r.t. the
Lebesgue measure. Results of Section 5 are aimed at applications and will not be dis-
cussed here.

Our theorems relates mainly to the second group. In fact, we have presented a stronger
version of Theorem CM-4.4 due to the diferent assumption on the estimated density:
the Sobolev character instead of the Lipschitz continuity. Let us discuss this in more
details.

First of all, Theorems CM-4.4 and CM-4.6 are restricted to densities and kernels with
compact supports, thus, for example, they do not cover the basic Gaussian case. It is
clear that the constants cα,K,t and cK,t grow to infinity as the volume of K does. The
reason for introducing the compact support requirement is that (4.13) of [3] cannot be
simply integrated w.r.t. Lebesgue measure on Rd as the right-hand side would turn to
an uninformative unlimited upper bound. In our Theorem DC-4.1, we are not restricted
by these limitations. In our approach, the behavior of pt with respect to integration
over Rd is induced by the requirement on its Sobolev character. Similarly, this is also
the case for the employed convolution kernel when its behavior is determined by its
order.

Further, for β = 1, the bound in our Theorem DC-4.1 is tighter than that of Theorem
CM-4.4 and equals the one presented in Theorem CM-4.6. Indeed, in Theorem CM-4.6
it is required that the filtering density has bounded partial derivatives up to order 2,
which implies that the density is 1-Sobolev. The bound in Theorem CM-4.6 writes
b2 = n−4/2(dx+2); see the discussion in paragraph 4.4 of [3] for transforming k to the
number of particles n. Our bound for β = 1 then writes b1 = n−2/(2+d), so b2 = b1 (in
both cases the constants are omitted).

Our Theorem DC-5.1 corresponds to Remark 3.4 of [3]. The difference is that we are
more specific. In Remark 3.4, it is required that gytt (gvt in our notation) is bounded
similarly as in our case, but we do not have any requirement on derivatives of gvt . Speak-
ing about the transition kernels, our requirement is that they are uniformly bounded by
a Sobolev function of the same order as the convolution kernel.

To sum up, due to our assumptions we are able to obtain stronger results for MISE
in terms of a general integration domain. Moreover, in [3] the transition to a.s. versions
comes from the integrated versions via Lemma CM-4.1. Thus, using this lemma we
might obtain the a.s. version for ISE (the counterpart of Theorem CM-4.5) without
further restrictions on filtering densities and the used convolution kernel.

7. CONCLUSION

In the paper, we have demonstrated that the standard methodology of kernel density
estimation can be successfully applied in the area of particle filtering. We have proved
that the kernel density estimates, which are constructed on the basis of particles gener-
ated by the particle filter, converge in the MISE to the theoretical filtering density at
each time instant of the operation of the filter. In fact, we presented an upper bound on
the MISE convergence rate which then implies the result, provided that the number of
particles goes to infinity. Moreover, we have stated the sufficient condition for retaining
the Sobolev character of the filtering densities over time.
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In Theorem 2.3, the constant ct is known that it typically grows exponentially with
time, see e. g., [4] p. 87, therefore Ct of (27) does so; and, if one wants to assure a given
accuracy of the filtering density approximation, then the number of generated particles
must increase exponentially too. This is an unpleasant property of the particle filter.
On the other hand, there are results available, e. g., [12] or [8], that under additional
conditions, uniformly convergent particle filters can be constructed, which means that
ct of (9) is bounded over time.

The constant Ct depends on Lt. Under the conditions of Theorem 5.2, we know how
Lt develops with time. In fact, this development is similar to the development of ct
constant and we face again the risk of an exponential growth of Lt. The study of the
conditions when Lt evolves uniformly over time is an issue for the future research in this
field.

Finally, let us add that in the Fourier domain, the presented convergence result can
be straightforwardly extended on the convergence of partial derivatives of the kernel
density estimates to the related partial derivatives of the filtering densities.
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et Statistiques 37 (2001), 2, 155–194. DOI:10.1016/s0246-0203(00)01064-5

[13] C. Musso, N. Oudjane, and F. Le Gland: Improving regularised particle filters. In:
Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.),
Chapter 12, Springer 2001, pp. 247–272. DOI:10.1007/978-1-4757-3437-9 12

[14] E. Parzen: On estimation of a probability density function and mode. Ann. Math. Statist.
33 (1962), 3, 1065–1076. DOI:10.1214/aoms/1177704472
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