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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 5 , P AGES 8 2 4 – 8 3 5

ON APPROXIMATION OF STABILITY RADIUS
FOR AN INFINITE-DIMENSIONAL FEEDBACK
CONTROL SYSTEM

Hideki Sano

In this paper, we discuss the problem of approximating stability radius appearing in the de-
sign procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical
system. The calculation of stability radius needs the value of H∞-norm of a transfer function
whose realization is described by infinite-dimensional operators in a Hilbert space. From the
computational point of view, we need to prepare a family of approximate finite-dimensional
operators and then to calculate the H∞-norm of their transfer functions. However, it is not
assured that they converge to the value of H∞-norm of the original transfer function. The
purpose of this study is to justify the convergence. In a numerical example, we treat parabolic
distributed parameter systems with distributed control and distributed/boundary observation.

Keywords: distributed parameter system, finite-dimensional controller, stability radius,
transfer function, semigroup

Classification: 93D15, 93C25

1. INTRODUCTION

In the field of control of distributed parameter systems, the linear system described by
the following evolution equation with output equation has been used for a long time.

ż(t) = −Az(t) +Bu(t), t > 0, z(0) = z0, (1)
y(t) = Cz(t), t > 0, (2)

where −A is the infinitesimal generator of a C0-semigroup on a real Hilbert space H
with inner product 〈 · , · 〉 and norm ‖ · ‖. B : Rm → H is a bounded input operator,
and C : D(C) ⊂ H → Rp is a bounded/unbounded output operator. z(t) ∈ H is
the state variable, u(t) ∈ Rm the input variable, and y(t) ∈ Rp the output variable.
For system (1), (2), the stabilization problem/the optimal control problem by static
controllers have been investigated by many researchers (see e. g. [4, 7] and the references
therein). Also, the stabilization problem by finite-dimensional dynamic controllers has
been widely studied. In the following, we briefly survey several works related to the latter
stabilization problem. In this paper, we especially treat a problem that remains in the
design method based on stability radius.
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In general, when one constructs a finite-dimensional model for an infinite-dimensional
system and applies a finite-dimensional controller designed for it to the original infinite-
dimensional system, spillover phenomenon may be occured by the influence of unmodeled
modes. Sakawa firstly introduced two kinds of finite-dimensional observers for linear dif-
fusion systems to reduce the influence of unmodeled modes for the closed-loop system
with the finite-dimensional controller [12]. After that, Balas called one of them as the
residual mode filter (RMF), and clarified that the RMF plays an essential role for the
construction of finite-dimensional stabilizing controllers [1]. Moreover, it was shown in
[13] that the results could be extended to the system with bounded input operator and
Aγ-bounded output operator. On the other hand, Nambu gave the design method of
infinite-dimensional stabilizing controllers applicable to linear parabolic systems under
boundary control and observation, and further accomplished finite-dimensionalization
of the obtained controllers [8]. Schumacher gave the direct design method of finite-
dimensional controllers for a wide class of linear time-invariant systems [16], in which
the eigenfunctions of the operator −A+BF were used. Moreover, Schumacher’s design
method was extended to linear parabolic systems with unbounded control and observa-
tion by Curtain [3]. Also, Lasiecka gave finite element approximation of Luenberger’s
observer based controllers for linear parabolic systems with unbounded input and out-
put operators [7, Chapter 4]. Thus, the existence of finite-dimensional controllers was
assured theoretically for the systems mentioned above, however, these desgin methods
had a common weak point that one could not give the order of controllers a priori, that
is, the order was supposed to be taken sufficiently large, except the design method based
on stability radius by El Jai and Pritchard [5, Chapter 1].

Although the method based on stability radius [5, Chapter 1] is very simple, in
order to calculate stability radius we need the value of H∞-norm of a transfer function
whose realization is described by infinite-dimensional operators in a Hilbert space. From
the computational point of view, we need to prepare a family of approximate finite-
dimensional operators and then to calculate the H∞-norm of their transfer functions.
Then, we have a question of whether or not they converge to the value of H∞-norm of
the original transfer function, which gives a motivation of this paper. The purpose of
this study is to justify the convergence, that is, to show a theory of approximation for
Theorem 1.1 below, and further to give a numerical example to illustrate the assertion.
Here, we note that in [6] the method via numerical analysis has been proposed for
approximation of stability radii for high order finite-dimensional systems.

To explain the existing result [5] briefly, we shall consider the case where the operator
C is bounded, i. e., D(C) = H, and the operator A is defined by

Af =
∞∑
i=1

λi〈f, ϕi〉ϕi, f ∈ D(A), (3)

D(A) =
{
f ∈ H ;

∞∑
i=1

λ2
i 〈f, ϕi〉

2
< +∞

}
,

where {λi, i ≥ 1} is a sequence of real numbers such that λ1 < λ2 < · · · < λi <
· · · , limi→∞ λi = ∞, and {ϕi, i ≥ 1} forms a complete orthogonal system in H. It is
clear that the operator A is self-adjoint. Then, it follows from Hille-Yosida’s theorem [9]
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that −A generates a C0-semigroup e−tA on H whose expression is given by

e−tAf =
∞∑
i=1

e−λit〈f, ϕi〉ϕi, t ≥ 0, f ∈ H.

In order to decompose system (1), (2), we use the orthogonal projection Pk defined by
Pkf =

∑k
i=1 〈f, ϕi〉ϕi. Using the operators Pl and I − Pl, where l is a positive integer,

we decompose the state variable z(t) as z(t) = z1(t) + z2(t), where z1(t) := Plz(t),
z2(t) := (I − Pl)z(t). Also, the space H is expressed as

H =

dim=l︷︸︸︷
PlH ⊕

dim=∞︷ ︸︸ ︷
(I − Pl)H .

Then, system (1), (2) is equivalently expressed as follows (see e. g. [1]):
ż1(t) = −A1z1(t) +B1u(t), z1(0) = z01,

ż2(t) = −A2z2(t) +B2u(t), z2(0) = z02,

y(t) = C1z1(t) + C2z2(t),

where
A1 := PlAPl,
B1 := PlB,
C1 := CPl,
z01 := Plz0,

A2 := (I − Pl)A(I − Pl),
B2 := (I − Pl)B,
C2 := C(I − Pl),
z02 := (I − Pl)z0.

In the above, note that the operator A2 is unbounded, whereas all the other operators are
bounded. Since the finite-dimensional Hilbert space PlH is identified with the Euclidean
space Rl with respect to the basis {ϕ1, ϕ2, . . . , ϕl}, each element in PlH is identified with
an l-dimensional vector, and the operators A1, B1, and C1 are identified with matrices
with appropriate size.

Assumption 1.

(i) The integer l is chosen such that the eigenvalues of the matrix −A1, σ(−A1)
contains all unstable eigenvalues of the operator −A.

(ii) The pair (−A1, B1) is stabilizable and the pair (C1,−A1) is detectable (see e. g.
[17] for the definitions and the related theorems).

Under (ii) of Assumption 1, it is possible to choose a matrix F1 such that −A1−B1F1

is Hurwitz stable [17], since the pair (−A1, B1) is stabilizable. Similarly, it is possible to
choose a matrix G1 such that −A1−G1C1 is Hurwitz stable, since the pair (C1,−A1) is
detectable. Here, let us consider the following observer-based controller [17] for system
(1), (2): {

ẇ1(t) = −A1w1(t) +B1u(t) +G1(y(t)− C1w1(t)), w1(0) = w10,

u(t) = −F1w1(t).
(4)
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Then, by introducing the error vector e1(t)T := z1(t)T −w1(t)T , the closed-loop system
consisting of system (1), (2) and the controller (4) is written as

ξ̇(t) = (A+ BKC)ξ(t), ξ(0) = ξ0, (5)

where the state ξ(t) := [e1(t)T , z1(t)T , z2(t)]T is in the real Hilbert space Z := Rl×Rl×
(I − Pl)H, and the operators A, B, C, and K are defined by

A =

 −A1 −G1C1 0 0
B1F1 −A1 −B1F1 0
B2F1 −B2F1 −A2

 , (6)

B =

 −G1

0
0

 , C =
[

0 0 C2

]
, K = 1.

Then, the following theorem is known.

Theorem 1.1. [5] Suppose that Assumption 1 is satisfied. Then, the operatorA defined
by (6) generates an exponentially stable C0-semigroup etA on Z. In addition, if the
condition

‖C(·I −A)−1B‖∞ := sup
ω∈R
‖C(jωI −A)−1B‖ < 1, (7)

that is,

sup
ω∈R
‖C2(jωI+A2)−1B2F1(jωI+A1 +B1F1)−1(jωI+A1)(jωI+A1 +G1C1)−1G1‖ < 1

is satisfied, the closed-loop operator A + BKC of (5) also generates an exponentially
stable C0-semigroup et(A+BKC) on Z. In other words, the control law (4) becomes a
finite-dimensional stabilizing controller for system (1), (2).

The proof of Theorem 1.1 is due to the result with respect to the stability radius
[2, 11]. As shown in [11, 2], the stability radius rc(A;B, C) of the closed-loop system (5)
is calculated as

rc(A;B, C) =
1

supω∈R ‖G(jω)‖
=

1
‖G(·)‖∞

,

where G(jω) := C(jωI − A)−1B. Therefore, when rc(A;B, C) > ‖K‖ = 1, that is, the
condition (7) holds, the conclusion of the theorem immediately follows.

In Theorem 1.1, we note that the algorithm needs iteration of infinite times to check
the condition (7), since it contains the infinite-dimensional operators A2, B2, and C2.
In Section 2, we discuss whether or not it is possible to approximate the operators A2,
B2, and C2 of the theorem by finite-dimensional operators. The novelty of this paper is
the point that it proves the convergence of approximate stability radius to the original
one in the feedback control system. Moreover, instead of (2), we discuss the case with
unbounded output operator such as

y(t) = C̃(A+ c)γz(t), 0 < γ < 1, (8)

where A is the unbounded operator defined by (3), C̃ : H → Rp is a bounded linear
operator, and c is a constant chosen such that λ1 + c > 0.
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Remark 1.2. In [10], the finite-dimensional version of this theorem was given. That
is, the design method of low order stabilizing controllers was proposed for high order
finite-dimensional systems, by using stability radius.

Remark 1.3. The condition (7) is a sufficient condition for spillover phenomenon not to
be occured for the feedback control system consisting of system (1), (2) and the control
law (4).

2. MAIN RESULT

By using the orthogonal projection Pk defined in Section 1, we decompose the state
variable z(t) as z(t) = z1(t)+z2a(t)+z2b(t), where z1(t) := Plz(t), z2a(t) := (Pn−Pl)z(t),
z2b(t) := (I − Pn)z(t), n > l. Note that z2a(t) + z2b(t) = z2(t). Also, the space H is
expressed as

H =

dim=l︷︸︸︷
PlH ⊕

dim=n−l︷ ︸︸ ︷
(Pn − Pl)H ⊕

dim=∞︷ ︸︸ ︷
(I − Pn)H︸ ︷︷ ︸

=(I−Pl)H

.

Then, the infinite-dimensional operators A2, B2, and C2 are equivalently expressed as
follows:

A2 =
[
A2a 0

0 A2b

]
, B2 =

[
B2a

B2b

]
, C2 =

[
C2a C2b

]
,

where A2a := (Pn − Pl)A(Pn − Pl), B2a := (Pn − Pl)B, C2a := C(Pn − Pl), A2b :=
(I − Pn)A(I − Pn), B2b := (I − Pn)B, C2b := C(I − Pn). Here, note that the operators
A2a, B2a, and C2a are identified with matrices with appropriate size. Then, the operators
A, B, and C of (6) are expressed as

A =


−A1 −G1C1 0 0 0

B1F1 −A1 −B1F1 0 0
B2aF1 −B2aF1 −A2a 0
B2bF1 −B2bF1 0 −A2b

 , (9)

B =


−G1

0
0
0

 , C =
[

0 0 C2a C2b

]
.

Further, we set the truncated operators as

An =

 −A1 −G1C1 0 0
B1F1 −A1 −B1F1 0
B2aF1 −B2aF1 −A2a

 , (10)

Bn =

 −G1

0
0

 , Cn =
[

0 0 C2a

]
.
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Now, let us define two transfer functions as follows:

G(jω) = C(jωI −A)−1B, (11)
Gn(jω) = Cn(jωI −An)−1Bn. (12)

The following theorem and remarks are our main result in this paper.

Theorem 2.1. Suppose that Assumption 1 is satisfied. Then, the operator An defined
by (10) generates a C0-semigroup etAn with norm bound ‖etAn‖ ≤Me−νt, t ≥ 0 on the
Euclidean space Zn := Rl × Rl × Rn−l, where M ≥ 1 and ν > 0 are some constants
independent of the integer n. Moreover, there holds

‖Gn(·)‖∞ → ‖G(·)‖∞ as n→∞,

that is, rc(An;Bn, Cn)→ rc(A;B, C) as n→∞. Accordingly, if ‖Gn(·)‖∞ < 1 is satisfied
for sufficiently large n, the control law (4) works as a finite-dimensional stabilizing
controller for system (1), (2).

P r o o f . By Assumption 1, the C0-semigroup generated by the matrix

A1 :=
[
−A1 −G1C1 0

B1F1 −A1 −B1F1

]
has a norm bound ‖etA1‖ ≤ M1e

−ν1t, t ≥ 0, where M1 ≥ 1 and 0 < ν1 < λl+1

are some constants independent of the integer n. Also, the C0-semigroup generated
by the matrix −A2a has a norm bound ‖e−tA2a‖ ≤ e−λl+1t, t ≥ 0. Here, noting that
‖B2aF1‖ ≤ ‖B‖‖F1‖, we see that the first assertion holds with M = M1(1+ 2M1‖B‖‖F1‖

λl+1−ν1 )
and ν = ν1.

Next, we estimate the H∞-norm of G(jω)−Gn(jω). From (9)–(12), we have

G(jω) = C2a(jωI +A2a)−1B2aH(jω) + C2b(jωI +A2b)−1B2bH(jω),

Gn(jω) = C2a(jωI +A2a)−1B2aH(jω),

by straightforward calculation, where

H(jω) := −F1(jωI +A1 +B1F1)−1(jωI +A1)(jωI +A1 +G1C1)−1G1.

From these, it follows that

G(jω)−Gn(jω) = C2b(jωI +A2b)−1B2bH(jω).

By Assumption 1, it is easy to see that ‖H(·)‖∞ < +∞. Also, noting that ‖e−tA2b‖ ≤
e−λn+1t, t ≥ 0, and that by Hille-Yosida’s theorem [9, Theorem 1.5.3 and Remark 1.5.4],
‖(λI +A2b)−k‖ ≤ 1

(Reλ+λn+1)k
, Reλ > −λn+1, k = 1, 2, . . . , we have

‖(·I +A2b)−1‖∞ = sup
ω∈R
‖(jωI +A2b)−1‖ ≤ 1

λn+1
→ 0 as n→∞. (13)
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Moreover noting that ‖B2b‖, ‖C2b‖ → 0 as n→∞, we have

|‖G(·)‖∞ − ‖Gn(·)‖∞| ≤ ‖G(·)−Gn(·)‖∞ ≤ ‖C2b‖‖(·I +A2b)−1‖∞‖B2b‖‖H(·)‖∞ → 0

as n→∞, which implies that the second assertion holds.
From the second assertion, it follows that ‖G(·)‖∞ < 1 if ‖Gn(·)‖∞ < 1 for sufficiently

large n, which implies from Theorem 1.1 that the third assertion holds. �

Remark 2.2. When the output equation (8) is used instead of (2), we obtain the similar
result as in Theorem 2.1. In this case, the control law (4) is replaced as{

ẇ1(t) = −A1w1(t) +B1u(t) +G1(y(t)− C̃1(A1 + c)γw1(t)), w1(0) = w10,

u(t) = −F1w1(t),
(14)

as a result, the operators C1, C2a, and C2b are replaced as C̃1(A1 + c)γ , C̃2a(A2a + c)γ ,
and C̃2b(A2b + c)γ in the operators (9), (10). Therefore, we need to use the following
estimate instead of (13):

‖(A2b + c)γ(·I +A2b)−1‖∞ ≤
(λn+1 + c)γ + λγn+1Γ(1− γ)

λn+1
→ 0 as n→∞, (15)

where Γ(·) is the gamma function. For the derivation of (15), see [14].

Remark 2.3. System (1), (2) is the parabolic distributed parameter system which con-
tains a diffusion process and a transport-diffusion process, and so on. The assertions of
Theorem 2.1 also hold in the case where the operator A is replaced by a Riesz-spectral
operator, that is, for the system described by a flexible beam equation.

Remark 2.4. In Theorem 2.1, one cannot give a priori estimate with respect to n for
assuring ‖Gn(·)‖∞ < 1.

Remark 2.5. According to the procedure in [5], we wrote the closed-loop system con-
sisting of system (1), (2) and the controller (4) as equation (5). But, we may consider
the other expression such as

ξ̇(t) = (A′ + B′K′C′)ξ(t), ξ(0) = ξ0, (16)

where the operators A′, B′, C′, and K′ are defined by

A′ =


−A1 −G1C1 0 −G1C2a −G1C2b

B1F1 −A1 −B1F1 0 0
0 0 −A2a 0
0 0 0 −A2b

 , (17)

B′ =


0
0
B2a

B2b

 , C′ =
[
F1 −F1 0 0

]
, K′ = 1.
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Based on this expression, we can obtain the similar results as in Theorems 1.1 and 2.1.
Especially, in the case of single input and single output system, noting that the transfer
function G′(jω) := C′(jωI −A′)−1B′ is equal to the transfer function G(jω) defined by
(11), we have the same stability radius for the closed-loop systems (5) and (16), i. e.,
rc(A′;B′, C′) = rc(A;B, C). As a result, we see that rc(A′n;B′n, C′n) = rc(An;Bn, Cn)
holds for approximate operators.

3. NUMERICAL EXAMPLE

We consider the following parabolic distributed parameter system:
zt(t, x) = εzxx(t, x) + αzx(t, x) + µz(t, x) + b(x)u(t), t > 0, x ∈ (0, 1),
zx(t, 0) = 0, z(t, 1) = 0, t > 0,
z(0, x) = z0(x), x ∈ [0, 1],

(18)

where z(t, x) ∈ R is the temperature at time t and at the point x ∈ [0, 1], u(t) ∈
R is the control input, and, ε > 0 and α, µ ≥ 0 are physical parameters. b(x) :=
1
r1[x0−r/2,x0+r/2](x) denotes the actuator influence function, where 1[ · , · ](x) denotes the
characteristic function. We first consider the following observation for system (18):

y(t) =
∫ 1

0

c(x)z(t, x) dx, (19)

where c(x) := 1
r1[x1−r/2,x1+r/2](x) is the sensor influence function.

Let β := α
ε . We formulate system (18), (19) in a Hilbert space L2

β(0, 1), where
L2
β(0, 1) is the weighted L2-space with inner product

〈ϕ,ψ〉β :=
∫ 1

0

ϕ(x)ψ(x)eβx dx, ϕ, ψ ∈ L2
β(0, 1).

Setting Lϕ = −εϕ′′−αϕ′−µϕ, we define the unbounded operator A : D(A) ⊂ L2
β(0, 1)→

L2
β(0, 1) as

Aϕ = Lϕ, ϕ ∈ D(A),
D(A) = {ϕ ∈ H2(0, 1) ; ϕ′(0) = 0, ϕ(1) = 0 }.

Then, A is a self-adjoint operator in L2
β(0, 1) and it has the following eigenvalues and

eigenfunctions:

λi = ω2
i ε+

α2

4ε
− µ,

ϕi(x) =
(

1
2

+
ε

α
cos2 ωi

)− 1
2

e−
α
2εx sinωi(1− x),

i ≥ 1, where ω1 < ω2 < · · · < ωi < · · · are the solutions of tanω = − 2ε
α ω on ω > 0, and

{ϕi}∞i=1 forms a complete orthogonal system in L2
β(0, 1). Note that the operator −A
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generates an analytic semigroup e−tA on L2
β(0, 1) whose growth bound is equal to −λ1.

If −λ1 > 0, it is clear that system (18), (19) is unstable. Here, by defining the bounded
operators B : R→ L2

β(0, 1) and C : L2
β(0, 1)→ R as

Bv = bv, v ∈ R,

Cζ = 〈e−β·c, ζ〉β , ζ ∈ L2
β(0, 1),

system (18), (19) is expressed as in (1), (2).
Next, we consider the following boundary observation for system (18):

y(t) = zx(t, 1). (20)

In this case, we can formulate the observation equation (20) as

y(t) = C̃(A+ c)γz(t), (21)

where γ := 3
4 + ε′ ∈ ( 3

4 , 1), and C̃ : L2
β(0, 1)→ R is the bounded operator defined by

C̃ξ = 〈 − 1
ε (A+ c)

1
4−ε

′
h, ξ〉β , ξ ∈ L2

β(0, 1).

In the above, h ∈ H2(0, 1) is the unique solution of the boundary value problem

(L+ c)h = 0 in (0, 1), h′(0) = 0, h(1) = e−β .

Especially, when c = µ, the solution is concretely given by h(x) = e−β . For the derivation
of (21), see e. g. [15].

Now, let ε = 0.1, α = 0, µ = 1, x0 = 0.8, x1 = 0.4, r = 0.02, and ε′ = 0.15. Then, the
eigenvalues and eigenfunctions of the operator A become λi = 0.1(i− 1

2 )2π2−1, ϕi(x) =√
2 cos(i− 1

2 )πx, i ≥ 1. As a result, we see that −A has one unstable eigenvalue. Next,
by setting l = 3, we can derive two models (−A1, B1, C1) and (−A1, B1, C̃1(A1 + µ)γ)
that satisfy Assumption 1. In fact, these models are controllable and observable [17],
and they correspond to the low order finite-dimensional models of system (18), (19) and
system (18), (20). For each model, let us choose F1 as an optimal regulator gain [17]
and choose G1 as an optimal filter gain [17], with the weights Q = 2I3 and R = 1. Then,
for the model (−A1, B1, C1), we have

F1 =
[

5.3149 −0.1541 0.1733
]
, G1 =

 2.3165
−0.0533
−0.1680

 ,
σ(−A1 −B1F1) = {−0.8102,−1.9880,−5.5814 },
σ(−A1 −G1C1) = {−1.1507,−1.8157,−5.5804 },

where σ(−A1−B1F1) denotes the set of eigenvalues of the matrix −A1−B1F1. Similarly,
for the model (−A1, B1, C̃1(A1 + µ)γ), we have

F1 =
[

5.3149 −0.1541 0.1733
]
, G1 =

 −4.3337
0.2356
−0.5369

 ,
σ(−A1 −B1F1) = {−0.8102,−1.9880,−5.5814 },
σ(−A1 −G1C̃1(A1 + µ)γ) = {−0.8075,−2.8760,−19.1124 }.
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For the both cases, we use the same notation Gn to indicate the transfer functions of
approximate feedback control systems. Figures 1 and 2 show that the value of ‖Gn(·)‖∞
converges to some value less than 1 as n goes to infinity, which means from Theorem 2.1
that the control law (4) (resp. the control law (14)) works as a finite-dimensional sta-
bilizing controller for system (18), (19) (resp. system (18), (20)), by making choice of
such l, F1, and G1. Here, note that the convergence speed of the case with boundary
observation (20) is late compared with that of the case with distributed observation (19).
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Fig. 1. The case of distributed observation (19). ‖G100‖∞ = 0.2838 (< 1).
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Fig. 2. The case of boundary observation (20). ‖G200‖∞ = 0.8160 (< 1).
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The difference is caused by the estimates (13) and (15). In the numerical simulation, we
used MATLAB Control System Toolbox.

4. CONCLUSIONS

In this paper, in connection with the work of [5], we studied the problem of approximat-
ing stability radius appearing in the design of finite-dimensional stabilizing controllers
for an infinite-dimensional dynamical system. From the computational point of view,
we needed to prepare a family of approximate finite-dimensional operators and then to
calculate the H∞-norm of their transfer functions. Theorem 2.1 assures that they con-
verge to the value of H∞-norm of the original transfer function. In the future, we plan
to study the similar problem for the case where the system operator is not expressed by
a Riesz-spectral operator as well as for the case with input delay.
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