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Abstract. In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias
stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-
Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions
on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view.
Our method is based on solving nonlinear equations via homotopy method together with
Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics
at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific
practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally,
two examples illustrate our theoretical results.
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1. Introduction

In 1940, Ulam [22] gave a talk about the stability theory of functional equations

in a conference at Wisconsin University. The Ulam problem is: Under what condi-

tions does there exist an additive mapping near an approximately additive mapping?

Thereafter, Hyers [11] answered the Ulam problem in Banach spaces, which was

called Ulam-Hyers stability. In 1978, Rassias [18] introduced a generalization of the

Ulam-Hyers stability of mappings by considering variables, which was named Ulam-

Hyers-Rassias stability. Ulam’s stability problem attracted many famous researchers,
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for example Cădariu [7] and Jung [13], among others. For more recent contributions

on this topic, one can see [2], [6], [9], [10], [12], [15], [16], [17], [19], [23], [24] and

references therein.

This phenomenon can be described by some practical problems: a travel by

a space vehicle between two points, an aircraft or a missile which may oscillate

around a mathematically unstable course yet its performance may be acceptable,

a chemical process of keeping the temperature within certain bounds, etc. Thus,

the notion of practical stability of nonlinear equations [14], [20] has attracted more

and more attention under such significant considerations. However, there are only

few papers concerning the Ulam-Hyers-Rassias stability for nonlinear equations on

bounded subsets. Motivated by [14], [18] we consider more general stability, prac-

tical Ulam-Hyers-Rassias stability, for nonlinear equations. Now we are ready to

formulate our problem.

Let X and Y be Banach spaces. Consider a mapping F ∈ C1(X,Y ). The problem

of a practical Ulam-Hyers-Rassias stability (PUHRS for short) of F can be formulated

as follows:

PUHRS: There is a function ϕ ∈ C(R2
+,R+) with ϕ(r, 0) = 0 for any r ∈ R+,

nondecreasing in each variable such that for any x ∈ X and y ∈ F (X) there is an

xy ∈ X such that F (xy) = y and |x− xy | 6 ϕ(|x|, |y − F (x)|).

There is no sense in involving also |y| in the function ϕ, since

|y| 6 |y − F (x)| + |F (x)|

and |F (x)| is controlled by |x| in many cases. If ϕ(r1, r2) is independent of r1, so

ϕ(r1, r2) = ϕ(r2), then we get the Ulam-Hyers-Rassias stability (UHRS for short)

of F .

The meaning of PUHRS consists in a restriction of UHRS to bounded subsets:

If F is PUHRS then it holds:

For anyM > 0 there is a nondecreasing function ϕM ∈ C(R+,R+) with ϕM (0) = 0

such that for any x ∈ X , |x| 6 M , and y ∈ F (X), |y| 6 M , there is an xy ∈ X such

that F (xy) = y and |x− xy | 6 ϕM (|y − F (x)|).

Indeed, we take ϕM (r) = ϕ(M, r). Moreover, we may take ϕM (r) = cMr for

cM > 0 in many reasonable cases (see Corollary 2.3 below).

In what follows, we give results answering these interesting questions from a non-

linear functional analysis point of view.
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2. Main results

First, we recall the following Bihari inequality [5].

Theorem 2.1. If w(t) is a nonnegative continuous function such that

w(t) 6 α+ β

∫ t

0

g(w(s)) ds

with constants α > 0, β > 0 and g : R+ → (0,∞) nondecreasing continuous, then

w(t) 6 G−1(G(α) + βt)

for all t > 0 for which G(α) + βt belongs to the domain of G−1 and G(x) =
∫ x

1
(1/g(u)) du.

Now we suppose that

(i) there is a mapping R : X → L(Y,X) such that

(1) R is locally Lipschitz, i.e., for any x ∈ X , there is an open neighbour-

hood Ux of x and a constant Lx such that ‖R(x1)−R(x2)‖ 6 Lx|x1 − x2|

for all x1, x2 ∈ Ux,

(2) R(x) is a right inverse of DF (x) for all x ∈ X , i.e., DF (x)R(x) = IY for

all x ∈ X , where IY : Y → Y is the identity map on Y ,

(ii) there is a continuous nondecreasing function g : R+ → (0,∞) such that

‖R(x)‖ 6 g(|x|)

for any x ∈ X . Now we have the following result.

Theorem 2.2. Assume (i) and (ii). If

(2.1)

∫ ∞

1

1

g(u)
du = ∞,

then F is PUHRS.

P r o o f. Let x ∈ X and y ∈ Y . Setting e := F (x) − y, we get

(2.2) F (x) = y + e.

We plug (2.2) into the homotopy (see [1] for more complex homotopy theory)

(2.3) F (z(t)) = y + (1− t)e, z(0) = x, t ∈ [0, 1].
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Assuming that z ∈ C1([0, 1], X) and differentiating (2.3), we obtain

(2.4) DF (z(t))z′(t) = −e, z(0) = x, t ∈ [0, 1].

If the differential equation

(2.5) z′(t) = −R(z(t))e, z(0) = x, t ∈ [0, 1]

has a solution z ∈ C1([0, 1], X), then it satisfies (2.4), which gives

(2.6) F (z(t)) + te = c, t ∈ [0, 1]

for a constant c. But putting t = 0 into (2.6) we derive

c = F (z(0)) = F (x) = y + e,

which gives (2.3). So we need to solve (2.5). Since R(x) is locally Lipschitz, the

Cauchy problem (2.5) has a unique local solution. To prolong it, we note

(2.7) |z(t)| 6 |x|+ |e|

∫ t

0

‖R(z(s))‖ ds.

So Theorem 2.1 gives

|z(t)| 6 G−1(G(|x|) + |e|), t ∈ [0, 1],

which by (2.5) implies

|xy − x| = |z(1)− z(0)| 6 |e|

∫ 1

0

‖R(z(s))‖ ds

6 |e|

∫ 1

0

g(|z(s)|) ds 6 |e|g(G−1(G(|x|) + |e|)).

So

ϕ(r1, r2) = r2g(G
−1(G(r1) + r2)).

The proof is finished. �

Corollary 2.3. In addition to Theorem 2.2, if F is locally bounded, i.e.,

FM := sup
|x|6M

|F (x)| < ∞

for any M > 0, then we can take ϕ(r) = cMr with cM = g(G−1(G(M) +M + FM ))

whenever |x| 6 M and |y| 6 M .
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R em a r k 2.4. Taking x = 0 in Theorem 2.2, we see that F is surjective and

moreover, for any y ∈ Y there is an xy ∈ X such that F (xy) = y with

|xy | 6 (|y|+ |F (0)|)g(G−1(G(0) + |y|+ |F (0)|)).

Hence Theorem 2.2 is an extension of global invertible mapping results, especially

Hadamard [4], [8], to surjectivity.

Following the proof of Theorem 2.2, we get the next result.

Theorem 2.5. Assume (i) and (ii). Then for any x ∈ X and y ∈ Y such that

(2.8) |F (x) − y| <

∫ ∞

|x|

1

g(u)
du,

there is an xy ∈ X such that F (xy) = y and

(2.9) |xy − x| 6 |F (x) − y| g(G−1(G(|x|) + |F (x)− y|)).

Of course, estimate (2.8) is useful when G(∞) < ∞ for

(2.10) G(∞) :=

∫ ∞

1

1

g(u)
du.

Then Theorem 2.5 gives an error estimate for PUHRS of F . The next simple example

shows that (2.8) is optimal in some sense.

E x am p l e 2.6. Take X = Y = R and F (x) = arctanx. Then DF (x) = F ′(x) =

1/(1 + x2) and R(x) = 1 + x2. So g(u) = 1 + u2 and (2.8) has the form

(2.11) y − arctanx <
π

2
− arctanx ⇔ y <

π

2

for x > 0 and y > arctanx. But now (2.11) cannot be improved since the range of F

is
(

− 1
2π, 1

2π

)

.

Now we present a simple local result.
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Theorem 2.7. Assume there is a locally Lipschitz right inverse R : Br → L(Y,X)

of DF (x) on a ball Br := {x ∈ X : |x| < r} such that ‖R(x)‖ 6 M for any x ∈ Br

and a constant M > 0. Then for any x ∈ Br and y ∈ Y such that

(2.12) |F (x)− y| <
r − |x|

M
,

there is an xy ∈ Br such that F (xy) = y and

(2.13) |xy − x| 6 M |F (x)− y|.

P r o o f. From (2.7) and (2.12), we derive

|z(t)| 6 |x|+ |F (x) − y|M < r, t ∈ [0, 1].

Hence (2.5) has a unique solution z(t) in Br. Finally, (2.13) follows from

|xy − x| 6 |F (x) − y|

∫ 1

0

‖R(z(s)‖ ds 6 |F (x)− y|M.

The proof is complete. �

Certainly, assumption (i) gives the surjectivity ofDF (x) for any x ∈ X . In general,

finding a right inverse R(x) is not so easy. We have discussed this for the linear case

in [23]. The simplest case is when F is semilinear (see also [23], Theorem 7):

Theorem 2.8. Let F ∈ C2(X,Y ). If there is a surjective A ∈ L(X,Y ) with

a right inverse R ∈ L(Y,X) such that

(2.14) sup
x∈X

‖DF (x)−A‖ <
1

‖R‖

for any x ∈ X , then F is UHRS.

P r o o f. Since

DF (x)R = (DF (x)−A)R +AR = (DF (x)−A)R + IY

and by (2.14)

‖(DF (x)−A)R‖ 6 ‖DF (x)− A‖‖R‖ < 1,

the Neumann theorem [21] gives that (DF (x) − A)R + IY is invertible on Y , i.e.,

(DF (x) −A)R+ IY ∈ L(Y ), so we derive

DF (x)R((DF (x) −A)R+ IY )
−1 = IY .

52



Hence we take

R(x) := R((DF (x) −A)R + IY )
−1

for any x ∈ X . From the same Neumann theorem we know that R ∈ C1(X,L(Y,X)),

which of course implies the local Lipschitzness ofR(x). Moreover, by (2.14), we derive

‖R(x)‖ 6 ‖R‖‖((DF (x)−A)R+ IY )
−1‖

6
‖R‖

1− ‖R‖ sup
x∈X

‖DF (x)−A‖
.

So we take

g(u) =
‖R‖

1− ‖R‖ sup
x∈X

‖DF (x)−A‖
,

and then

ϕ(r1, r2) =
‖R‖

1− ‖R‖ sup
x∈X

‖DF (x)−A‖
r2.

The proof is finished by Theorem 2.2. �

On the other hand, if X and Y are Hilbert spaces, then we can take ([3], page 344,

Example 17)

(2.15) R(x) = DF (x)∗[DF (x)DF (x)∗]−1,

i.e., R(x) is the Moore-Penrose inverse DF (x)† of DF (x). We also know (see [3],

page 344, Example 17)

(2.16) ‖R(x)‖ = inf
06=z∈[kerDF (x)]⊥

|DF (x)z|

|z|
.

Now we can extend Theorem 2.8 as follows.

Theorem 2.9. Let F ∈ C2(X,Y ) for Hilbert spaces X and Y such that DF (x)

is surjective for any x ∈ X . If there is a surjective A ∈ L(X,Y ) such that

(2.17) lim
|x|→∞

DF (x) = A

in L(X,Y ) and the Moore-Penrose inverse DF (x)† of DF (x) is a bounded function

from X to L(Y,X), then F is UHRS.

P r o o f. Clearly by (2.15) (see also [25], Theorem 2)

lim
|x|→∞

DF (x)† = A†.
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Since DF (x)† is a bounded function from X to L(Y,X), we see that

sup
x∈X

‖R(x)‖ < ∞.

So we can take a constant nonzero g in assumption (ii), and the proof is finished by

Theorem 2.2. �

Corollary 2.10. If F ∈ C2(Rm,Rn) for m > n is such that DF (x) is surjective

for any x ∈ Rm and there is a surjective A ∈ L(Rm,Rn) such that (2.17) holds,

then F is UHRS.

In general, when we know only that the Moore-Penrose inverse DF (x)† is

a bounded function from X to L(Y,X), then we can apply Theorem 2.5 with

g(u) := sup
|x|6u

‖DF (x)†‖, u > 0

to get that F is PUHRS.

3. Examples

In this section we give two examples to illustrate the above results.

E x am p l e 3.1. Let J = [0, 1] and X = C(J,R), Y = {y ∈ C1(J,R) : y(0) = 0},

where X is endowed with the norm ‖x‖0 = max
t∈J

|x(t)| and Y with ‖y‖1 = ‖y′‖0.

Define the operator F : X → Y by

F (x) =

∫ t

0

(x3(s) + x(s)) ds.

Clearly F ∈ C1(X,Y ) and

DF (x)v =

∫ t

0

(3x2(s) + 1)v(s) ds.

Then

R(x)y =
y′

3x2(s) + 1
.

So ‖R(x)‖ 6 1 for any x ∈ X , and thus g(r) = 1. Consequently, by Theorem 2.2,

F is UHRS with ϕ(r) = r.
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E x am p l e 3.2. Consider F ∈ C2(Rm,R) such that ∇F (x) 6= 0 for any x ∈ Br

and some r > 0. Since DF (x)v = ∇F (x)v∗, we take R(x)y = y|∇F (x)|−2 ∇F (x).

Thus ‖R(x)‖ = 1/|∇F (x)|. Setting M := max
x∈Br

1/|∇F (x)|, Theorem 2.7 can be

applied. For m = 2, this could express climbing on a hill, when the relief of the

hill is given by F ∈ C2(R3, (0,∞)). So we are at a position (x1, x2, F (x1, x2)),

(x1, x2) ∈ Br, and we try to reach the given altitude y within the region Br. The

inequality (2.12) is sufficient to reach the altitude y at the region Br and the location

of this new position is given by (2.13).
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