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Abstract. In the class of real hypersurfaces M2n−1 isometrically immersed into a nonflat

complex space form M̃n(c) of constant holomorphic sectional curvature c ( 6= 0) which is
either a complex projective space CPn(c) or a complex hyperbolic space CHn(c) according
as c > 0 or c < 0, there are two typical examples. One is the class of all real hypersurfaces
of type (A) and the other is the class of all ruled real hypersurfaces. Note that the former
example are Hopf manifolds and the latter are non-Hopf manifolds. In this paper, inspired

by a simple characterization of all ruled real hypersurfaces in M̃n(c), we consider a certain
real hypersurface of type (A2) in CP

n(c) and give a geometric characterization of this Hopf
manifold.

Keywords: ruled real hypersurface; nonflat complex space form; real hypersurfaces of
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1. Introduction

We consider a real hypersurface M2n−1 (with Riemannian metric g) in a nonflat

complex space form M̃n(c), n > 2, through an isometric immersion. We first recall

the definition of ruled real hypersurfacesM2n−1 in M̃n(c). A real hypersurfaceM is

ruled if the holomorphic distribution T 0M = {X ∈ TM : g(X, ξ) = 0} is integrable
and all of its leaves (i.e., maximal integral manifolds) are locally congruent to totally

geodesic complex hypersurfaces M̃n−1(c) in the ambient space M̃n(c), where ξ is

The second author is partially supported by the research fund of Hankuk University of
Foreign Studies.

DOI: 10.21136/CMJ.2017.0546-15 271

http://dx.doi.org/10.21136/CMJ.2017.0546-15


the characteristic vector field with respect to the almost contact metric structure

(ϕ, ξ, η, g) on M induced from the Kähler structure J of M̃n(c).

We here recall the construction of ruled real hypersurfaces in M̃n(c). For a real

smooth curve γ = γ(s), s ∈ I, parametrized by its arclength s, where I is an open

interval on R, we take the totally geodesic complex hypersurface M̃
(s)
n−1 through

the point γ(s) in M̃n(c) in such a way that the complex line spanned by γ̇(s) is

perpendicular to the tangent space Tγ(s)M̃
(s)
n−1. Then we get a ruled real hypersurface

M =
⋃
s∈I

M̃
(s)
n−1. Of course M has singular points, that is, M is not smooth at

those points. So, in general we omit such points and consider locally ruled real

hypersurfaces. Adachi, the third author and Kim gave the following characterization

of all ruled hypersurfaces in a nonflat complex space form (see Proposition 2 and

Lemma 4 in [8]).

Proposition A. A real hypersurfaceM is ruled in a nonflat complex space form

M̃n(c), n > 2, if and only if there exist such orthonormal vectors v1, v2, . . . , v2n−2

orthogonal to the characteristic vector ξp at each point p of M that the following

two conditions hold:

(1) Every geodesic γi = γi(s) on M with p = γi(0) and γ̇i(0) = vi, 1 6 i 6 2n− 2,

is also mapped to a geodesic in the ambient space M̃n(c).

(2) Every geodesic γij = γij(s) on M with p = γij(0) and γ̇ij(0) = (vi + vj)/
√
2,

1 6 i < j 6 2n− 2, is also mapped to a geodesic in M̃n(c).

Motivated by Proposition A, we pose the following problem:

Problem. If we delete Condition (2) in Proposition A, is M ruled in M̃n(c)?

In this paper, we give a negative answer to this problem in the case of c > 0. We

present a counterexample M2n−1 to Problem, which is locally congruent to a tube

of radius π/(2
√
c) around a totally geodesic CP (n−1)/2(c) in CPn(c), where n (> 3)

is odd. This real hypersurface is a member of real hypersurfaces of type (A2) in

CPn(c).

The main purpose of this paper is to characterize this hypersurface with Condi-

tion (1) in Proposition A (for details, see Theorem). Note that we have not been

able to solve the above problem until now when c < 0.
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2. Terminologies and fundamental results on real hypersurfaces

LetM2n−1 be a real hypersurface with unit normal local vector field N of a nonflat
complex space form M̃n(c), n > 2. The Riemannian connections ∇̃ of M̃n(c) and

∇ of M are related by

(2.1) ∇̃XY = ∇XY + g(AX, Y )N

and

(2.2) ∇̃XN = −AX

for all vector fields X and Y on M , where g denotes the metric induced from the

standard Riemannian metric of M̃n(c) and A is the shape operator of M in M̃n(c)

associated with N . On M an almost contact metric structure (ϕ, ξ, η, g) associated

with N is canonically induced from the Kähler structure J of the ambient space

M̃n(c). It is defined by

g(ϕX, Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ,X) = g(JX,N ).

It follows from the Gauss formula (2.1), the Weingarten formula (2.2) and the pro-

perty ∇̃J = 0 that

(2.3) ∇Xξ = ϕAX

and

(2.4) (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ

for each X ∈ TM .

We call the eigenvalues and eigenvectors of the shape operator A the principal

curvatures and principal curvature vectors of M in M̃n(c), respectively. Here and

in the following, we set Vλ := {X ∈ TM : AX = λX}. We usually call M a Hopf

hypersurface if the characteristic vector ξ ofM is a principal curvature vector at each

point of M . The following are typical examples of Hopf hypersurfaces in a nonflat

complex space form M̃n(c), n > 2:

In CPn(c),

(A1) a geodesic sphere G(r), 0 < r < π/
√
c;

(A2) a tube of constant radius r, 0 < r < π/
√
c, around a totally geodesic CP l(c),

1 6 l 6 n− 2.
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In CHn(c),

(A0) the horosphere HS in CHn(c);

(A1,0) a geodesic sphere G(r) of radius r, 0 < r < ∞;
(A1,1) a tube of radius r, 0 < r < ∞, around a totally geodesic CHn−1(c);

(A2) a tube of radius r, 0 < r < ∞, around a totally geodesic CH l(c), 1 6 l 6 n−2.

Unifying these examples, we call them real hypersurfaces of type (A) in M̃n(c).

The following theorem shows the importance of these real hypersurfaces.

Theorem A ([6], [9]). Let M2n−1 be a real hypersurface in a nonflat complex

space form M̃n(c), n > 2. Then the length of the derivative of the shape operator

A of M satisfies ‖∇A‖2 > 1
4c

2(n − 1) at each point of M . In particular, ‖∇A‖2 =

c2(n− 1)/4 holds on M if and only if M is locally congruent to a real hypersurface

of type (A).

For later use we prepare the following lemma (cf. [6], [9]):

Lemma A. For a real hypersurfaceM isometrically immersed into a nonflat com-

plex space form M̃n(c), n > 2 the following three conditions are mutually equivalent:

(1) M is of type (A);

(2) ϕA = Aϕ, where ϕ is the structure tensor induced from the Kähler structure J

on M̃n(c);

(3) g((∇XA)Y, Z) = 1
4c{−η(Y )g(ϕX,Z) − η(Z)g(ϕX, Y )} for all X , Y and

Z ∈ TM .

The real hypersurfaces of type (A) are fundamental examples of homogeneous

real hypersurfaces in M̃n(c), that is, they are orbits of some subgroups of the full

isometry group I(M̃n(c)) of this ambient space (cf. [5]). The classification theorems

of all homogeneous real hypersurfaces in M̃n(c) are given [4], [10].

In order to prove our Theorem, for a geodesic γ on a real hypersurfaceM in M̃n(c),

we recall the notion of the structure torsion ̺γ = g(γ̇(s), ξγ(s)). Note that the struc-

ture torsion ̺γ is constant along each geodesic γ on an arbitrary real hypersurface

of type (A) in M̃n(c) (see the proof of our Theorem).

At the end of this section we review the definition of circles in Riemannian ge-

ometry. Let γ = γ(s) be a smooth real curve parametrized by its arclength s on

a Riemannian manifold N with Riemannian metric g. If the curve γ satisfies the

following ordinary differential equations with some nonnegative constant k:

(2.5) ∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇,
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where ∇γ̇ is the covariant differentiation along γ with respect to ∇ of N and Ys is

the so-called unit principal normal vector of γ, we call γ a circle of curvature k on N .

We regard a geodesic as a circle of null curvature. By virtue of the existence and

uniqueness of solutions to ordinary differential equations we can see that for each

point p ∈ N , an arbitrary positive constant k and every pair of orthonormal vectors

X and Y of TpN , there exists locally the unique circle γ = γ(s) on N satisfying the

initial condition that γ(0) = p, γ̇(0) = X and Y0 = Y .

Adachi, Udagawa and the third author studied circles in a nonflat complex space

form (for details, see [1], [2]).

3. Statement of result

Our aim here is to prove the following:

Theorem. LetM2n−1 be a real hypersurface isometrically immersed into CPn(c)

with an odd number n (> 3). Then M is locally congruent to the tube of constant

radius π/(2
√
c) around the totally geodesic CP (n−1)/2(c) if and only if M satisfies

the following two conditions (1) and (2):

(1) M is a Hopf manifold.

(2) At each point p ∈ M there exist such orthonormal vectors v1, v2, . . . , v2n−2 of

TpM which are perpendicular to the characteristic vector ξp that they satisfy

the following conditions 2a) and 2b) :

2a) Every geodesic γi = γi(s), 1 6 i 6 2n− 2, on M with the initial condition

that γi(0) = p and γ̇i(0) = vi is also mapped to a geodesic in CPn(c).

2b) Every geodesic γij = γij(s) on M through p = γij(0) in the direction of

vi + vj , 1 6 i 6 j 6 2n− 2, has constant structure torsion ̺γij
:= g(γ̇ij , ξ)

along the curve γij . Here, needless to say, when i = j or i < j, γ̇ij(0) = vi
γ̇ij(0) = (vi + vj)/

√
2, respectively.

P r o o f. Before proving our Theorem we shall verify the following two properties

of real hypersurfaces of type (A) in a nonflat complex space form M̃n(c), n > 2:

(I) For every geodesic γ = γ(s) on an arbitrary real hypersurface of type (A) the

structure torsion ̺γ is constant along the curve γ.

(II) Evey geodesic γ = γ(s) on an arbitrary real hypersurface of type (A) whose ini-

tial vector γ̇(0) is a principal curvature vector with principal curvature λ orthogonal

to ξγ(0), is mapped to a circle of positive curvature |λ| in the ambient space M̃n(c).
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We first prove (I). It follows from (2.3), Lemma A, the symmetry of A and the

skew symmetry of ϕ that

γ̺̇γ = ∇γ̇(g(γ̇, ξ)) = g(∇γ̇ γ̇, ξ) + g(γ̇,∇γ̇ξ) = g(γ̇, ϕAγ̇)

= g(γ̇, Aϕγ̇) = g(Aγ̇, ϕγ̇) = −g(ϕAγ̇, γ̇) = 0.

Next, we shall prove (II). We set Av = λv with v = γ̇(0) for each geodesic γ stated

in (II). Note that this geodesic γ on M satisfies that g(γ̇(s), ξγ(s)) = 0 for each s

(see (I)). This, together with Lemma A, implies

γ̇‖Aγ̇ − λγ̇‖2 = ∇γ̇(g(Aγ̇ − λγ̇, Aγ̇ − λγ̇))

= 2g((∇γ̇A)γ̇, Aγ̇ − λγ̇) = 2g((∇γ̇A)γ̇, Aγ̇)

=
c

2
{−η(γ̇)g(ϕγ̇, Aγ̇)− η(Aγ̇)g(ϕγ̇, γ̇)} = 0.

So, from Aγ̇(0) − λγ̇(0) = Av − λv = 0 we can see that every geodesic γ stated

in (II) satisfies Aγ̇(s) = λγ̇(s) for each s. Then, by virtue of Gauss formula (2.1)

and Weingarten formula (2.2) we can see that every geodesic γ stated in (II) is

mapped to a circle of positive curvature |λ|. We remark that this λ is either
1
2

√
c cot(

√
c r/2) or − 1

2

√
c tan(

√
c r/2) (0 < r < π/

√
c) in the case of c > 0 while it

is either 1
2

√
c coth(

√
c r/2) or 1

2

√
c tanh(

√
c r/2) (0 < r < ∞) in the case of c < 0.

We are now in a position to prove our Theorem.

(⇒) By assumption, our real hypersurfaceM has three distinct constant principal

curvatures δ = 0, λ1 =
√
c/2 and λ2 = −√

c/2, where Aξ = 0 and dimV√
c/2 =

dimV−
√
c/2 = n− 1. Moreover, ϕVλi

= Vλi
, i = 1, 2. At each fixed point p of M we

take arbitrary orthonormal bases {e1, e2, . . . , en−1} and {f1, f2, . . . , fn−1} of V√
c/2

and V−
√
c/2, respectively. We here set an orthonormal basis v1, . . . , vn−1, . . . , v2n−2

of T 0
pM := {X ∈ TpM : X ⊥ ξp} in such a way that vj = (ej + fj)/

√
2, vn−1+j =

(ej − fj)/
√
2, j = 1, 2, . . . , n − 1. Furthermore, we can see easily g(Avi, vi) = 0

for all i ∈ {1, 2, . . . , 2n − 2}. On the other hand, in view of Lemma A(3) we see
that g((∇XA)X,X) = 0 for all X ∈ TM , so that for every geodesic γ on each real

hypersurfaceM of type (A) the function g(Aγ̇(s), γ̇(s)) is constant along the curve γ.

Then every geodesic γi on our real hypersurface M with γi(0) = p and γ̇i(0) = vi,

i = 1, 2, . . . , 2n− 2, is also mapped to a geodesic in the ambient space CPn(c). Thus

we have proved Condition 2a). The other Conditions (1) and 2b) are obvious (see

the hypothesis and (I) in the above discussion).

(⇐) We first make use of Condition 2b) in the case of i = j. Our computation

here is due to [3], [7]. Note that γ̇ii(0) = vi. Then, from (2.3) and Condition 2b) we

obtain

̺′γii
=

d

ds
(g(γ̇ii(s), ξ)) = g(γ̇ii(s),∇γ̇ii

ξ) = g(γ̇ii(s), ϕAγ̇ii(s)) = 0,
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so that at s = 0 we have g(vi, ϕAvi) = 0. On the other hand, we know that

g(vi, ϕAvi) =
1
2{g(ϕAvi, vi) + g(vi, ϕAvi)}

= 1
2g((ϕA −Aϕ)vi, vi).

Hence we obtain

(3.1) g((ϕA−Aϕ)vi, vi) = 0, 1 6 i 6 2n− 2.

Applying the same discussion as above to every geodesic γij = γij(s) with i < j, we

find

g
(
(ϕA− Aϕ)

vi + vj√
2

,
vi + vj√

2

)
= 0,

so that

(3.2) g((ϕA−Aϕ)(vi + vj), vi + vj) = 0 for 1 6 i < j 6 2n− 2.

It follows from equations (3.1), (3.2) and the fact ϕA−Aϕ is symmetric that

(3.3) g((ϕA −Aϕ)vi, vj) = 0 for 1 6 i < j 6 2n− 2.

Furthermore, by Condition (1) the following holds trivially:

(3.4) (ϕA−Aϕ)ξ = 0.

Then, by virtue of equations (3.1), (3.3) and (3.4) we can see that M is of type (A)

(see Lemma A), namely M is locally congruent to either a real hypersurface of

type (A1) or type (A2). We shall check Condition 2a) for these two real hypersurfaces

one by one.

Let M be of type (A1). So our real hypersurface M is locally congruent to

a geodesic sphere G(r) of radius r, 0 < r < π/
√
c. Then it is known that Aξ =√

c cot(
√
c r)ξ and AX = 1

2

√
c cot(12

√
c r)X for all X(∈ TM) perpendicular to ξ.

By (II) we find that every geodesic γ = γ(s) with initial vector γ̇(0) orthogonal to

ξγ(0) is mapped to a circle of positive curvature
1
2

√
c cot(12

√
c r) in the ambient space

CPn(c), which implies that our real hypersurface does not satisfy Condition 2a).

Let M be of type (A2). So our real hypersurface is locally congruent to a tube

of radius r, 0 < r < π/
√
c, around a total geodesic CP l(c), 1 6 l 6 n − 2. Then

it is known that the tangent bundle TM is decomposed as the orthogonal direct

sum: TM = {ξ}R ⊕ Vλ1
⊕ Vλ2

, where Aξ =
√
c cot(

√
c r)ξ, λ1 = 1

2

√
c cot(

√
c r/2),

λ2 = − 1
2

√
c tan(

√
c r/2), dimVλ1

= 2n− 2l − 2, dimVλ2
= 2l, ϕVλi

= Vλi
, i = 1, 2.
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Again by using (II) we see that the initial vector of every geodesic γi = γi(s),

i = 1, 2, . . . , 2n − 2, in Condition 2a) must be expressed as γ̇i(0) = au + bv, where

u, v are unit vectors with u ∈ Vλ1
, v ∈ Vλ2

, and without loss of generality we may

suppose that a is positive. As a matter of course a2 + b2 = 1 and b 6= 0. By

our argument and the fact that M is of type (A) we see that the above geodesic

γi = γi(s) on M is also mapped to a geodesic in the ambient space CPn(c) if and

only if g(Aγ̇i(0), γ̇i(0)) = 0. Then by two equalities γ̇i(0) = au + bv and Aγ̇i(0) =

aλ1u + bλ2v we get a = sin(
√
c r/2) and b = ± cos(

√
c r/2), so that the initial

vector γ̇i(0) is written in the form either γ̇i(0) = sin(
√
c r/2)u + cos(

√
c r/2)v or

γ̇i(0) = sin(
√
c r/2)u − cos(

√
c r/2)v. However, in general these two unit vectors

are not orthogonal. We can see easily that M satisfies Condition 2a) if and only if

these two vectors are orthogonal and dimVλ1
= dim Vλ2

. Therefore we conclude that

r = π/(2
√
c) and l = (n− 1)/2. Thus we have proved our Theorem. �
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