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Abstract. First, some classic properties of a weighted Frobenius-Perron operator P
u
ϕ

on L
1(Σ) as a predual of weighted Koopman operator W = uUϕ on L

∞(Σ) will be investi-
gated using the language of the conditional expectation operator. Also, we determine the
spectrum of Pu

ϕ under certain conditions.
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1. Introduction and preliminaries

Let (X,Σ, µ) be a complete σ-finite measure space. For any complete σ-finite

subalgebra A ⊆ Σ the space L1(X,A, µ|A) is abbreviated to L
1(A), where µ|A is the

restriction of µ to A. We denote the linear space of all complex-valued Σ-measur-

able functions on X by L0(Σ). The support of a measurable function f is defined

by supp(f) = {x ∈ X : f(x) 6= 0}. All sets and functions statements are to be

interpreted as being valid almost everywhere with respect to µ.

Recall that an A-atom of the measure µ is an element A ∈ A with µ(A) > 0

such that for each F ∈ A, if F ⊆ A, then either µ(F ) = 0 or µ(F ) = µ(A). A

measure space (X,A, µ) with no atoms is called non-atomic. It is a well known fact

that every sigma finite measure space (X,Σ, µ) can be decomposed into two disjoint

sets B and Z, such that µ is non-atomic over B and Z is a countable union of atoms

of finite measure (see [16]). For each nonnegative f ∈ L0(Σ) or f ∈ L1(Σ), by the

Radon-Nikodym theorem, there exists a unique A-measurable function EA
µ (f) such

that ∫

A

f dµ =

∫

A

EA
µ (f) dµ,

DOI: 10.21136/MB.2016.0079-15 113



where A is any A-measurable set for which
∫

A
f dµ exists. Now associated with every

complete σ-finite subalgebra A ⊆ Σ, the mapping EA
µ : L1(Σ) → L1(A) uniquely

defined by the assignment f 7→ EA
µ (f) is called the conditional expectation operator

with respect to A.

From now on, we assume that ϕ is a nonsingular transformation onX , A = ϕ−1(Σ)

and E = EA
µ . Ding in [4] proved that for each f ∈ L1(Σ) there exists a unique

g ∈ L1(Σ) with supp(g) ⊆ supp(h) such that E(f) = g ◦ ϕ. As usual, we then write

g = E(f)◦ϕ−1 though we make no assumptions regarding the invertibility of ϕ. The

mapping E acts on L1(Σ) as a projection onto L1(ϕ−1(Σ)). Note that D(E), the

domain of E, contains L1(Σ) ∪ {f ∈ L0(X,Σ, µ) : f > 0}. Throughout this paper,

we take u in D(E). The analysis of a (weighted) Frobenius-Perron operator is based

on the concept of conditional expectation operator. Let f, g ∈ D(E). We list some

useful properties of E.

⊲ L(1) E((f ◦ ϕ)g) = (f ◦ ϕ)E(g);

⊲ L(2) If f > 0, then E(f) > 0; if f > 0, then E(f) > 0;

⊲ L(3) supp(f) ⊆ supp(E(f)) for each f > 0;

⊲ L(4) ((Ef) ◦ ϕ−1) ◦ ϕ = E(f);

⊲ L(5) (E(αf + g)) ◦ ϕ−1 = α(E(f)) ◦ ϕ−1 + (E(g)) ◦ ϕ−1;

⊲ L(6) |E(f) ◦ ϕ−1|n = |E(f)|n ◦ ϕ−1 6 E(|f |n) ◦ ϕ−1, (n ∈ N).
For proofs and discussions on some of these elementary facts see [14].

The aim of this paper is to generalize some of the results obtained for the (classic)

Frobenius-Perron operators in [7], [6], [3] to the weighted Frobenius-Perron operators.

2. Fredholm weighted Frobenius-Perron operators

Let a Σ-measurable transformation ϕ : X → X be nonsingular, i.e., µ ◦ϕ−1(A) =

µ(ϕ−1(A)) = 0 for all A ∈ Σ such that µ(A) = 0, and let u ∈ D(E). The linear

operator Pu
ϕ : L1(Σ) → L1(Σ) defined by

∫

A

Pu
ϕf dµ =

∫

ϕ−1(A)

uf dµ, f ∈ L1(Σ), A ∈ Σ

is called the weighted Frobenius-Perron operator associated with the pair (u, ϕ). By

the Radon-Nikodym, Pu
ϕ is well defined [10]. When u = 1, Pϕ := P1

ϕ is called the

(classical) Frobenius-Perron operator. As an application of the conditional expecta-

tion and using the change of variable formula we have

∫

A

Pu
ϕf dµ =

∫

ϕ−1(A)

uf dµ =

∫

ϕ−1(A)

E(uf) dµ =

∫

A

hE(uf) ◦ ϕ−1 dµ,
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where h = (dµ ◦ ϕ−1)/dµ. So, in the language of conditional expectation, Pu
ϕ can be

presented as Pu
ϕ(f) = hE(uf) ◦ ϕ−1. By L(5), Pu

ϕ is linear. Note that P
u
ϕ = PϕMu,

where Pϕ = hE(f) ◦ ϕ−1 is the classic Frobenius-Perron operator and Mu is the

multiplication operator.

The weighted Koopman operator on L∞(Σ) with respect to the pair (u, ϕ) is

defined by W = MuUϕ, where Uϕ is the (classical) Koopman operator defined by

Uϕ(f) = f ◦ ϕ for all f ∈ L∞(Σ). Here, the nonsingularity of ϕ guarantees that W

is well defined as a mapping of equivalence classes of functions on σ(u). It is known

that W is a bounded operator on L∞(Σ) if and only if u ∈ L∞(Σ), and in this

case (Pu
ϕ)

∗ = W and ‖Pu
ϕ‖ = ‖u‖∞. In particular, (Pϕ)

∗ = Uϕ and ‖Pϕ‖ = 1

(see [3], [10]).

Let X be a Banach space and X∗, the Banach space of all bounded linear com-

plex functionals on X, be the dual space of X. For T ∈ B(X), the algebra of all

bounded operators on X, the null-space, range and the dual operator of T are de-

noted by N (T ), R(T ) and T ∗, respectively.

Lemma 2.1 (Banach’s closed range theorem [15]). Let T ∈ B(X). The following

statements are equivalent.

(a) T has closed range.

(b) T ∗ has closed range.

(c) R(T ) = ⊥N (T ∗).

(d) R(T ∗) = N (T )⊥.

Theorem 2.2. Let Pu
ϕ ∈ B(L1(Σ)). Then it is invertible if and only if the

following conditions are all satisfied:

(a) µ ≪ µ ◦ ϕ−1.

(b) For each set F ∈ Σ there is a set G ∈ Σ such that ϕ−1(G) = F .

(c) There exists a constant δ > 0 such that |u| > δ on X .

P r o o f. Assume Pu
ϕ is invertible. We first show (a). Since P

u
ϕ is onto, then by

Lemma 2.1 W is injective. Suppose µ ◦ ϕ−1(F ) = µ(ϕ−1(F )) = 0 for F ∈ Σ. Then

W (χF ) = uχF ◦ ϕ = uχϕ−1(F ) = 0. The injectivity of W implies that µ(F ) = 0.

To prove (b), suppose ϕ−1(Σ) $ Σ. Then we can find F ∈ Σ with µ(F ) > 0 such

that F is disjoint with any ϕ−1(G). Since Σ is σ-finite, F can be written as F =
⋃

i

Fi,

where 0 < µ(Fi) < ∞ and Fi ∩ Fj = ∅. Put f =
∑

i

2−iχFi
. Then f ∈ L1(Σ) with

supp(f) = F . It follows that

∫

G

Pu
ϕf dµ =

∫

ϕ−1(G)

uf dµ = 0 for all G ∈ Σ.
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Hence Pu
ϕf = 0. But this contradictsN (Pu

ϕ) = {0}. Now we claim that u is bounded

away from zero on X . Since Pu
ϕ is invertible, then so is W . Hence, W is bounded

below. So there is a constant c > 0 such that

(2.1) c‖f‖∞ 6 ‖W (f)‖∞ for all f ∈ ∞.

We claim |u| > 1
2c on X . Otherwise, there would be a set G ∈ Σ with µ(G) > 0

such that |u| < 1
2c on G. Using (b), G = ϕ−1(A) for some A ∈ Σ. By using (a),

µ(A) > 0 because µ(A) = 0 implies that µ(ϕ−1(A)) = 0. Put f = χA. Then by (2.1)

we obtain

c = c‖χA‖∞ 6 ‖uχϕ−1(A)‖∞ = ‖uχG‖∞ 6
c

2
,

which is a contradiction and thus (c) holds.

Conversely, assume all three conditions hold. Firstly, we show that Pu
ϕ is injective.

From (b) E is the identity operator. Then by the change of variable formula we have

0 = ‖Pu
ϕf‖L1 =

∫

X

|hE(uf) ◦ ϕ−1| dµ =

∫

X

|E(uf)| ◦ ϕ−1 dµ ◦ ϕ−1

=

∫

X

|E(uf)| dµ =

∫

X

|uf | dµ =⇒ uf = 0 =⇒ f = 0, by (c).

So Pu
ϕ is injective. Finally, we claim that P

u
ϕ is surjective, which is equivalent to the

injectivity of (Pu
ϕ)

∗ = W on L∞(Σ) (Lemma 2.1 (c)). Let f ∈ N (W ). Then by (c),

f ◦ϕ = 0. Using (a), ϕ is onto ([6], Lemma 2.3), and so f = 0. Now, by the bounded

inverse theorem Pu
ϕ is invertible. �

Proposition 2.3. Put dν = |u|dµ and let Pu
ϕ ∈ B(L1(Σ)). Then the following

assertions hold.

(a) supp(|uf |) ⊆ supp(Pu
ϕ(|f |)) for all f ∈ L1(Σ).

(b) If ϕ−1(Σ) = Σ, then Pu
ϕ : L1(X,Σ, ν) → L1(X,Σ, µ) is an isometry.

(c) If |u| = 1 and µ ≪ µ ◦ ϕ−1, then W is an isometry on L∞(Σ). Furthermore,

if W is an isometry, then ‖u‖∞ = 1.

P r o o f. (a) Let f ∈ L1(Σ). Since supp(h ◦ ϕ) = X , by L(3) we have

ϕ−1(supp(Pu
ϕ(|f |))) = supp(Pu

ϕ(|f |) ◦ ϕ) = supp(h ◦ ϕE(|uf |))

= supp(E(|uf |)) ⊇ supp(|uf |).

(b) By hypothesis E = I. An easy computation shows that

‖Pu
ϕ(f)‖µ =

∫

X

|E(uf)| dµ =

∫

X

|f | dν = ‖f‖ν.
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(c) It was shown in [6], Lemma 2.3 that if µ ≪ µ ◦ ϕ−1, then ϕ is onto. Hence,

‖W (f)‖∞ = ‖(uf) ◦ ϕ‖∞ = ‖f ◦ ϕ‖∞ = ‖f‖∞.

On the other hand, if W is an isometry, then ‖u‖∞ = ‖Pu
ϕ‖ = 1. �

Definition 2.4. A sub-σ-finite algebra A is said to be rich subalgebra of Σ if for

each A ∈ Σ with positive measure there exists K ∈ A with positive measure such

that K ⊆ A.

Note that if Σ contains a nontrivial rich subalgebra, then Σ is a non-atomic mea-

sure space.

Theorem 2.5. Suppose ϕ(Σ) ⊂ Σ and Pu
ϕ ∈ B(L1(Σ)). Then the following

assertions hold.

(a) If ϕ−1(Σ) is a non-atomic rich subalgebra of Σ, then dimN (Pu
ϕ) is either zero

or infinite.

(b) If (X,Σ, µ) is a non-atomic measure space, then codim(ran(Pu
ϕ)) is either zero

or infinite.

P r o o f. (a) If Pu
ϕ is injective, then dimN (Pu

ϕ) = 0. Otherwise, there is a

nonzero element f ∈ L1(Σ) such that Pu
ϕ(f) = 0. By hypothesis, there is K ∈

ϕ−1(Σ) with positive measure such that K ⊆ supp(f). So we may choose a sequence

{Kn}∞n=1 of pairwise disjoint ϕ
−1(Σ)-measurable sets in K with 0 < µ(Kn) < ∞.

Set fn = fχKn
for n ∈ N. Evidently, fn is in L1(Σ), and is nonzero. Moreover,

‖Pu
ϕfn‖L1 =

∫

X

h|E(ufn) ◦ ϕ
−1| dµ =

∫

X

h|E(ufχKn
) ◦ ϕ−1| dµ

=

∫

X

h|χKn
◦ ϕ−1E(uf) ◦ ϕ−1| dµ =

∫

ϕ(Kn)

h|E(uf) ◦ ϕ−1| dµ

6

∫

X

h|E(uf) ◦ ϕ−1| dµ = ‖Pu
ϕf‖L1 = 0,

so fn ∈ N (Pu
ϕ). Thus, the sequence {fn} forms a linearly independent subset

of N (Pu
ϕ), and hence dimN (Pu

ϕ) = ∞.

(b) We suppose that codim(ran(Pu
ϕ)) = dim(N (Pu

ϕ)
∗) = dim(N (W )) 6= 0. Then

there is a nonzero function f ∈ L∞(Σ) such that W (f) = 0. By the same argument

as in (a), we may choose a sequence {Cn}∞n=1 ⊆ supp(f) of pairwise disjoint Σ-mea-

surable subsets in supp(f) with 0 < µ(Cn) < ∞. Put fn = fχCn
for n ∈ N. They

are nonzero and linearly independent. Moreover,

‖W (fn)‖L∞(X) = ‖W (f)‖L∞(ϕ−1(Cn)) 6 ‖W (f)‖L∞(X) = 0.

So fn ∈ N (W ), and hence codim(ran(Pu
ϕ)) = ∞. �
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Theorem 2.6. Suppose (X,Σ, µ) is a non-atomic rich measure space and let

Pu
ϕ ∈ B(L1(Σ)). Put dν = |u| dµ. Then the following statements are equivalent.

(a) Pu
ϕ is invertible.

(b) Pu
ϕ is Fredholm operator.

(c) (i) There exists a constant δ > 0 such that ν(F ) > δµ(F ) for every set F ∈ Σ

with µ(F ) < ∞, and

(ii) ϕ−1(Σ) = Σ.

P r o o f. The implication (a)⇒ (b) is obvious. We first show that (b) implies (c).

Assume Pu
ϕ is Fredholm operator. Then Pu

ϕ has closed range and is injective by

Theorem 2.5 (a), and so Pu
ϕ is bounded below with a lower bound c > 0. For F ∈ Σ

and µ(F ) < ∞ put f = χF . Then by L(4) we have

cµ(F ) = c‖χF‖ 6 ‖Pu
ϕχF ‖ =

∫

X

|E(uχF )| dµ

6

∫

X

E(|uχF |) dµ =

∫

X

|u|χF dµ =

∫

F

|u| dµ = ν(F ).

Now let ϕ−1(Σ) $ Σ. Choose F ∈ Σ \ ϕ−1(Σ) with positive measure. Since

(X,Σ, µ) is σ-finite, we can construct a nonnegative f ∈ L1(Σ) such that

supp(f) = F . It follows that

∫

G

Pu
ϕf dµ =

∫

ϕ−1(G)

uf dµ = 0

for all G ∈ Σ. Hence, Pu
ϕ(f) = 0 and so Pu

ϕ is not injective. This contradiction

implies that ϕ−1(Σ) = Σ and so E = I.

It remains to show that (c) implies (a). Let f = χ
F∪G
, where F and G are disjoint

measurable sets with finite measures. Since ν(F ∪ G) > δµ(F ∪ G) and E = I, we

obtain

‖Pu
ϕ(f)‖ = ‖Pu

ϕ(χF∪G
)‖ =

∫

X

|E(uχ
F∪G

)| dµ =

∫

X

|uχ
F∪G

| dµ

=

∫

F∪G

|u| dµ > δ

∫

F∪G

dµ = δ‖f‖.

Since simple functions are dense in L1(Σ), then the above inequality holds for all

f ∈ L1(Σ). Therefore Pu
ϕ is bounded below and thus P

u
ϕ is injective and has closed

range. Finally, we claim that Pu
ϕ is surjective, which is equivalent to the injectivity

of (Pu
ϕ)

∗ = W . By hypothesis u is bounded away from zero on X and ϕ is onto.

Thus, (uf)◦ϕ = 0 implies that f ◦ϕ = 0 and so f = 0. This completes the proof. �
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3. Generalized weighted Frobenius-Perron operators

In [9], Ding and Hornor introduced the generalized Frobenius-Perron operators

as a restriction of the adjoint of the Koopman operators into a nice closed sub-

space of complex charges. In this section, we extend this generalization for weighted

Frobenius-Perron operator and we expect it to be a restriction of the adjoint of W

into the mentioned subspace.

Suppose Σ is a σ-algebra of subsets of a set X . Then a complex charge on Σ is a

map ν : Σ → C such that ν(∅) = 0, and if A,B ∈ Σ with A∩B = ∅, then ν(A∪B) =

ν(A) + ν(B). A charge ν on Σ is said to be bounded if sup{|ν(F )| : F ∈ Σ} < ∞.

Let M(X,Σ) denote the complex vector space of all complex measures on Σ. With

the total variation norm ‖µ‖ = |µ|(X), M(X,Σ) is a Banach space. The collection

of all bounded complex charges on Σ is denoted by ba(X,Σ). Define

ba(X,Σ, µ) = {ν ∈ ba(X,Σ): ν ≪ µ},

ca(X,Σ, µ) = ba(X,Σ, µ) ∩M(X,Σ).

It was shown that the complex vector space ba(X,Σ, µ) with the total variation

norm is also a Banach space and ca(X,Σ, µ) is a closed subspace of ba(X,Σ, µ). Let

Pu
ϕ ∈ B(L1(Σ)). For ν ∈ ba(X,Σ, µ) we define the measure λν by

(3.1) λν(A) =

∫

ϕ−1(A)

u dν, A ∈ Σ.

Then λν ∈ M(X,Σ) and is absolutely continuous with respect to µ, because the

assumption µ ≪ µ ◦ϕ−1 implies that for each A ∈ Σ with µ(A) = 0, µ(ϕ−1(A)) = 0,

and so ν(ϕ−1(A)) = 0. Thus λν(A) = 0, and hence λν ∈ ca(X,Σ, µ). Note that

λν(A) =
∫

A
Eν(u) ◦ ϕ−1 dν ◦ ϕ−1. So dλν = Eν(u) ◦ ϕ−1 dν ◦ ϕ−1. Take f ∈ L∞(Σ)

and ν ∈ ba(X,Σ, µ). As an application of properties of conditional expectation

operators and using the change of variable formula, we have

〈f,W ∗(ν)〉 = 〈W (f), ν〉 =

∫

X

(uf) ◦ ϕdν =

∫

X

Eν(u)f ◦ ϕdν

=

∫

X

fEν(u) ◦ ϕ
−1 dν ◦ ϕ−1 =

∫

X

f dλν = 〈f, λν〉.

Hence, W ∗(ν) = λν is the adjoint of W . We refer to W
∗ as the generalized weighted

Frobenius-Perron operator corresponding to the pair (u, ϕ). Now let g ∈ L1(Σ) and

define Fg(A) =
∫

A
g dµ. Then Fg ∈ b(X,Σ, µ). So the mapping g → Fg is an

isometry from L1(Σ) into a closed subspace of ba(X,Σ, µ). Therefore L1(Σ) can be

isometrically embedded into b(X,Σ, µ) ∼= L∞(X,Σ, µ)∗ ∼= L1(X,Σ, µ)∗∗ (see [1]).
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Define a mapping Ψ: L1(X,Σ, µ) → ca(X,Σ, µ) by Ψ(f) = µf , where µf (A) =
∫

X
f dµ. Then µf is a complex measure on Σ and µf ≪ µ. So Ψ(L1(X,Σ, µ)) ⊆

ca(X,Σ, µ). On the other hand, let ν ∈ ca(X,Σ, µ). Then ν is a complex measure

and ν ≪ µ. Put fν = dν/dµ. Then Ψ(fν) = µ
fν

= ν because for each A ∈ Σ

µ
fν
(A) =

∫

A

fν dµ =

∫

X

dν

dµ
dµ =

∫

A

dν = ν(A).

Moreover, if Ψ(f) = 0, then µf = 0 and so f = 0. Thus, Ψ is an invertible operator

with inverse Ψ−1(ν) = dν/dµ. Therefore L1(Σ) ∼= ca(X,Σ, µ). Let f ∈ L1(Σ). Then

we have

Ψ−1W ∗Ψ(f) = Ψ−1W ∗(µf ) = Ψ−1(λµf
) =

dλµf

dµ
= Pu

ϕ(f)

because by (3.1),

λµf
(A) =

∫

ϕ−1(A)

u dµf =

∫

ϕ−1(A)

uf dµ =

∫

A

Pu
ϕ(f) dµ.

So the compression of W ∗ on ca(X,Σ, µ) is Pu
ϕ. Now we define a mapping Qϕ :

L1(X,ϕ−1(Σ), µ) → L1(X,Σ, µ) by Qϕf = h(f ◦ ϕ−1), though we make no assump-

tions regarding the invertibility of ϕ (see [2]). Then

‖Qϕf‖ =

∫

X

h|f | ◦ ϕ−1 dµ =

∫

X

|f | dµ = ‖f‖.

So Qϕ is an isometry and Pu
ϕf = QϕEMu. Consequently, we have the following

diagram:

L1(X,Σ, µ)

E

��

L1(X,Σ, µ)

Pu
ϕ

��

Ψ //
Muoo ca(X,Σ, µ)

W∗

��

L1(X,ϕ−1(Σ), µ)
Qϕ

// L1(X,Σ, µ) ca(X,Σ, µ)
Ψ−1

oo

Furthermore, the operator Pu
ϕ is closely related to EMu by the quantity

(3.2) ‖Pu
ϕf‖ = ‖QϕEMu(f)‖ = ‖QϕE(uf)‖ = ‖E(uf)‖, f ∈ L1(Σ).

Therefore N (Pu
ϕ) = N (EMu). Moreover, Pu

ϕ is compact if and only if the condi-

tional type operator EMu : L1(Σ) → L1(ϕ−1(Σ)) is compact. Thus, by Remark 2.3,

Theorem 2.5 and Theorem 2.8 (ii) in [11] we have the following corollary.

Corollary 3.1. Let Pu
ϕ ∈ B(L1(Σ)). Then the following assertions hold.

(a) Pu
ϕ is compact if and only if it is weakly compact if and only if u(B) = 0 and

for any ε > 0 the set {x ∈ X : E(|u|)(x) > ε} consists of finitely many atoms.

(b) Let E(u) is bounded away from zero on its support. Then Pu
ϕ has closed range

if and only if supp(E(u)) = X except for at most finitely many atoms.
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Theorem 3.2. Let ϕ(Σ) ⊆ Σ, u > 0 and Pu
ϕ ∈ B(L1(Σ)). Then Pu

ϕ has closed

range if and only if there exists a positive constant r such that ϕ(U(r)) = ϕ(supp(u)),

where U(r) := {x ∈ X : u(x) > r}.

P r o o f. Suppose that Pu
ϕ has closed range. By the Banach closed range theorem,

this implies that the range of W = (Pu
ϕ)

∗ is also closed. Thus, by [13], Theorem 2.8

there exists a positive constant r such that ϕ(U(r)) = ϕ(supp(u)), where U(r) :=

{x ∈ X : u(x) > r}.

Conversely, suppose that there exists a positive constant r such that ϕ(U(r)) =

ϕ(supp(u)). Then by [13], Theorem 2.8 W and hence W ∗ have closed range.

Let {fn} ⊆ L1(Σ) and Pu
ϕ(fn) = Ψ−1W ∗Ψ(fn) → g for some g ∈ L1(Σ). So

W ∗(Ψ(fn)) → Ψ(g). Since W ∗(ca(X,Σ, µ)) ⊆ ca(X,Σ, µ), Ψ(g) = W ∗(ν) for

some ν ∈ ca(X,Σ, µ). It follows that g = Ψ−1W ∗(ν) = Ψ−1W ∗Ψ(dν/dµ). Thus,

Ψ−1W ∗Ψ = Pu
ϕ has closed range. This completes the proof. �

4. Spectrum of weighted Frobenius-Perron operators

The spectrum σ(Pu
ϕ) of P

u
ϕ is defined to be the set of all the complex numbers λ

such that the linear operator λI − Pu
ϕ does not have a bounded inverse defined

on L1(Σ), where I is the identity operator. The complement of σ(Pu
ϕ) in the complex

plane C is called the resolvent set of Pu
ϕ and is denoted by ̺(Pu

ϕ). The spectrum

σ(Pu
ϕ) is a disjoint union of the point spectrum σp(P

u
ϕ), the continuous spectrum

σc(Pu
ϕ), and the residual spectrum σr(Pu

ϕ). The boundary of σ(P
u
ϕ) is denoted

by ∂σ(Pu
ϕ). A number λ ∈ C is said to be in the approximate point spectrum

σa(Pu
ϕ) if there exists a sequence {fn} in L1(Σ) such that ‖fn‖ = 1 for all n and

‖(λI − Pu
ϕ)fn‖ → 0 as n → ∞. Obviously, σa(Pu

ϕ) ⊂ σ(Pu
ϕ). A measurable set A is

called wandering for ϕ if {ϕ−k(A)}k>0 are disjoint (see [7]).

The spectrum problem of classic Frobenius-Perron operators is difficult. In fact,

it is still an open problem, and so is the spectrum of weighted Frobenius-Perron op-

erators. Some general properties and a partial spectral analysis of Frobenius-Perron

operators and Koopman operators have been given in [7] and [8]. The spectrum

of Pu
ϕ is determined in [12] for P

u
ϕ compact. In this section we obtain some results

on the spectrum of Pu
ϕ under certain conditions, see [5].

Theorem 4.1. Let (X,Σ, µ) be a σ-finite atomic measure space and u ∈ L∞(X)

with α = essinf |u| > 0. If ϕ is invertible and has a wandering set and µ is invariant

under ϕ, then {λ ∈ C : |λ| 6 α} ⊆ σp(Pu
ϕ).

P r o o f. LetAn0 ∈Σ be an atomic and wandering set for ϕ. Put ϕ−k(An0)=Ank
.

Then {Ank
}k>0 are disjoint. By the assumption we have µ(Ank

) =µ(ϕ−1(Ank
)) for
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all k> 0. Set G= {λ∈C : |λ|6α}. Define f : G→L1(X) by f(λ) = fλ, where

fλ|An
=







λk

u(u ◦ ϕ−1) . . . (u ◦ ϕ−k)

∣

∣

∣

An0

n = nk;

0 otherwise.

Then for each λ ∈ G, fλ ∈ L1(X) because

∫

X

|fλ| dµ =

∫

X

∣

∣

∣

∣

∞
∑

k=0

(fλ|Ank
)χAnk

∣

∣

∣

∣

dµ <

∞
∑

k=0

∫

X

|(fλ|Ank
)χAnk

| dµ

=
∞
∑

k=0

∫

X

∣

∣

∣

( λk

u(u ◦ ϕ−1) . . . (u ◦ ϕ−k)

∣

∣

∣

An0

)

χAnk

∣

∣

∣
dµ

=

∞
∑

k=0

∫

Ank

( |λk|

|u(u ◦ ϕ−1) . . . (u ◦ ϕ−k)|

∣

∣

∣

An0

)

dµ <

∞
∑

k=0

1

α

|λk|

αk
< ∞.

Moreover, for each λ ∈ G we have

Pu
ϕfλ = Pu

ϕ

∞
∑

k=0

(fλ|Ank
)χAnk

=

∞
∑

k=0

( 1

µ(Ank
)
u
∣

∣

∣

ϕ−1(Ank
)
fλ|ϕ−1(Ank

)µ(ϕ
−1(Ank

))
)

χAnk

=

∞
∑

k=0

(u|Ank+1
fλ|Ank+1

)χAnk

=

∞
∑

k=0

(

u|ϕ−(k+1)(An0)

λk+1

u(u ◦ ϕ−1) . . . (u ◦ ϕ−(k+1))

∣

∣

∣

An0

)

χAnk

=

∞
∑

k=0

( λk+1

u(u ◦ ϕ−1) . . . (u ◦ ϕ−k)

∣

∣

∣

An0

)

χAnk
.

Then

(λI − Pu
ϕ)fλ = (λI − Pu

ϕ)

∞
∑

k=0

(fλ|Ank
)χAnk

=

∞
∑

k=0

( λk+1

u(u ◦ ϕ−1) . . . (u ◦ ϕ−k)

∣

∣

∣

An0

)

χAnk

−
∞
∑

k=0

( λk+1

u(u ◦ ϕ−1) . . . (u ◦ ϕ−k)

∣

∣

∣

An0

)

χAnk
= 0.

Thus, {λ ∈ C : |λ| 6 α} ⊆ σp(Pu
ϕ). �
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Theorem 4.2. If Pu
ϕ ∈ B(L1(Σ)), then σp(Pu

ϕ) ⊂ ∂Du∪{0}, where Du = {λ ∈ C :

|λ| 6 ‖u‖∞}.

P r o o f. Let 0 6= λ ∈ C be such that λ ∈ σp(Pu
ϕ), then there exists a function

0 6= f ∈ L1(Σ) such that (λ − Pu
ϕ)f = 0. Thus we have

0 = ‖λf − Pu
ϕf‖1 > |λ|‖f‖1 − ‖Pu

ϕf‖1 > |λ|‖f‖1 − ‖u‖∞‖f‖1

= (|λ| − ‖u‖∞)‖f‖1.

Thus, |λ| = ‖u‖∞ and so λ ∈ ∂Du. �

Theorem 4.3. If W ∈ B(L∞(Σ)) and µ ≪ µ ◦ ϕ−1, then σp(W ) ⊂ ∂Du ∪ {0}.

P r o o f. Since µ ≪ µ ◦ ϕ−1, ϕ is onto. Hence,

‖W (f)‖∞ = ‖(uf) ◦ ϕ‖∞ = ‖uf‖∞ 6 ‖u‖∞‖f‖∞.

Now let 0 6= λ ∈ C be such that λ ∈ σp(W ), then there exists a function 0 6= f ∈

L∞(Σ) such that (λI −W )f = 0. Then

0 = ‖λf −Wf‖∞ > |λ|‖f‖∞ − ‖Wf‖∞ > |λ|‖f‖∞ − ‖u‖∞‖f‖∞

= (|λ| − ‖u‖∞)‖f‖∞

and hence |λ| = ‖u‖∞. �

Theorem 4.4. Let Pu
ϕ ∈ B(L1(Σ)). Then the following assertions hold.

(a) If Pu
ϕ ∈ B(L1(Σ)) is not invertible, then σ(Pu

ϕ) = Du.

(b) If Pu
ϕ ∈ B(L1(Σ)) is invertible, then σ(Pu

ϕ) ⊂ ∂ Du.

P r o o f. Let f ∈ L1(Σ) and λ ∈ C with |λ| < ‖u‖∞. Then

‖λf − Pu
ϕf‖1 > |λ|‖f‖1 − ‖Pu

ϕf‖1 > |λ|‖f‖1 − ‖u‖∞‖f‖1 = (|λ| − ‖u‖∞)‖f‖1.

Thus, λI − Pu
ϕ is bounded from below and so λ /∈ σa(Pu

ϕ). Since ∂σ(P
u
ϕ) ⊂ σa(Pu

ϕ),

λ /∈ ∂σ(Pu
ϕ) for all |λ| < ‖u‖∞. In particular, 0 /∈ ∂σ(Pu

ϕ). Now, let for u ∈ L∞(Σ),

Pu
ϕ is not invertible. Then 0 ∈ σ(Pu

ϕ). If there exists |λ| < ‖u‖∞ such that λ /∈ σ(Pu
ϕ),

then it is easy to see that there exists a λ1 ∈ ∂σ(Pu
ϕ) such that |λ1| < ‖u‖∞. But

this is a contradiction to the fact that λ /∈ ∂σ(Pu
ϕ) for all |λ| < ‖u‖∞. It follows that

σ(Pu
ϕ) = Du because σ(Pu

ϕ) is a closed subset of Du.

Consider now the case when Pu
ϕ is invertible. Then 0 ∈ ̺(Pu

ϕ). If there exists

|λ| < ‖u‖∞ such that λ ∈ σ(Pu
ϕ), then there exists a λ2 ∈ ∂σ(Pu

ϕ) with |λ2| < ‖u‖∞,

which also contradicts the fact that λ /∈ ∂σ(Pu
ϕ) for all |λ| < ‖u‖∞. Therefore

|λ| < ‖u‖∞ implies that λ /∈ σ(Pu
ϕ), and so σ(P

u
ϕ) ⊂ ∂Du. �
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