
Mathematica Bohemica

Ivan Chajda; Helmut Länger
States on basic algebras

Mathematica Bohemica, Vol. 142 (2017), No. 2, 197–210

Persistent URL: http://dml.cz/dmlcz/146753

Terms of use:
© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/146753
http://dml.cz


142 (2017) MATHEMATICA BOHEMICA No. 2, 197–210

STATES ON BASIC ALGEBRAS

Ivan Chajda, Olomouc, Helmut Länger, Wien

Received August 11, 2014. First published December 12, 2016.
Communicated by Václav Koubek

Abstract. States on commutative basic algebras were considered in the literature as
generalizations of states on MV-algebras. It was a natural question if states exist also on
basic algebras which are not commutative. We answer this question in the positive and give
several examples of such basic algebras and their states. We prove elementary properties
of states on basic algebras. Moreover, we introduce the concept of a state-morphism and
characterize it among states. For basic algebras which are the certain pastings of Boolean
algebras the construction of a state-morphism is shown.
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Generalizing the concept of a state on MV-algebras states on commutative basic

algebras were considered in [1]. We consider states on arbitrary (not necessarily

commutative) basic algebras. First we recall the definition of a basic algebra and the

double face of such algebras.

Definition 1. A basic algebra is an algebra A = (A,⊕,¬, 0) of type (2, 1, 0)

satisfying the identities

x⊕ 0 = x, ¬(¬x) = x, ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1,

where 1 := ¬0. In order to avoid too many brackets we agree that ¬ binds stronger

than the other operation symbols. Two elements x and y of A are said to be or-

thogonal to each other if x 6 ¬y. On a basic algebra A = (A,⊕,¬, 0) we define
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a binary operation ⊖ by x⊖ y := ¬(¬x⊕ y) for all x, y ∈ A. The algebra A is called

commutative if ⊕ has this property. An element x of A is called sharp if x⊕ x = x.

R em a r k 2. We have ¬(¬x⊖ y) = x⊕ y for all x, y ∈ A.

R em a r k 3 (cf. [2]). Every MV-algebra is a commutative basic algebra. A basic

algebra is an MV-algebra if and only if ⊕ is associative. Every orthomodular lattice

is a (in general not commutative) basic algebra satisfying the identity x⊕ (x∧y) = x

in which every element is sharp. A basic algebra is an orthomodular lattice if and

only if it satisfies the identity x⊕ (x ∧ y) = x.

Next we define the notion of a bounded lattice with sectionally antitone involu-

tions.

Definition 4. A bounded lattice with sectionally antitone involutions is an or-

dered sextuple A = (A,∨,∧, (x;x ∈ A), 0, 1) such that (A,∨,∧, 0, 1) is a bounded

lattice and for every x ∈ A, x is an antitone involution on ([x, 1],6), i.e., y 6 z

implies zx 6 yx and (yx)x = y for all x ∈ A and y, z ∈ [x, 1].

E x am p l e 5. The algebraM := ([0, 1],⊕,¬, 0) with

x⊕ y := (x + y) ∧ 1, ¬x := 1− x

for all x, y ∈ [0, 1] is an MV-algebra, called the standard MV-algebra, where

x⊖ y = ¬(¬x⊕ y) = 1− (((1 − x) + y) ∧ 1) = (x− y) ∨ 0

for all x, y ∈ [0, 1], and ([0, 1],∨,∧, (x;x ∈ [0, 1]), 0, 1) with

x ∨ y := max(x, y), x ∧ y := min(x, y), xy := 1− x+ y

for all x, y ∈ [0, 1] is a bounded lattice with sectionally antitone involutions.

Both faces of a basic algebra are in a natural one-to-one correspondence:

Theorem 6 (cf. [2]). The formulae

x ∨ y = ¬(¬x ⊕ y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y), xy = ¬x⊕ y, 1 = ¬0

and

x⊕ y = (x0 ∨ y)y, ¬x = x0

induce a natural one-to-one correspondence between basic algebras and bounded

lattices with sectionally antitone involutions. Moreover,

x 6 y if and only if ¬x⊕ y = 1.

R em a r k 7. The structures mentioned in Example 5 are both faces of the same

basic algebra, namely the standard MV-algebra.
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Lemma 8. If A = (A,⊕,¬, 0) is a basic algebra and a, b, c ∈ A, then the following

conditions hold:

(i) a 6 b implies a⊕ c 6 b⊕ c and a⊖ c 6 b ⊖ c,

(ii) (a⊕ b)⊖ b = a ∧ ¬b,

(iii) (a ∧ b)⊕ c = (a⊕ c) ∧ (b ⊕ c),

(iv) a⊕ b = (a ∧ ¬b)⊕ b,

(v) a 6 b if and only if a⊖ b = 0.

P r o o f. (i) If a 6 b then ¬a > ¬b, thus ¬a ∨ c > ¬b ∨ c, whence

a⊕ c = (¬a ∨ c)c 6 (¬b ∨ c)c = b⊕ c.

Moreover, ¬a > ¬b implies ¬a⊕ c > ¬b⊕ c, whence

a⊖ c = ¬(¬a⊕ c) 6 ¬(¬b ⊕ c) = b⊖ c.

(ii) (a⊕ b)⊖ b = ¬(¬(a⊕ b)⊕ b) = ¬(¬a ∨ b) = a ∧ ¬b.

(iii) (a ∧ b) ⊕ c = (a0 ∨ b0 ∨ c)c = ((a0 ∨ c) ∨ (b0 ∨ c))c = (a0 ∨ c)c ∧ (b0 ∨ c)c =

(a⊕ c) ∧ (b⊕ c).

(iv) According to (iii) we have

(a ∧ ¬b)⊕ b = (a⊕ b) ∧ (¬b ⊕ b) = (a⊕ b) ∧ 1 = a⊕ b.

(v) The following are equivalent: a ⊖ b = 0, ¬(¬a ⊕ b) = 0, ¬a ⊕ b = 1 and

a 6 b. �

Next we define three classes of basic algebras.

Definition 9. A basic algebra A = (A,⊕,¬, 0) is called symmetric if (x ∨ y)y =

xx∧y for all x, y ∈ A, monotonous if x, y, z ∈ A and x 6 y together imply z⊕x 6 z⊕y

and weakly monotonous if x 6 x ⊕ y for all x, y ∈ A. Of course, every monotonous

basic algebra is weakly monotonous.

Lemma 10. If A = (A,⊕,¬, 0) is a basic algebra and (A,6) is a chain, then A

is symmetric.

P r o o f. Let a, b ∈ A. If a 6 b then (a ∨ b)b = bb = 1 = aa = aa∧b. If a > b then

(a ∨ b)b = ab = aa∧b. �
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Lemma 11. Every commutative basic algebra is symmetric and monotonous.

P r o o f. If A = (A,⊕,¬, 0) is a commutative basic algebra, then

(x ∨ y)y = x0 ⊕ y = y ⊕ x0 = (y0 ∨ x0)x
0

= (x0 ∨ y0 ∨ x0)x
0

= (x ∧ y)⊕ x0

= x0 ⊕ (x ∧ y) = (x ∨ (x ∧ y))x∧y = xx∧y

for all x, y ∈ A. The second assertion follows from Lemma 8 (i). �

The following example shows that symmetric basic algebras need not be weakly

monotonous and hence monotonous.

E x am p l e 12 (cf. [3]). If we define

x ∨ y := max(x, y), x ∧ y := min(x, y), x0 := 1−
x

2
if x 6

2

3
,

x0 := 2− 2x if x >
2

3
, xy := 1− x+ y if y > 0

for all x, y ∈ [0, 1], then ([0, 1],∨,∧, (x;x ∈ [0, 1]), 0, 1) is a bounded lattice with

sectionally antitone involutions. Let A := (A,⊕,¬, 0) denote the corresponding

basic algebra. A is not commutative, since

1

4
⊕

1

2
=

(7

8
∨

1

2

)1/2

=
(7

8

)1/2

= 1−
7

8
+

1

2
=

5

8
6=

1

2

= 1−
3

4
+

1

4
=

(3

4

)1/4

=
(3

4
∨
1

4

)1/4

=
1

2
⊕

1

4
.

According to Lemma 10, A is symmetric. A is not weakly monotonous since

1

2
66

9

20
= 1−

3

4
+

1

5
=

(3

4

)1/5

=
(3

4
∨

1

5

)1/5

=
1

2
⊕

1

5
.

Now we introduce the notion of a state on a basic algebra.

Definition 13 (cf. [1]). A state on a basic algebra A = (A,⊕,¬, 0) is a mapping

s : A → R satisfying conditions (S1)–(S3):

(S1) s(x) > 0 for all x ∈ A,

(S2) s(1) = 1,

(S3) s(x ⊕ y) = s(x) + s(y) for all x, y ∈ A with x 6 ¬y (i.e., orthogonal ele-

ments x, y).

R em a r k 14. It is easy to see that a convex combination of states is again a state.
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R em a r k 15. This definition coincides with the usual one if the basic algebra

is an MV-algebra. On orthomodular lattices L = (L,∨,∧, ′, 0, 1) states are usually

defined as mappings s : L → R satisfying conditions (S1′)–(S3′):

(S1′) s(x) > 0 for all x ∈ L,

(S2′) s(1) = 1,

(S3′) s(x ∨ y) = s(x) + s(y) for all x, y ∈ A with x 6 y′

(cf. [4]). Since x ⊕ y = x ∨ y in case x 6 y′, the notions of a state on L and that of

a state on the corresponding basic algebra coincide.

Lemma 16. Conditions (S1)–(S3) are independent.

P r o o f. Let A = (A,⊕,¬, 0) denote the basic algebra with A = {0, a,¬a, 1}, the

Hasse diagram

0

¬a

1

a

and the next operation table for ⊕.

⊕ 0 a ¬a 1
0 0 a ¬a 1
a a a 1 1
¬a ¬a 1 ¬a 1
1 1 1 1 1

Then s : A → R defined by s(0) := 0, s(a) := −1, s(¬a) := 2 and s(1) := 1 satisfies

(S2) and (S3), but not (S1), s : A → R defined by s(x) := 0 for all x ∈ A satisfies

(S1) and (S3), but not (S2), and s : A → R defined by s(x) := 1 for all x ∈ A satisfies

(S1) and (S2), but not (S3). �

There follow examples for states on non-symmetric and hence non-commutative

basic algebras.

E x am p l e 17. The basic algebraA = (A,⊕,¬, 0) with A = {0, a, b, 1}, the Hasse

diagram

0

b=¬b

1

a=¬a
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and the operation table
⊕ 0 a b 1
0 0 a b 1
a a 1 b 1
b b a 1 1
1 1 1 1 1

for ⊕ is not symmetric, since

(a ∨ b)b = 1b = b 6= a = a0 = aa∧b

and hence, according to Lemma 11, not commutative. There are the following pairs

of orthogonal elements:

(0, x), (x, 0) and (x,¬x)

for x ∈ A. The mapping s : A → [0, 1] defined by s(0) := 0, s(a) = s(b) := 1/2 and

s(1) := 1 is a state on A, since

s(0⊕ x) = s(x) = 0 + s(x) = s(0) + s(x),

s(x⊕ 0) = s(x) = s(x) + 0 = s(x) + s(0),

s(x⊕ ¬x) = s(1) = 1 = s(x) + s(¬x) for all x ∈ A.

E x am p l e 18. The basic algebra A = (A,⊕,¬, 0) with A = {0, a, b,¬a,¬b, 1},

the Hasse diagram

0

b

¬b

a

¬a

1

(¬b)b := ¬b, (¬a)b := ¬a and the operation table

⊕ 0 a b ¬a ¬b 1
0 0 a b ¬a ¬b 1
a a a ¬a 1 ¬b 1
b b ¬b ¬b ¬a 1 1
¬a ¬a 1 ¬b ¬a 1 1
¬b ¬b ¬b 1 1 1 1
1 1 1 1 1 1 1

202



for ⊕ is not symmetric, since

(a ∨ b)b = (¬b)b = ¬b 6= ¬a = a0 = aa∧b

and hence, according to Lemma 11, not commutative. There are the following pairs

of orthogonal elements:

(0, x), (x, 0), (a, b), (b, a), (b, b) and (x,¬x)

for x ∈ A. The mapping s : A → R defined by s(0) := 0, s(a) = s(b) := 1/3,

s(¬a) = s(¬b) := 2/3 and s(1) := 1 is a state on A, since

s(0⊕ x) = s(x) = 0 + s(x) = s(0) + s(x) for all x ∈ A,

s(x⊕ 0) = s(x) = s(x) + 0 = s(x) + s(0) for all x ∈ A,

s(a⊕ b) = s(¬a) = 2

3
= 1

3
+ 1

3
= s(a) + s(b),

s(b⊕ a) = s(¬b) = 2

3
= 1

3
+ 1

3
= s(b) + s(a),

s(b ⊕ b) = s(¬b) = 2

3
= 1

3
+ 1

3
= s(b) + s(b),

s(x ⊕ ¬x) = s(1) = 1 = s(x) + s(¬x) for all x ∈ A.

E x am p l e 19. The basic algebraA = (A,⊕,¬, 0) with A = {0, a, b, c, d, e,¬a,¬b,

¬c,¬d,¬e, 1}, the Hasse diagram

a b c d e

¬a ¬b ¬c ¬d ¬e

1

0

(¬b)a := ¬c, (¬c)a := ¬b, (¬a)b := ¬c, (¬c)b := ¬a, (¬a)c := ¬b, (¬b)c := ¬a,

(¬d)c := ¬e, (¬e)c := ¬d, (¬c)d := ¬e, (¬e)d := ¬c, (¬c)e := ¬d and (¬d)e := ¬c
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and the operation table

⊕ 0 a b c d e ¬a ¬b ¬c ¬d ¬e 1
0 0 a b c d e ¬a ¬b ¬c ¬d ¬e 1
a a a ¬c ¬b d e 1 ¬b ¬c ¬d ¬e 1
b b ¬c b ¬a d e ¬a 1 ¬c ¬d ¬e 1
c c ¬b ¬a c ¬e ¬d ¬a ¬b 1 ¬d ¬e 1
d d a b ¬e d ¬c ¬a ¬b ¬c 1 ¬e 1
e e a b ¬d ¬c e ¬a ¬b ¬c ¬d 1 1
¬a ¬a 1 ¬a ¬a ¬e ¬d ¬a 1 1 ¬d ¬e 1
¬b ¬b ¬b 1 ¬b ¬e ¬d 1 ¬b 1 ¬d ¬e 1
¬c ¬c ¬c ¬c 1 ¬c ¬c 1 1 ¬c 1 1 1
¬d ¬d ¬b ¬a ¬d 1 ¬d ¬a ¬b 1 ¬d 1 1
¬e ¬e ¬b ¬a ¬e ¬e 1 ¬a ¬b 1 1 ¬e 1
1 1 1 1 1 1 1 1 1 1 1 1 1

for ⊕ is not symmetric, since

(a ∨ d)d = (¬c)d = ¬e 6= ¬a = a0 = aa∧d

and hence, according to Lemma 11, not commutative. There are the following pairs

of orthogonal elements:

(0, x), (x, 0), (a, b), (a, c), (b, a), (b, c), (c, a), (c, b),

(c, d), (c, e), (d, c), (d, e), (e, c), (e, d) and (x,¬x)

for x ∈ A. The mapping s : A → R defined by s(0) = s(a) = s(b) = s(d) = s(e) =

s(¬c) := 0 and s(c) = s(¬a) = s(¬b) = s(¬d) = s(¬e) = s(1) := 1 is a state on A,

since

s(0⊕ x) = s(x) = 0 + s(x) = s(0) + s(x) for all x ∈ A,

s(x⊕ 0) = s(x) = s(x) + 0 = s(x) + s(0) for all x ∈ A,

s(a⊕ b) = s(¬c) = 0 = 0 + 0 = s(a) + s(b),

s(a⊕ c) = s(¬b) = 1 = 0 + 1 = s(a) + s(c),

s(b⊕ a) = s(¬c) = 0 = 0 + 0 = s(b) + s(a),

s(b⊕ c) = s(¬a) = 1 = 0 + 1 = s(b) + s(c),

s(c⊕ a) = s(¬b) = 1 = 1 + 0 = s(c) + s(a),

s(c⊕ b) = s(¬a) = 1 = 1 + 0 = s(c) + s(b),

s(c⊕ d) = s(¬e) = 1 = 1 + 0 = s(c) + s(d),

s(c⊕ e) = s(¬d) = 1 = 1 + 0 = s(c) + s(e),
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s(d⊕ c) = s(¬e) = 1 = 0 + 1 = s(d) + s(c),

s(d⊕ e) = s(¬c) = 0 = 0 + 0 = s(d) + s(e),

s(e⊕ c) = s(¬d) = 1 = 0 + 1 = s(e) + s(c),

s(e⊕ d) = s(¬c) = 0 = 0 + 0 = s(e) + s(d),

s(x ⊕ ¬x) = s(1) = 1 = s(x) + s(¬x) for all x ∈ A.

We now consider some properties of states on basic algebras.

Lemma 20. For a basic algebra A = (A,⊕,¬, 0) and s : A → R, condition (S3)

is equivalent to any of the following assertions:

(i) s(x⊖ y) = s(x ∨ y)− s(y) for all x, y ∈ A,

(ii) s(x⊖ y) = s(x) − s(y) for all x, y ∈ A with y 6 x,

(iii) s(x⊕ y) = s(x ∧ ¬y) + s(y) for all x, y ∈ A.

P r o o f. Let a, b ∈ A.

(S3) ⇒ (i): We have

a⊖ b = ¬(¬a⊕ b) = ((a ∨ b)b)0 6 b0 = ¬b

and hence

s(a⊖ b) = s((a⊖ b)⊕ b)− s(b) = s(¬(¬a⊕ b)⊕ b)− s(b) = s(a ∨ b)− s(b).

(i) ⇒ (ii): This is clear.

(ii) ⇒ (iii): We have a⊕ b = (a0 ∨ b)b > b and hence

s(a⊕ b) = s((a⊕ b)⊖ b) + s(b) = s(a ∧ ¬b) + s(b),

according to Lemma 8.

(iii) ⇒ (S3): If a 6 ¬b then s(a⊕ b) = s(a ∧ ¬b) + s(b) = s(a) + s(b). �

Lemma 21. A state s on a basic algebra A = (A,⊕,¬, 0) satisfies the following

conditions:

(i) s(0) = 0,

(ii) s(x) 6 s(y) for all x, y ∈ A with x 6 y,

(iii) s(A) ⊆ [0, 1],

(iv) s(¬x) = 1− s(x) for all x ∈ A,

(v) s(x⊕ y) 6 s(x) + s(y) for all x, y ∈ A.

P r o o f. (i) s(0) = s(0⊕ 0)− s(0) = s(0)− s(0) = 0.
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(ii) Follows from Lemma 20.

(iii) Follows from (ii).

(iv) s(¬x) = s(x⊕ ¬x) − s(x) = s(1)− s(x) = 1− s(x) for all x ∈ A.

(v) Follows from Lemma 20 and (ii). �

Lemma 22. For a state s on a basic algebra A = (A,⊕,¬, 0), the following are

equivalent:

(i) s(x) > 0 for all x ∈ A \ {0},

(ii) s(x) < s(y) for all x, y ∈ A with x < y.

P r o o f. (i) ⇒ (ii): Let a, b ∈ A with a < b. Then s(a) 6 s(b) according to

Lemma 21. Now s(a) = s(b) would imply s(b ⊖ a) = 0 according to Lemma 20,

whence

0 = b⊖ a = ¬(¬b ⊕ a) = ((b ∨ a)a)0 = (ba)0

and hence ba = 1, which shows b = a, contradicting a < b. Hence s(a) < s(b).

(ii) ⇒ (i): This follows from Lemma 21. �

Lemma 23. Let A = (A,⊕,¬, 0) be a symmetric basic algebra and s : A → R

and consider the following assertions:

(i) s(x⊖ y) = s(x) − s(x ∧ y) for all x, y ∈ A,

(ii) s(x ∨ y) = s(x) + s(y)− s(x ∧ y) for all x, y ∈ A.

Then (S3) ⇔ (i) ⇒ (ii).

P r o o f. Let a, b ∈ A.

(S3) ⇒ (i): We have

a⊖ b = ¬(¬a⊕ b) = ¬((a ∨ b)b) = ¬(aa∧b) 6 ¬(a ∧ b)

and hence according to (S3)

s(a⊖ b) = s((a⊖ b)⊕ (a ∧ b))− s(a ∧ b) = s(¬((a ∨ b)b)⊕ (a ∧ b))− s(a ∧ b)

= s(((a ∨ b)b ∨ (a ∧ b))a∧b)− s(a ∧ b) = s(((a ∨ b)b)a∧b)− s(a ∧ b)

= s((aa∧b)a∧b)− s(a ∧ b) = s(a)− s(a ∧ b).

(i) ⇒ (S3): If a 6 ¬b then according to (i)

s(a⊕ b) = s((a⊕ b)⊖ b) + s((a⊕ b) ∧ b)

= s(¬(¬(a ⊕ b)⊕ b)) + s((a0 ∨ b)b ∧ b) = s(¬(¬a ∨ b)) + s(b)

= s(a ∧ ¬b) + s(b) = s(a) + s(b).
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(i) ⇒ (ii): According to Lemma 20 and (i) we have

s(a ∨ b) = s(a⊖ b) + s(b) = s(a)− s(a ∧ b) + s(b) = s(a) + s(b)− s(a ∧ b).

�

Now we introduce a special class of states on basic algebras.

Definition 24. A state-morphism on a basic algebra A is a homomorphism

from A toM.

R em a r k 25. The state considered in Example 17 is not a state-morphism, since

s(a⊕ b) = s(b) = 1

2
6= 1 = 1

2
⊕ 1

2
= s(a)⊕ s(b).

The same is true for the state considered in Example 18, since

s(a⊕ a) = s(a) = 1

3
6= 2

3
= 1

3
⊕ 1

3
= s(a)⊕ s(a).

Finally, the state considered in Example 19 is a state-morphism as will be proved

later.

Lemma 26. Every state-morphism on a basic algebra A is a state on A.

P r o o f. Let s be a state-morphism on a basic algebra A = (A,⊕,¬, 0) and

a, b ∈ A and assume a 6 ¬b. Then we have

s(a)+s(b) = s(a∧¬b)+s(b) = (s(a)∧s(¬b))+s(b) 6 s(¬b)+s(b) = 1−s(b)+s(b) = 1

and hence s(a⊕ b) = s(a)⊕ s(b) = (s(a) + s(b)) ∧ 1 = s(a) + s(b). �

There follow two characterizations of state-morphisms.

Theorem 27. A state on a basic algebra A = (A,⊕,¬, 0) is a state-morphism

on A if and only if s(x ∨ y) = s(x) ∨ s(y) for all x, y ∈ A.

P r o o f. If s(x ∨ y) = s(x) ∨ s(y) for all x, y ∈ A, then according to Lemma 20

and Lemma 21 we have

s(x⊕ y) = s(¬(¬x ⊖ y)) = 1− s(¬x⊖ y) = 1− s(¬x ∨ y) + s(y)

= 1− (s(¬x) ∨ s(y)) + s(y) = (1− s(¬x) + s(y)) ∧ 1

= (s(x) + s(y)) ∧ 1 = s(x)⊕ s(y)

for all x, y ∈ A. The rest follows from Theorem 6. �

207



Theorem 28. A state on a symmetric basic algebra A = (A,⊕,¬, 0) is a state-

morphism on A if and only if s(x ∧ y) = s(x) ∧ s(y) for all x, y ∈ A.

P r o o f. If s(x ∧ y) = s(x) ∧ s(y) for all x, y ∈ A, then according to Lemma 23

s(x⊕ y) = s(¬(¬x ⊖ y)) = 1− s(¬x ⊖ y) = 1− (s(¬x) − s(¬x ∧ y))

= s(x) + (s(¬x) ∧ s(y)) = 1 ∧ (s(x) + s(y)) = s(x)⊕ s(y)

for all x, y ∈ A. The rest follows from Theorem 6. �

In the last part of the paper we provide a general construction of (in general not

symmetric and hence not commutative) basic algebras possessing a state-morphism.

We start with an easy lemma for Boolean algebras.

Lemma 29. If B = (B,∨,∧, ′, 0, 1) is a Boolean algebra, a an atom of B and

b, c ∈ B, then the following conditions hold:

(i) a 66 b implies a 6 b′,

(ii) a 6 b ∨ c if and only if a 6 b or a 6 c.

P r o o f. (i): We have

a = a ∧ 1 = a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′) = 0 ∨ (a ∧ b′) = a ∧ b′ 6 b′.

(ii): If a 6 b ∨ c, a 66 b and a 66 c, then

a = a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) = 0 ∨ 0 = 0,

a contradiction. �

In the following, let I be a nonempty index set and for every i ∈ I let Bi =

(Bi,∨,∧,
′, 0, 1) be a Boolean algebra such that for all i, j ∈ I with i 6= j the set

Bi ∩Bj equals the four-element set {0, a, a
′, 1} where a is an atom of every Boolean

algebra Bi. Put L =
⋃

i∈I

Bi and let b, c ∈ L. For i ∈ I let 6i denote the partial order

relation in Bi. Define b 6 c if there exists an i ∈ I with b 6i c. It is easy to see that

then 6 is a partial order relation on L. If there exists an i ∈ I with b, c ∈ Bi, then

b ∨ c = b ∨i c and b ∧ c = b ∧i c. Otherwise we have

b ∨ c =

{

a′ if b, c 6 a′,

1 otherwise
and b ∧ c =

{

a if a 6 b, c,

0 otherwise.

This shows that (L,6, 0, 1) is a bounded lattice. Let ′ be defined on L in an obvious

way. If b 6 c then there exists some i ∈ I with b, c ∈ Bi and b 6i c. Since Bi is
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a Boolean algebra, we have b∨ (c∧ b′) = c. Hence (L,∨,∧, ′, 0, 1) is an orthomodular

lattice which can be considered as a basic algebra L = (L,⊕,¬, 0) in the usual way.

(L,∨,∧, ′, 0, 1) is a Greechie pasting of the Boolean algebras Bi, i ∈ I (cf. [4]). The

basic algebra L will be called a pasting of the Boolean algebras Bi, i ∈ I. This basic

algebra need not be commutative in case |I| > 1.

Now we state and prove the following result.

Theorem 30. Let L = (L,⊕,¬, 0) be a basic algebra which is a pasting of the

Boolean algebras Bi, i ∈ I, as described above. Then s : L → [0, 1] defined by

s(x) :=

{

1 if x > a,

0 otherwise

for every x ∈ L is a state-morphism on L.

P r o o f. Let b, c ∈ L. If there exists an i ∈ I with b, c ∈ Bi, then

b⊕ c = (b′ ∨ c)′ ∨ c = (b ∧ c′) ∨ c = (b ∨ c) ∧ (c′ ∨ c) = b ∨ c.

Otherwise

b⊕ c = (b ∧ c′) ∨ c =

{

a ∨ c if a 6 b and a 66 c,

0 ∨ c = c otherwise.

Now we consider two cases.

Case 1. There exists an i ∈ I with b, c ∈ Bi.

Then b ⊕ c = b ∨ c. Hence the following are equivalent: s(b ⊕ c) = 1, a 6 b ∨ c,

a 6 b or a 6 c, s(b) = 1 or s(c) = 1, s(b)⊕s(c) = 1. This shows s(b⊕c) = s(b)⊕s(c).

Case 2. There does not exist an i ∈ I with b, c ∈ Bi.

Then b, c /∈ {0, a, a′, 1}.

If a 6 b and a 6 c, then s(b⊕ c) = s(c) = 1 = 1⊕ 1 = s(b)⊕ s(c).

If a 6 b and a 66 c, then s(b⊕ c) = s(a ∨ c) = 1 = 1⊕ 0 = s(b)⊕ s(c).

If a 66 b and a 6 c, then s(b⊕ c) = s(c) = 1 = 0⊕ 1 = s(b)⊕ s(c).

If a 66 b and a 66 c, then s(b⊕ c) = s(c) = 0 = 0⊕ 0 = s(b)⊕ s(c).

Hence in all cases s(b ⊕ c) = s(b)⊕ s(c). �

R em a r k 31. From Theorem 30 it follows that the state s considered in Exam-

ple 19 is in fact a state-morphism on A.
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