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Abstract. We study (non-abelian) extensions of a given hom-Lie algebra and provide
a geometrical interpretation of extensions, in particular, we characterize an extension of
a hom-Lie algebra g by another hom-Lie algebra h and discuss the case where h has no
center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative,
Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in
differential geometry. Moreover, we find a cohomological obstruction to the existence of
extensions of hom-Lie algebras, i.e., we show that in order to have an extendible hom-Lie
algebra, there should exist a trivial member of the third cohomology.
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1. Introduction

The notion of hom-Lie algebras was first introduced by Hartwig, Larsson, and

Silvestrov in [5], while they where studying deformations of the Witt and the Virasoro

algebras. In a hom-Lie algebra, the Jacobi identity is twisted with an additional

linear map, which is called the hom-Jacobi identity, see [9], [11]. In recent years,

Makhlouf, Silvestrov, Sheng and other authors have studied different aspects of hom-

Lie algebras, see [1], [3]–[5], [7], [8], [10], [12], [13]. The problem of group extensions

in terms of cohomology is well known. Here, we would like to extend it to the hom-

Lie algebras by a more geometric method. The cohomology of hom-Lie algebras is

introduced in [1], [9], independently.
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no. 92grd1m82582 of Shiraz University, Iran.
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In the first section, hom-Lie algebras and some of their useful related definitions

are presented. In the second section we introduce hom-Lie algebra extensions with

more geometric aspects and finally, in the third section, introducing the Chevalley co-

homology for hom-Lie algebras, we find a cohomological obstruction to the existence

of extensions.

Definition 1.1 ([11]). A hom-Lie algebra is a triple (g, [, ], α), where g is a vector

space equipped with a skew-symmetric bilinear map [, ] : g× g → g and a linear map

α : g → g such that

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0

for all x, y, z ∈ g, which is called the hom-Jacobi identity.

A hom-Lie algebra is called a multiplicative hom-Lie algebra if α is an algebraic

morphism, i.e. for any x, y ∈ g,

α([x, y]) = [α(x), α(y)].

A hom-Lie algebra is called regular if α is an automorphism.

A sub-vector space h ⊂ g is a hom-Lie sub-algebra of (g, [, ], α) if α(h) ⊂ h and h

is closed under the bracket operation, i.e.

[x1, x2]g ∈ h

for all x1, x2 ∈ h. Let (g, [, ], α) be a multiplicative hom-Lie algebra. For any non-

negative integer k let αk denote the k-times composition of α by itself, i.e.

αk = α ◦ . . . ◦ α (k times),

where we define α0 = Id and α1 = α. If g is a regular hom-Lie algebra, let

α−k = α−1 ◦ . . . ◦ α−1 (k times).

Definition 1.2 ([9]). For any nonnegative integer k, a linear map D : g → g is

called an αk-derivation of the multiplicative hom-Lie algebra (g, [, ], α), if

(i) [D,α] = 0, i.e. D ◦ α = α ◦D,

(ii) D[x, y]g = [D(x), αk(y)]g + [αk(x), D(y)]g for all x, y ∈ g.

Denote by Derαk(g) the set of all αk-derivations of the multiplicative hom-Lie

algebra (g, [, ], α).
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Definition 1.3 ([9]). For any x ∈ g satisfying α(x) = x, define Dk(x) : g → g

by

Dk(x)(y) = [αk(y), x]g

for all y ∈ g.

It is shown in [9] that Dk(x) is an α
k+1-derivation, which is called an inner αk-

derivation. So

Innαk(g) = {[αk−1(.), x]g : x ∈ g, α(x) = x}.

It is also shown that

Der(g) =
⊕

k>0

Derαk(g)

is a Lie algebra.

2. Extensions of hom-Lie algebras

In this section we clarify what we mean by an extension of a hom-Lie algebra.

Although it is shown in [9] that extensions of a given hom-Lie algebra is characterized

by elements of its second cohomology group, we concentrate on some geometric

aspects here.

Definition 2.1. Let g, h be two hom-Lie algebras. We call e an extension of the

hom-Lie algebra g by h, if there exists a short exact sequence

0 → h → e → g → 0

of hom-Lie algebras and their morphisms.

We want to study the possible extensions, so suppose there exists an extension

0 // h
i

// e
p

// g // 0 ,

and let s : g → e be such that p ◦ s = Idg. We define

ϕ : g → Derαk(h),(2.1)

ϕx(y) = [αk(s(x)), y],

and

̺ :

2∧
g → h,(2.2)

̺(x, y) = [s(x), s(y)]− s([x, y]).

Recalling that adk(u)(v) for all u, v in g is defined in [9] as an αk-adjoint repre-

sentation, we have the following lemma.
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Lemma 2.2. The maps ϕ and ̺ defined in (2.2) and (2.1) satisfy

[ϕx, ϕy]− ϕ[x,y] = adk(̺(x, y)),(2.3)
∑

cyclic{x,y,z}

(ϕx̺(y, z)− ̺([x, y], z)) = 0.(2.4)

P r o o f. First note that ϕx = adk(s(x)). So we have

[ϕx, ϕy ] = [adk(s(x)), adk(s(y))]− adk(s([x, y]))

= adk([s(x), s(y)] − s([x, y])) = adk(̺(x, y)).

For the second equation we have

∑

cyclic{x,y,z}

(ϕx̺(y, z)− ̺([x, y], z))

= ϕx̺(y, z)− ̺([x, y], z) + ϕy̺(z, x)− ̺([y, z], x) + ϕz̺(x, y)− ̺([z, x], y)

= [αk(s(x)), [s(y), s(z)]] − [αk(s(x)), s([y, z])]− [s([x, y]), s(z)] + s[[x, y], z]

+ [αk(s(y)), [s(z), s(x)]] − [αk(s(y)), s([z, x])] − [s([y, z]), s(x)] + s[[y, z], x]

+ [αk(s(z)), [s(x), s(y)]] − [αk(s(z)), s([x, y])] − [s([z, x]), s(y)] + s[[z, x], y] = 0.

�

Therefore, using ϕ and ̺ which satisfy (2.3) and (2.4), the hom-Lie algebra struc-

ture on e = h⊕ s(g) will be in the form

[y1 + s(x1), y2 + s(x2)] = [y1, y2] + ϕx1
y2 − ϕx2

y1 + ̺(x1, x2) + s([x1, x2]).

Definition 2.3. For a linear space V , the space of p-linear skew symmetric maps

g → V is denoted by Ap(g, V ). The Chevalley derivative is defined by

d : Ap(g, V ) → Ap+1(g, V ),(2.5)

dφ(x0, . . . , xp) =
∑

i<j

(−1)i+jφ([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp).

Definition 2.4. For a linear space W and a hom-Lie algebra f, the super Lie

bracket on

A ∗ (W, f) =
⊕

p∈N

Ap(g, f)

is defined by

[ζ, ξ]∧ =
1

p!q!

∑

σ

[ζ(xσ1
, . . . , xσp

), ξ(xσp+1
, . . . , )]f.
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Noting these definitions, we see that the map ̺ given by (2.2) satisfies the Maurer-

Cartan formula for curvatures on principal bundles in differential geometry, i.e.

̺ = ds+
1

2
[s, s]∧.

Analogously, (2.3) can be written in the form

adk(̺) = dϕ+
1

2
[ϕ, ϕ]∧.

Thus, we can see s as a connection in the sense of the horizontal lift of vector fields

on the base of a bundle. Moreover, ϕ is an induced connection. See [6] for more

background information.

Let R be a ring. An R-moduleM is an additive Abelian group, in which a product

is defined between elements of the ring and elements of the module that is distribu-

tive over the addition operation of each parameter and is compatible with the ring

multiplication, see [2]. In fact for every Derαk(h)-module V we put

ϕ∧ : A
p(g, V ) → Ap+1(g, V ),

ϕ ∧ ξ(x0, . . . , xp) =

p∑

i=0

(−1)iϕxi
(ξ(x0, . . . , x̂i, . . . , xp)).

So the exterior covariant derivative will be defined by

δϕ : A
p(g, V ) → Ap+1(g, V ),

δϕξ = ϕ ∧ ξ + dξ.

So the formula (2.4) will become the Bianchi identity

δϕ̺ = 0.

Moreover, we deduce that

(2.6) δϕδϕ(ψ) = [̺, ψ]∧, ψ ∈ Ap(g, h).

If we put s′ = s+ b instead of s, where b : g → h is a linear map, we have

ϕ′
x(y) = [αk(s(x) + b(x)), y] = [αk(s(x)), y] + [αk(b(x)), y] = ϕx + adhk(b(x))

and

̺′(x, y) = ̺(x, y) + ϕxb(y)− ϕyb(x) − b([x, y]) + [b(x), b(y)]

= ̺(x, y) + δϕb(x, y) + [b(x), b(y)],
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i.e.

̺′ = ̺+ δϕb+
1

2
[b, b]∧.

Thus, so far we have proved

Theorem 2.5. Let g, h be two hom-Lie algebras. Extensions of g on h, i.e. the

short exact sequences of the form

0 → h → e → g → 0,

are in one to one correspondence with the data of the following form: a linear map

ϕ : g → Derαk(h) and a skew symmetric bilinear map ̺ : g× g → h, such that

(2.7) [ϕx, ϕy]− ϕ[x,y] = adk(̺(x, y)),

and

(2.8)
∑

cyclic{x,y,z}

(ϕx̺(y, z)− ̺([x, y], z)) = 0,

or in other words δϕ̺ = 0. The extension which corresponds to ϕ and ̺ is the vector

space e = h⊕ g whose hom-Lie algebra structure is given by

[y1 + s(x1), y2 + s(x2)] = ([y1, y2] + ϕx1
y2 − ϕx2

y1 + ̺(x1, x2) + s([x1, x2]),

and its short exact sequence is

0 // h
i2

// h⊕ g = e
pr1

// g // 0 .

Two data (ϕ, ̺) and (ϕ′, ̺′) are equivalent if there exists a linear map b : g → h such

that

ϕ′
x = ϕx + adhk(b(x)),

and

̺′(x, y) = ̺(x, y) + ϕxb(y)− ϕyb(x) − b([x, y]) + [b(x), b(y)]

= ̺(x, y) + δϕb(x, y) + [b(x), b(y)].

So the corresponding equivalence is

e = h⊕ g → h⊕ g = e′,

y + x 7→ y − b(x) + x.
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Moreover, the datum (ϕ, ̺) represents a split extension if and only if (ϕ, ̺) corre-

sponds to a datum of the form (ϕ′, 0) (so that ϕ′ is an isomorphism). In this case

there exists a linear map b : g → h such that

̺ = −δϕb−
1

2
[b, b]∧.

Example 2.6. Let π : B → M = B/G be a principal bundle with structure

group G, i.e., B is a manifold with a free right action of a Lie group G and π is the

projection on the orbit space M = B/G. Denote by g = X(M) the hom-Lie algebra

of the vector fields on M , by e = X(B)G the hom-Lie algebra of G-invariant vector

fields on B and by Xv(B)G the ideal of the G-invariant vertical vector fields of e. We

have a natural homomorphism π∗ : e → g with the kernel h, i.e., e is an extension of

g by means of h.

Note that we have a C∞(M)-module structure on g, e, h. In particular, h is a hom-

Lie algebra over C∞(M). The extension

0 → h → e → g → 0

is also an extension of C∞(M)-modules. Now assume that the section s : g → e is

a homomorphism of C∞(M)-modules. Then it can be viewed as a connection in the

principal bundle π, and the h-valued 2-form ̺ as its curvature.

Corollary 2.7. Let g, h be two hom-Lie algebras such that h has no center, i.e.

Z(h) = 0. Then the extensions of g by h are in one to one correspondence with the

isomorphisms of the form

ϕ̄ : g → out(h) =
Derαk(h)

adk(h)
.

P r o o f. If (ϕ, ̺) is a datum, the map ϕ̄ : g → Derαk(h)/ adk(h) defined by

g
ϕ

// Derαk(h)
π

//

Derαk(h)

adk(h)
,

ϕ̄ = π ◦ ϕ

is a hom-Lie algebra homomorphism, because

(2.9) ϕ̄[x,y] = π(ϕ[x,y]) = π([ϕx, ϕy]− adk(̺(x, y))

= π([ϕx, ϕy]) = [π ◦ ϕx, π ◦ ϕy] = [ϕ̄x, ϕ̄y].
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Conversely, suppose we have the map ϕ̄. A linear lift ϕ : g → Derαk(h) can be

considered. Since ϕ̄ is a hom-Lie algebra homomorphism and h has no center, there

exists a skew symmetric unique linear map ̺ : g× g → h such that

[ϕx, ϕy]− ϕ[x,y] = adk(̺(x, y)).

So the equation (2.3) is fulfilled. Also it is easy to obtain (2.4). �

3. Cohomological obstruction to existence of extensions

In this section we present a proposition which shows that if there exists a hom-Lie

algebra extension, there should be a trivial member of the third cohomology. We

have to make some notes first.

Remark 3.1. The hom-Lie algebra h is a Derαk(h)-module with the multiplica-

tion rule

Der(h)× h → h, (h, x) 7→ h(x),

and Z(h) is a submodule of h with this multiplication, i.e., h(x) ∈ Z(h) for all

x ∈ Z(h), h ∈ Derαk(h), since

[h(x), y] = h([x, y])− [x, h(y)] = 0

for all y ∈ h. Thus h(x) ∈ Z(h). Also for all h̄ ∈ Derαk(h)/ adk(h), there exists h ∈

Derαk(h) such that h̄ = [h] and one can see Z(h) as a module on Derαk(h)/ adk(h);

it is sufficient to define the multiplication for all x ∈ Z(h) and h̄ ∈ Derαk(h)/ adk(h)

in the following way:

h̄ · x = h(x).

Note that this notion is well defined since for h̄ = [h′] we have h′ = h+ adk(a), so

h′(x) = h(x) + adk(a)(x) = h(x) + [a, x] = h(x),

since x is in the center of h and a ∈ h. Now, using the module structure of Z(h) on

Derαk(h)/ adk(h), we can give g a module structure by the map ϕ̄, i.e., for c ∈ g and

x ∈ Z(h) we put

c · x = ϕ̄(c) · x.

Remark 3.2. For hom-Lie algebra homomorphism ϕ̄ : g → Derαk(h)/ adk(h), if

V is a vector space which has a Derαk(h)/ adk(h)-module structure, one can consider

the space of all k linear forms on g with values in V which is denoted by
k∧
(g, V ).
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We can construct δϕ̄ like δϕ. First the exterior multiplication in ϕ̄ is defined. For

all ψ ∈
k∧
(g, V ), ϕ̄ ∧ ψ is in

k+1∧
(g, V ) and acts in the following way:

(ϕ̄ ∧ ψ)(x0, . . . , xk) =

k∑

i=0

(−1)iϕ̄(xi).ψ(x0, . . . , x̂i, . . . , xk),

and

δϕ̄ :
k∧
(g, V ) →

k+1∧
(g, V ), δϕ̄(ψ) = ϕ̄ ∧ ψ + dψ.

In the special case where V = Z(h), Z(h) is a Derαk(h)/ adk(h)-module and if we

consider

ϕ : g → Derαk(h)

to be such that ϕ̄ = π ◦ϕ, where π : Derαk(h) → Derαk(h)/ adk(h), then Z(h) is also

a Derαk(h)-module and

δϕ :
k∧
(g, Z(h)) →

k+1∧
(g, Z(h))

is defined too and in this case we have δϕ = δϕ̄, since ϕ ∧ ψ = ϕ̄ ∧ ψ. Note that the

multiplication rule between Derαk(h)/ adk(h) and Z(h) is

[h] · x = h(x), h ∈ Derαk(h).

Therefore, since ϕ̄(xi) = [ϕ(xi)] we have

(ϕ̄ ∧ ψ)(x0, . . . , xk) =
k∑

i=0

(−1)iϕ̄(xi) · ψ(x0, . . . , x̂i, . . . , xk)

=
k∑

i=0

(−1)i[ϕ(xi)] · ψ(x0, . . . , x̂i, . . . , xk)

=

k∑

i=0

(−1)i(ϕ(xi))(ψ(x0, . . . , x̂i, . . . , xk))

= (ϕ ∧ ψ)((x0, . . . , xk)).

Since Z(h) is the center of h, the operator δϕ̄ or δϕ satisfies δϕ ◦ δϕ = 0, i.e.

δϕ ◦ δϕ(ψ)(x1, . . . , xk+1) = [̺, ψ]∧(x1, . . . , xk+1)

=
1

2!k!

∑

σ∈Sk+2

sign(σ)[̺(xσ1
, xσ2

), ψ(xσ3
, . . . , xσk+2

)] = 0

for ψ ∈
k+1∧

(g, Z(h)) and (x1, . . . , xk+1) ∈ g.
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Theorem 3.3. Let g, h be two hom-Lie algebras and ϕ̄ : g → Derαk(h)/ adk(h)

a hom-Lie algebra homomorphism. Then the following conditions are equivalent:

(i) For any linear lift ϕ : g → Derαk(h) of ϕ̄, one can find a linear map

̺ :

2∧
g → h,

such that

[ϕx, ϕy]− ϕ[x,y] = adk(̺(x, y)).

In this case the δϕ̄-cohomology classes λ will be trivial in H
3(g, Z(h)) where

λ = λ(ϕ, ̺) := δϕ(̺) :

3∧
g → Z(h).

(ii) There exists an extension 0 → h → e → g → 0 which induces the homomor-

phism ϕ̄. In this case all the extensions 0 → h → e → g → 0 inducing ϕ̄ will

be parametrized by H2(g, Z(h)), where H2(g, Z(h)) is the second cohomology

space of g with values in Z(h) which here is viewed as a g-module by ϕ̄.

P r o o f. Using the calculations in the proof of Corollary 2.7 we obtain

adk(λ(x, y, z)) = adk(δϕ̺(x, y, z)).

Therefore, λ(x, y, z) ∈ Z(h). The hom-Lie algebra out(h) = Derαk(h)/ adk(h) acts

on Z(h), so Z(h) is a g-module by ϕ̄ and δϕ̄ is the cohomology differential. Using

(2.6) we have

δϕ̄ = δϕδϕ̺ = [̺, ̺]∧ = 0,

therefore,

[λ] ∈ H3(g, Z(h)).

We must show that the cohomology class [λ] is independent of the choice of ϕ. If

we have (ϕ, ̺) like above and choose another linear lift ϕ′ : g → Derαk(h), then for

a b : g → h we have ϕ′(x) = ϕ(x) + adk(b(x)). We set

̺′ :

2∧
g → h, ̺′(x, y) = ̺(x, y) + (δϕb)(x, y) + [b(x), b(y)].

By calculations similar to Lemma 2.2 we obtain

[ϕ′
x, ϕ

′
y ]− ϕ′

[x,y] = adk(̺
′(x, y)),
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and by the last part of Theorem 2.5,

λ(ϕ, ̺) = δϕ̺ = δϕ′̺′ = λ(ϕ′, ̺′),

so the cochain λ remains unchanged. For a constant ϕ let ̺, ̺′ be defined by

̺, ̺′ :
2∧
g → h, [ϕx, ϕy]− ϕ[x,y] = adk(̺(x, y)) = adk(̺

′(x, y)).

Therefore,

̺− ̺′ := ν :

2∧
g → Z(h).

It is obvious that λ(ϕ, ̺) − λ(ϕ, ̺′) = δϕ̺ = δϕ̺
′ = δϕ̄ν. Now if there exists an

extension inducing ϕ̄, ̺ can be found like in Theorem 2.5 for each lift ϕ such that

λ(ϕ, ̺) = 0. On the other hand, for a given (ϕ, ̺) as described in Theorem 2.5 such

that

[λ(ϕ, ̺)] = 0 ∈ H3(g, Z(h)),

there exists ν :
2∧
g → Z(h) such that δϕ̄ν = λ, therefore

adk((̺− ν)(x, y)) = adk(̺(x, y)), δϕ(̺− ν) = 0.

Thus (ϕ, ̺ − ν) satisfies the conditions of Theorem 2.5, so it describes an extension

inducing ϕ̄. Now consider the linear lift ϕ and a map ̺ :
2∧
g → h satisfying (2.7)

and (2.8) and note all ̺′s which satisfy this condition. We have

̺− ̺′ := ν :

2∧
g → Z(h),

and

δϕ̄ν = δϕ̺− δϕ̺
′ = 0− 0 = 0,

so ν is a 2-cocycle.

Moreover, analogous to Theorem 2.5, using a b : g → h which preserves ϕ, i.e.

b : g → Z(h), one can use the corresponding data. Also ̺′ can be found using (2.9)

̺′ = ̺+ δϕb+
1

2
[b, b]∧ = ̺+ δϕ̄b.

Thus, it is just the cohomology class of ν that matters. �
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