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Abstract. We describe the relation between quasi-minuscule representations, polytopes
and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each
quasi-minuscule representation we attach a class of rational surfaces, and realize such a rep-
resentation as an associated vector bundle of a principal bundle over these surfaces. More-
over, any quasi-minuscule representation can be defined by rational curves, or their disjoint
unions in a rational surface, satisfying certain natural numerical conditions.
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1. Introduction

It is well-known that Del Pezzo surfaces S are closely linked to the exceptional

Lie groups En. For example, if S is of degree 9 − n, the orthogonal complement of

the canonical class K in H2(S,Z), equipped with the natural intersection product,

is the root lattice of En ([5], [17]), where we extend the exceptional En-series to

0 6 n 6 8 by setting E0 = 0, E1 = C, E2 = A1 × C, E3 = A2 × A1, E4 = A4,

and E5 = D5. A curve l in Xn is a line under the anti-canonical embedding if and

only if l2 = l ·K = −1. The lines in S are related to a fundamental representation

of En.

These structures are used in [6], [7], [8], [16], and so on, to study moduli spaces

of rational surfaces with an anti-canonical cycle and moduli spaces of flat principal
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bundles over an elliptic curve. These moduli spaces are related to the duality between

the string theory and the F -theory, see [9], [10]. Moreover, these studies are partially

extended to rational surfaces S of type G, where G is a simple Lie group of any type

or affine En-type (see [15], [14]).

For instance, an En-surface Xn is simply a Del Pezzo surface of degree 9− n and

it is always a blowup of P2 at n points which are in general position.

Notice that in the Dynkin diagram of En presented as Figure 3, (i) the left-

end node corresponds to the set of lines in S, (ii) the right-end node corresponds

to the set of rulings, and (iii) the top node corresponds to the set of twisted cu-

bics, that is, the pull-backs of the lines in P2 via the blowdown map Xn → P2

(see Section 3, or [13]). For example, in the most famous case E6, the set of

27 lines in X6 corresponds to the left-end node αL = α6, the set of 27 rulings

corresponds to the right-end node αR = α2, and the set of 72 twisted cubics cor-

responds to the top node αT = α1 (which also corresponds to the set of 72 (un-

ordered) collections l1, . . . , l6 determining the blowdown map X6 → P2), see Fig-

ure 3.

In these examples of curves, we have a transitive action of the Weyl groupW (En).

On the other hand, the combinatorics of these curves is closely related to polytopes

in Picard lattices, see [11], [18]. Motivated from these, for all simply laced Lie

groups G, we consider all such curves in G-surfaces S (see Section 3) and all quasi-

minuscule weights of G. We find that all these curves correspond precisely to quasi-

minuscule weights ofG, and certain polytopes in Picard lattices Pic(S). Moreover, we

construct a principal G-bundle over S, such that these quasi-minuscule weights define

associated vector bundles. Thus, many interesting curves (for instance, 27 lines,

27 rulings and 72 twisted cubics over a smooth cubic surface) can be explained as

associated vector bundles of a principal G-bundle G.

For this, given a simply laced simple Lie group G, we define a G-surface as a pair

(S,C), where, roughly speaking, S is a rational surface and C is a smooth rational

curve sitting in the negative part of the Mori cone of S, such that 〈KS , C〉⊥ ⊆ Pic(S)

is a root lattice of G (for details, see Section 3).

Given a G-surface (S,C), a curve D (reduced but possibly reducible) in S is called

an (S,C)-curve if DC = 0. Recall that the (arithmetic) genus of D is defined by the

formula g(D) = 1+(D2+DKS)/2. D is said to be rational if g(D) = 0. The integer

D(−KS) is called the degree of D. D is called a line (a ruling, a twisted cubic, or

a twisted quartic) if D is rational of degree 1 (2, 3, or 4, respectively) and DC = 0.

D is called an (S,C)-section if DC = 1. For details, see Section 3.

For the Lie group G of ADE-type, we draw the Dynkin diagram of G, and label

the nodes as in Figure 1, 2 or 3, respectively. Let λi be the fundamental weight

corresponding to the node αi.
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Let an be an n-dimensional simplex with equilateral edges, bn an n-dimensional

crosspolytope, and k21, −1 6 k 6 4, the (k + 4)-dimensional Gosset polytope (see

Section 4 or [11]).

We obtain the relations between (quasi-)minuscule fundamental weights, special

curves, Weyl group orbits and special polytopes, listed in the following table (see

Theorem 9, Theorem 11 and Proposition 14). For example, in (b1) of Table 1, we

consider a fundamental representation Vλn
with a highest weight λn of Dn which

is minuscule, and relate the representation with the Picard group Pic(S) of a ruled

surface S which has a Dn-type lattice structure. We obtain that its orbit W (Dn)λn

in Pic(S) is the set of lines in S and also the set of vertices of an n-dimensional

crosspolytope bn.

G λ W (G)λ Polytopes

(a) An
λi

1 6 i 6 n
(S,C)-curves of genus i− n

DKS = i− n− 1
an−i in an

(b1) Dn λn lines in S vertices of bn

(b2) Dn λn−1
(S,C)-curves of genus − 1

DKS = −2
edges of bn

(b3) Dn λ2 (S,C)-sections of degree 1 an−1 in bn

(b4) Dn λ1 (S,C)-sections of degree 2 an−1 in bn

(c1)
En

4 6 n 6 8
λn lines in S vertices in (n− 4)21

(c2)
En

4 6 n 6 6
λ1 twisted cubics in S

an−1 in (n− 4)21
n > 4

(c3)
En

4 6 n 6 7
λ2 rulings in S

bn in (n− 4)21
n > 4

(c4)
En

4 6 n 6 5
λ3 twisted quartics in S

an−2 in (n− 4)21
n > 5

Table 1. Curves and polytopes associated with quasi-minuscule representations.

For further study, we see that for every nontrivial quasi-minuscule weight λ of any

(simply laced) Lie group G, there is a G-surface (S,C) and a principal G-bundle

over S, such that the associated bundle Vλ with the highest weight λ is defined by

a set of certain special curves in S. Each of these curves is always an irreducible

rational curve, or a disjoint union of such curves. These bundles give those special

curves on rational surfaces a meaningful explanation, and can be applied to the

study of homogeneous spaces associated with rational surfaces. Furthermore, they

are corresponded to subpolytopes of certain polytopes with G-symmetry.
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2. Notation, quasi-minuscule weights and quasi-minuscule

representations

2.1. Notation. We first list some notation from the Lie theory.

⊲ G: a complex Lie group, simply laced in this paper

⊲ W (G): the Weyl group of G

⊲ Lie(G): the Lie algebra of G

⊲ H : a Cartan subgroup of G, which is a torus

⊲ X(H): the characteristic group of H

⊲ Λr(G): the root lattice of G

⊲ Λw(G): the weight lattice of G

⊲ R(G): the root system of G

⊲ ∆r(G): the set of all simple roots in R(G)

⊲ ∆w(G): the set of all fundamental dominant weights in Λw(G)

2.2. Quasi-minuscule weights. A quasi-minuscule representation is an irre-

ducible representation in which all the nonzero weights lie in a single Weyl group

orbit. The highest weight of such a representation is said to be a quasi-minuscule

weight. For example, the adjoint representations of type ADE are quasi-minuscule.

If there is no zero weight in a quasi-minuscule representation, then such a quasi-

minuscule representation is called minuscule, and the highest weight is called a mi-

nuscule weight. The highest weight of the adjoint representation of G is called the

adjoint weight of G.

We know that the highest weight space is always one-dimensional. Also, if two

weights are in the same Weyl group orbit, then their weight spaces must have the

same dimension. Thus, all of the nonzero weight spaces of a quasi-minuscule repre-

sentation are one-dimensional.

The Dynkin diagrams of simply laced Lie groups are drawn as in Figures 1, 2 and 3,

where the simple roots are labeled as αi.

αL=αn αn−1 α3 α2 αR=α1

Figure 1. The root system An.

αL=αn αn−1 α4 α3 αR=α2

αT =α1

Figure 2. The root system Dn.
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αL=αn αn−1 α5 α4 α3 αR=α2

αT =α1

Figure 3. The root system En.

Let λi be the fundamental weight corresponding to αi, and let Vλi
be the fun-

damental representation with the highest weight λi. All nontrivial quasi-minuscule

fundamental weights and their corresponding fundamental representations of simply

laced Lie groups are listed as follows (see [1], [19]):

(1) G = An; λ1, . . . , λn; all are minuscule; Vλn
is the standard representation of

dimension n+ 1, and Vλi
=

∧n+1−i
Vλn
, i = 1, . . . , n.

(2) G = Dn; λ1, λ2, λn−1, λn; λ1, λ2, λn are minuscule; Vλ1
and Vλ2

are the two

spinor representations S+ and S− of dimension 2n−1, Vλn−1
is the adjoint rep-

resentation, and Vλn
is the standard representation of dimension 2n.

(3) G = E6; λ1, λ2, λ6; λ2, λ6 are minuscule; Vλ1
is the adjoint representation; Vλ2

and Vλ6
are of dimension 27 and dual to each other.

(4) G = E7; λ2, λ7; λ7 is minuscule; Vλ2
is the adjoint representation; Vλ7

is of

dimension 56.

(5) G = E8; λ8; Vλ8
is the adjoint representation.

For compatibility with rational surfaces, we extend the exceptional En-series to

0 6 n 6 8, by setting E0 = 0, E1 = C, E2 = A1 × C, E3 = A2 × A1, E4 = A4 and

E5 = D5. Since among these, E0, . . . , E3 are not simple, we only consider the Lie

groups E4, . . . , E8.

3. Rational ADE-surfaces

3.1. Definitions. The definition of ADE-surfaces is motivated by the classical

Del Pezzo surfaces, which we call En-surfaces ([15]). It is well-known that over

a Del Pezzo surface Xn, 0 6 n 6 8, of degree 9−n, there is a root lattice structure of

En-type on K⊥
Xn
in Pic(Xn), and the lines and the rulings in Xn can be bijectively

related to the fundamental representations associated with the right endpoint and

the left endpoint of the Dynkin diagram presented as Figure 3, in a natural way.

Inspired by this, we consider the so called G-surfaces with root lattice structures

of G-type where G is a semisimple Lie group of ADE-type with the simply laced

Dynkin diagram.

When the ADE-type Lie group G is simple, that is, G is of type En for 4 6 n 6 8,

An for n > 1, or Dn for n > 3, we gave a uniform definition of ADE-surfaces in [15],
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using the pair (S,C). It turns out that when G = En, we obtain the classical Del

Pezzo surfaces Xn; when G = Dn and G = An, we obtain rational surfaces with new

structures.

Definition 1. Let (S,C) be a pair consisting of a smooth rational surface S

and a smooth rational curve C ⊂ S with C2 6= 4. The pair (S,C) is said to be of

ADE-type (or an ADE-surface) if it satisfies the following two conditions:

(i) Any (smooth) rational curve on S has a self-intersection number at least −1.

(ii) The sub-lattice 〈KS , C〉⊥ of Pic(S) is an irreducible root lattice of rank equal

to r − 2, where r is the rank of Pic(S).

The following proposition shows that such surfaces can be classified into three

types, and the curve C in fact sits in the negative part of the Mori cone.

Proposition 2 ([15]). Let (S,C) be a rational surface of ADE-type. Let n =

rank(Pic(S))− 2. Then C2 ∈ {−1, 0, 1} and

(i) when C2 = −1, 〈KS , C〉⊥ is of En-type, where 4 6 n 6 8;

(ii) when C2 = 0, 〈KS , C〉⊥ is of Dn-type, where n > 3;

(iii) when C2 = 1, 〈KS , C〉⊥ is of An-type.

Corollary 3. Let (S,C) be an ADE-surface.

(i) In the En case, blowing down the (−1) curve C of S, we obtain a Del Pezzo

surface Xn of degree 9− n.

(ii) In the Dn case, S is just a blowup of P1 × P1 or F1 at n points in general

position with C as the natural ruling.

(iii) In the An case, the linear system |C| defines a birational map ϕ|C| : S → P2.

Therefore S is just the blowup of P2 at n + 1 points in general position, and

C is a smooth curve which represents the class of the strict transformation of

lines in P2.

Let D be a curve over a surface S. Recall the (arithmetic) genus g(D) is defined

as

g(D) := 1 +
1

2
(D2 +DKS),

where KS is the canonical divisor of S.

Definition 4. Given a G-surface (S,C), let D be a curve (reduced but possibly

reducible) in S.

(1) D is called an (S,C)-curve (an (S,C)-section) ifDC = 0 (respectively,DC = 1).

(2) D is said to be of degree d if D(−KS) = d.

(3) D is called rational if g(D) = 0.
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(4) If D is a rational (S,C)-curve of degree 1, 2, 3, or 4, then D is respectively called

a line, a ruling, a twisted cubic, or a twisted quartic.

Here a rational curve D of degree 2 is a ruling because D2 = 0.

In the following, we recall the construction in [15] of ADE-surfaces as well as their

root lattice structure.

3.2. Constructions. By Corollary 3, ADE-surfaces are constructed as follows.

Most of the contents in this subsection are taken from [15].

3.2.1. An-surfaces. We take a slightly different but equivalent description

from [15], according to Corollary 3. Let S = Zn be the blowup of P
2 at n + 1

points (say, x1, . . . , xn+1) which are in general position. Let h be the class coming

from the lines in P2, and li the exceptional class corresponding to the blowup at xi,

i = 1, . . . , n + 1. The Picard group of S is a lattice of rank n + 2, generated by h,

l1, . . . , ln+1. The intersection form is:

h2 = 1, l2i = −1, hli = lilj = 0, 1 6 i 6= j 6 n+ 1.

Let KS be the canonical class of S = Zn. Then KZn
= −3h+ l1 + . . .+ ln+1.

The sub-lattice Λr(An) := 〈KZn
, h〉⊥ ⊂ Pic(Zn) is a root lattice of An-type, with

the root system R(An) := {α ∈ 〈KZn
, h〉⊥ : α2 = −2} and the set of simple roots

∆r(An) := {α1 = l1 − l2, . . . , αn = ln − ln+1}. These simple roots are labeled in the

Dynkin diagram as in Figure 1.

3.2.2. Dn-surfaces. It suffices to consider the blowup of P
1 × P1, since for the

Hirzebruch surface F1, the whole story is completely the same.

Let Y0 = P1 × P1. Fix the ruling f (note that f defines a fibration: Y0 → P1) and

the section s, where f, s ∈ Pic(Y0) = H2(Y0,Z) such that f
2 = s2 = 0, and sf = 1.

Let S = Yn be the blowup of Y0 at n points x1, . . . , xn which are in general position.

We also denote the classes of the fibers and the sections by f, s, respectively. Thus

the Picard group Pic(Yn) is a lattice of rank n+2 with the generators f, s, l1, . . . , ln,

where li is the exceptional class corresponding to the blowup at xi. The intersection

form is

f2 = 0 = s2, sf = 1, l2i = −1, f li = sli = lilj = 0, 1 6 i 6= j 6 n.

Note that f also defines a fibration Yn → P1 which is factored as Yn → Y0 → P1.

The canonical class of Yn is KYn
= −2f − 2s+ l1 + . . .+ ln.
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The sub-lattice Λr(Dn) := 〈KYn
, f〉⊥ ⊂ Pic(Yn) is a root lattice of Dn-type,

with R(Dn) := {α ∈ Pic(Yn) : α2 = −2, α ∈ 〈KYn
, f〉⊥} (∆r(Dn) := {α1 = f −

l1− l2, α2 = l1− l2, . . . , αn = ln−1− ln}) as the root system (respectively, the set of

simple roots). These simple roots are labeled in the Dynkin diagram as in Figure 2.

3.2.3. En-surfaces. According to Proposition 2, it suffices to consider the sur-

faces Xn, where Xn is a blowup of P
2 at n, n 6 8, points x1, . . . , xn which are in

general position. Thus, Xn is a Del Pezzo surface of degree 9 − n. Recall that Del

Pezzo surfaces are classified into ten types: Xn, 0 6 n 6 8, and P1 × P1. The Pi-

card group Pic(Xn) ∼= H2(Xn,Z) is a lattice of rank n+1 generated by h, l1, . . . , ln,

where h is the class of the pull-back of lines in P2, and li is the exceptional class

corresponding to the blowup at xi, i = 1, . . . , n. The intersection form is

h2 = 1, l2i = −1, hli = lilj = 0, 1 6 i 6= j 6 n.

The canonical class is KXn
= −3h+ l1 + . . .+ ln.

For n 6 8, the set Λr(En) := {α ∈ Pic(Xn) : αKXn
= 0} (the set R(En) :=

{α ∈ Pic(Xn) : αKXn
= 0, α2 = −2}, the set ∆r(En) := {α1 = h − l1 − l2 − l3,

αi = li−1 − li, i = 1, . . . , n}) is a root lattice (respectively, root system, root basis)

of En-type, where we extend the definition of exceptional Lie groups E6, E7, E8 to

all n, 0 6 n 6 8, as in Section 2. See Figure 3 for the Dynkin diagram and the

labeling of the simple roots.

When 4 6 n 6 8, then Xn is an En-surface, if we blow down C, according to

Definition 1. In this case, we will obtain a simple Lie group En.

3.3. Fundamental weights in terms of curves in S.

Proposition 5. Let (S,C) be a rational surface of ADE-type, and G the corre-

sponding (simply connected) semisimple Lie group. The lattice Pic(S)/(ZC+ZKS) is

the corresponding weight lattice Λw(G). Hence the group Pic(S)/(ZC+ZKS)⊗ZC
∗

is a maximal torus of G.

P r o o f. According to Corollary 3, one can check that the radical of the inter-

section pairing

〈C,KS〉
⊥ × Pic(S) → Z

is exactly ZC + ZKS.

We take aDn-surface S = Yn for example. Recall Pic(Yn) = Z〈f = C, s, l1, . . . , ln〉,

and KYn
= −2f − 2s +

∑

li. Let af + bs −
∑

cili ∈ Pic(Yn) be an element in the

radical of the intersection pairing. Then we have (af + bs−
∑

cili)αi = 0 for all i.

Hence b = 2c and c1 = c2 = . . . = cn = c. Thus af+bs−
∑

cili = af+c(2s−
∑

li) =
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af − c(KYn
+ 2f) ∈ Z〈f,KYn

〉. Therefore the radical of the pairing is contained in

Z〈f,KYn
〉. Then they are equal, since the other inclusion is obvious.

Therefore, the intersection pairing induces a perfect non-degenerate pairing

〈C,KYn
〉⊥ × Pic(S)/(ZC + ZKYn

) → Z.

Since 〈C,KYn
〉⊥ is the (simply laced) root lattice of G, Pic(S)/(ZC + ZKYn

) is the

weight lattice of G. And the last statement follows since G is simply connected. �

Proposition 6. For the set ∆w(G) := {λ̄1, . . . , λ̄n} of the fundamental dominant

weights, λi ∈ Pic(S) representing λ̄i can be taken as follows:

(i) for G = An, λi = li+1 + . . .+ ln+1, i = 1, . . . , n;

(ii) for G = Dn, λ1 = s, λ2 = s− l1, λi = li + . . .+ ln, i = 3, . . . , n;

(iii) for G = En, λ1 = h, λ2 = h− l1, λ3 = 2h− l1− l2, λi = li+ . . .+ ln, i = 4, . . . , n.

Moreover, each of these weights is effective and represented by an irreducible

rational curve, or a disjoint union of such curves.

P r o o f. It follows from a direct computation that these elements map to a dual

basis of αi, i = 1, . . . , n, since λi · αj = δij for all i, j = 1, . . . , n. �

Corollary 7. With λi ∈ Pic(S) taken as in Proposition 6, the quasi-minuscule

fundamental weights are the following:

(i) for G = An, λ̄i, i = 1, . . . , n;

(ii) for G = Dn, λ̄1, λ̄2, λ̄n−1, λ̄n;

(iii) for G = E4, λ̄1, . . . , λ̄4; for G = E5, λ̄1, λ̄2, λ̄3, λ̄5; for G = E6, λ̄1, λ̄2, λ̄6; for

G = E7, λ̄2, λ̄7; for G = E8, λ̄8.

Given a quasi-minuscule fundamental weight λ̄ with λ ∈ Pic(S), we have the fol-

lowing three natural numerical invariants (under the action of the Weyl groupW (G)):

λ ·C, λ ·KS and λ
2. In the following, we show that the orbitW (G) ·λ is uniquely de-

termined by these three numerical invariants. We give a different proof in Section 4

via polytopes.

Before doing this, we first prove a simple lemma.

Lemma 8. Let a, b be two integers. The system of Diophantine equations

(1)











Y 2 = u+ a2K2
S + b2C2 + 2av + 2ab(CKS) + 2bw,

Y K = v + aK2
S + b(CKS),

Y C = w + a(CKS) + bC2,
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is solvable if and only if the system

(2) X2 = u, XKS = v, XC = w,

is solvable. And the sets of respective solutions of (1) and (2) are in one-to-one

correspondence via the relation Y0 = X0 + aKS + bC.

Moreover, the Weyl groupW (G) acts on the set of the solutions of (1) transitively

if and only if W (G) acts on the set of the solutions of (2) transitively.

P r o o f. For the first statement, if X0 is a solution of (2), then Y0 = X0 +

aKS + bC is obviously a solution of (1). On the other hand, if Y0 is a solution of (1),

then one can check that X0 = Y0 − aKS − bC is a solution of (2). For the second

statement, one just notices that W (G) preserves the bilinear form on Pic(S) and

acts on Z〈KS , C〉 trivially. �

Theorem 9. Let (S,C) be a rational surface of ADE-type, let G be the corre-

sponding (simply connected) semisimple Lie group and let λ ∈ Pic(S) be taken as in

Proposition 6. For a subset IG,λ defined as

IG,λ := {D ∈ Pic(S) : DC = λ · C, D2 = λ2, DKS = λ ·KS},

we have

W (G) · λ = IG,λ.

P r o o f. We shall use the following elementary lemma several times, and leave

its proof as an easy exercise.

Key lemma: Let a1, . . . , an be n integers such that
∑

a2i =
∑

ai. Then for all i,

ai = 0 or 1.

According to Proposition 6 and Lemma 8, it suffices to consider the quasi-

minuscule fundamental weights λi’s as in Proposition 6.

(1) The An case. It is easy to see that

W (An)(li+1 + . . .+ ln+1) = {lk1
+ . . .+ lkn−i+1

: 1 6 kj < kj+1 6 n+ 1},

IAn,λi
= {X ∈ Pic(S) : Xh = 0, X2 = −(n− i+ 1) = XKS}

Xh = 0 implies that X =
∑

aili. Further, X
2 = −(n− i+ 1) = XKS implies that

{

∑

a2j = n− i+ 1,
∑

aj = n− i+ 1.
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By Key lemma, we have ak1
= . . . = akn−i+1

= 1, and aj = 0 for j /∈ {k1, . . . , kn−i+1}.

Therefore we see that

W (An)(li+1 + . . .+ ln+1) = IAn,λi
.

(2) The G = Dn case.

(2.1) The adjoint representation. The corresponding quasi-minuscule weight is

λn−1 = ln−1 + ln. It is easy to see that

W (Dn)(ln−1 + ln) = {li + lj , 2f − li − lj , f − li + lj : i 6= j, i, j = 1, . . . , n}.

Further,

IDn,λn−1
= {X ∈ Pic(S) : Xf = 0, X2 = −2 = XKS}.

Let X ∈ IDn,λn−1
. Then Xf = 0 implies that we can suppose X = af +

∑

aili.

X2 = −2 = XKS implies that

{

∑

a2i = 2,

2a+
∑

ai = 2.

Solving this system of equations, we obtain that there exist i 6= j such that for all

k 6= i, j, (a, ai, aj , ak) = (0, 1, 1, 0), (1,±1,∓1, 0) or (2,−1,−1, 0).

Thus we have

IDn,λn−1
= {li + lj , 2f − li − lj, f − li + lj : i 6= j, i, j = 1, . . . , n}.

(2.2) The standard representation and the spinors. In these cases, we consider

λn = ln, λ1 = s and λ2 = s− l1. The proofs are similar, and the last two cases are

reduced to solving equations of the type in Key lemma.

(3) The G = En case. These results follow from direct computations. For λn = ln,

see [5] and Chapter IV of [17]. For λ2 = h− l1, see [15]. For λ1 = h, we only need

to consider the case n = 4, 5 or 6. We take n = 6 for example. The Diophantine

equations for λ̄ = h̄ are

X2 = 1, XKS = −3.

They can be solved directly by a somehow cumbersome computation. Here is a sim-

pler proof. Observe that we have a bijection between the following two sets:

{X : X2 = 1, XKS = −3} → {Y : Y 2 = −2, Y KS = 0}

X 7→ KS +X.
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Since the set {Y ∈ Pic(S) : Y 2 = −2, Y KS = 0} is the root system of E6 by

Proposition 2, from the fact that there are 72 roots in the root system of E6 with the

transitive action of the Weyl group W (E6), it follows that the system of equations

X2 = 1, XKS = −3

has exactly 72 solutions and W (E6) acts on the set of solutions transitively. For

λ3 = 2h− l1 − l2, we only need to consider the case n = 4. And the proof is an easy

computation. �

Moreover, the second equality of Theorem 9 is independent of the choices of rep-

resentatives of the coset λ̄. Therefore the cardinality of the set IG,λ is exactly the

dimension of the irreducible representation Vλ when λ is minuscule.

Thus, we obtain the relation between the Weyl groups orbits of a quasi-minuscule

fundamental weights and special curves on S, listed in Table 1.

Lemma 10. There are the following natural bijective maps of sets:

(a) For G = An.
φi
An

: IAn,λi
→ IAn,λn+1−i

x 7→ 3h+KS − x.

(b1) For G = Dn.

φ1,2
Dn

: IDn,λ1
→ IDn,λ2

x 7→ −x+ 1

2
(n− 5)f −KS .

(b2) For G = Dn.
φn−1

Dn
: IDn,λn−1

→ R(Dn)

x 7→ x− f.

(c1) For G = E8.
φ8
E8

: IE8,λ8
→ R(E8)

x 7→ KS + x.

(c2) For G = E7.
φ2
E7

: IE7,λ2
→ R(E7)

x 7→ KS + x.

(c3) For G = E6.

φ2,6
E6

: IE6,λ2
→ IE6,λ6

x 7→ −KS − x

and
φ1
E6

: IE6,λ1
→ R(E6)

x 7→ KS + x.

408



(c4) For G = E5.

φ1,5
E5

: IE5,λ1
→ IE5,λ5

x 7→ −KS − x

and
φ3
E5

: IE5,λ3
→ R(E5)

x 7→ KS + x.

(c5) For G = E4.

φ1,2
E4

: IE4,λ1
→ IE4,λ2

x 7→ −KS − x

and
φ3,4
E4

: IE4,λ3
→ IE4,λ4

x 7→ −KS − x.

P r o o f. This follows from a direct computation. For example, we check the

bijectivity of φn−1

Dn
in (b2). If x ∈ IDn,λn−1

, then xf = 0, x2 = −2, xKS = −2. Thus

we have (x − f)f = 0, (x − f)2 = −2, (x − f)KS = 0. That is, x − f ∈ R(Dn).

Similarly, if y ∈ R(Dn), then y + f ∈ IDn,λn−1
. �

These bijective maps reflect the properties of representations of G, for example,

the duality, the isomorphisms as representations, and so on.

4. Polytopes in Pic(S) and Weyl group orbits

In this section, we consider representations of Weyl groups on Picard groups Pic(S)

of rational surfaces S. In particular, we consider very special classes λ which corre-

spond to the quasi-minuscule representations after the identification in Proposition 5

and conclude that the corresponding subsets IG,λ of Pic(S) are indeed the orbits of

Weyl groups in Pic(S). As a matter of fact, the Weyl groups that we are considering

are given by root lattices defined on subsets {d ∈ Pic(S) : d2 = −2, KSD = 0} of

Pic(S). In [11], the first author introduces (semi-)regular polytopes in Pic(S) whose

symmetry groups are our Weyl groups and studies the correspondences between their

subpolytopes and special divisor classes which turn out to be related to IG,λ. In this

section, we explain the relation between Weyl group orbits IG,λ and subpolytopes

in those special polytopes. Basically the arguments of those three cases of Weyl

groups of types ADE are the same. Therefore, we explain rather in detail the case

of E-type Weyl groups which is more complicated, and make brief notes on other

rational surfaces we care.
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4.1. Polytopes in Pic(S). First we review the general theory on regular poly-

topes that we use in this section and a family of semiregular polytopes known as

Gosset figures (k21 according to Coxeter). Here we only present a brief introduction,

and for further detail readers can look up [2], [3], [4] and [11].

We consider a convex n-polytope Pn in an n-dimensional Euclidean space. For

each vertex of Pn, the set of the midpoints of all the edges emanating from the vertex

in Pn is called the vertex figure of Pn at the vertex when it forms an (n−1)-polytope.

As the edges of polytopes considered in this article have the same length, the vertex

figure of the vertex in Pn is equivalently an (n − 1)-polytope given by the set of

vertices on the other ends of the edges emanating from this vertex.

A regular polytope Pn, n > 2, is a polytope whose facets and the vertex figure at

each vertex are regular, which is a higher dimensional generalization of regular poly-

gon and regular polyhedron. Naturally, the facets of a regular Pn are all congruent,

and the vertex figures are all the same. A polytope Pn is called semiregular if its

facets are regular and its vertices are equivalent, namely, the symmetry group of Pn

acts transitively on the vertices of Pn.

In this article, we consider two classes of regular polytopes and one class of semireg-

ular polytopes.

(1) A regular simplex an is an n-dimensional simplex with equilateral edges. Note

that an is a pyramid based on an−1. Thus each facet of a regular simplex an is

a regular simplex an−1, and each vertex figure of an is also an−1. For a regular

simplex an, only regular simplexes ak, 0 6 k 6 n− 1 appear as subpolytopes.

n 2 1

Figure 4. Coxeter-Dynkin diagram of an.

(2) A crosspolytope bn is an n-dimensional polytope whose 2n-vertices are the

intersection of an n-dimensional Cartesian coordinate frame and a sphere centered

at the origin. Note that bn is a bipyramid based on bn−1, and the n-vertices in bn

form an−1 if the choice is made of one vertex from each Cartesian coordinate line. So

the vertex figure of a crosspolytope bn is also a crosspolytope bn−1, and any facet of

bn is an−1. For a crosspolytope bn, only regular simplexes ak, 0 6 k 6 n− 1 appear

as subpolytopes.

n 3 2

1

Figure 5. Coxeter-Dynkin diagram of bn.
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(3) Gosset polytopes k21, k = −1, 0, 1, 2, 3, 4, are semiregular polytopes discovered

by Gosset which are (k + 4)-dimensional polytopes whose symmetry groups are the

Coxeter groups W (Ek+4). Note that the vertex figure of k21 is (k − 1)21 and the

facets of k21 are regular simplexes ak+3 and crosspolytopes bk+3. For k 6= −1, the

facets of a k21-polytope are regular simplexes ak+3 and crosspolytopes bk+3. But

all the lower dimensional subpolytopes are regular simplexes. When k = −1, the

vertex figure in (−1)21 is an isosceles triangle instead of an equilateral triangle, and

its facets are regular triangles a2 and squares b2.

k 1 0 −1

Figure 6. Coxeter-Dynkin diagram of k21, k 6= −1.

4.2. Gosset polytopes in Pic(S). Here we present how to construct Gosset

polytopes in Pic(Sn). Such a polytope is given by a convex hull of a set of special

divisors known as lines in a Del Pezzo surface Sn of degree 9−n. The constructions

of polytopes for the others types of rational surfaces can be obtained in a similar

way, and we leave them to readers.

For our caseG = En and its Weyl group acts on C
⊥ in Pic(Sn+1). Since the divisor

classes considered are commonly perpendicular to C, we can apply the blowing down

from Sn+1 to Sn given by a rational curve C with C2 = −1. This blowing down

does not change the setups except for forgetting the conditions given by C. Thus, we

deal with divisor classes D in Pic(Sn) satisfying DKSn
= a, D2 = b where a and b

are integers and KSn
is the canonical class of Sn. Here we observe that the action

of W (En) on roots in Pic(Sn) can be naturally extended to the whole Pic(Sn),

and furthermore it preserves two conditions DKSn
= a, D2 = b. In particular,

W (En) acts as a reflection group on the affine hyperplane section given by the divisor

classes D with DKSn
= a.

Now, we consider a subset Ln of Pic(Sn) consisting of lines l which are divisor

classes with l2 = −1 and KSn
l = −1. As the Weyl group W (En) acts as a reflection

group on the affine hyperplane given by DKSn
= −1 and preserves self-intersections,

W (En) gives an action on Ln which in fact is transitive. Therefrom, a semiregular

polytope is constructed as the convex hull of Ln in Pic(Sn)⊗ Q, where the vertices

of the polytope are exactly the lines in Pic(Sn). Since the symmetry group of the

polytope is W (En) which is of En-type, the polytope is actually a Gosset polytope

(n− 4)21 (see [11] for details).
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For a Gosset polytope (n − 4)21, subpolytopes are regular simplexes except for

the facets which consist of (n − 3)-simplexes and (n − 3)-crosspolytopes. Since the

subpolytopes in (n−4)21 are basically configurations of vertices, we obtain a natural

characterization of subpolytopes in (n−4)21 as divisor classes in Pic(Sn). To identify

subpolytopes in Gosset polytopes (n − 4)21 defined in Pic(Sn) ⊗ Q, we want to

use the barycenter of the subpolytope. As each vertex of the polytope (n − 4)21

represents a line in Sn, the honest centers of simplexes (crosspolytopes ) are written

as (l1+ . . .+ lk)/k where l1, . . . , lk are disjoint to each other (respectivaly, (l
′
1+ l′2)/2

where l′1 · l
′
2 = 1). But these centers in the convex hull of Ln in Pic(Sn) ⊗ Q may

not be elements in Pic(Sn). Therefore, alternatively, we choose (l1 + . . .+ lk) as the

center of a subpolytope so that it is an element in Pic(Sn).

For a Gosset polytope (n− 4)21 in Pic(Sn), we define

Lk−1
n := {l1 + . . .+ lk ∈ Pic(Sn) : l1, . . . , lk disjoint lines in Ln} and

Fn := {l′1 + l′2 ∈ Pic(Sn) : l′1, l
′
2 lines in Ln with l′1 · l

′
2 = 1}.

In [11], we show that l1 + . . .+ lk ∈ Lk−1
n represents the center of a (k − 1)-simplex

in (n− 4)21 in a unique way, and Lk−1
n is bijective to the set of (k − 1)-simplexes in

(n − 4)21. We also show that Fn is bijective to the set of (n − 1)-crosspolytopes in

(n− 4)21. Here, each center of an (n− 1)-crosspolytope in (n− 4)21 can be written

as (n− 1) different pairs of lines with intersection 1.

4.3. Weyl group orbits. In this subsection, we recover the above study on quasi-

minuscule representations in Pic(S) via the combinatorics of polytopes. We identify

Weyl group orbitsW (En)λ for the fundamental dominant weights λ to subpolytopes

in a Gosset polytope (n− 4)21 and compare the orbits with IEn,λ. The same can be

done for the Weyl groups of A- and D-type, and we leave it to readers.

From Proposition 6, we know that the set of the fundamental dominant weights

for En is given as {λ1, . . . , λn} ⊆ Pic(Sn) where

λ1 = h, λ2 = h− l1, λ3 = 2h− l1 − l2, λi = li + . . .+ ln, i = 4, . . . , n.

It is also useful to note that the reflection group W (En) acts transitively on k-

subpolytopes of (n−4)21 when k 6= n−1, n−2. For (n−1)-subpolytopes in (n−4)21,

there are twoW (En) orbits which are the set of (n−1)-simplexes and the set of (n−1)-

crosspolytopes. For (n− 2)-subpolytopes in (n− 4)21 with 5 6 n 6 8, there are also

twoW (En) orbits which are two sets of (n−2)-simplexes. In this article, we consider

one set of (n− 2)-simplexes in (n− 4)21 given by W (En)((h− l1− l2)+ l3+ . . .+ ln),

(see [12]).
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Theorem 11. Let Sn be a Del Pezzo surface of degree 9−n and {λ1, . . . , λn} the

set of fundamental dominant weights for En as above.

(1) For 4 6 i 6 n,W (En)λi = Ln−i
n , which is the set of (n−i)-simplexes in (n−4)21.

(2) For i = 3, W (En)λ3 is equivariantly equivalent to W (En)((h − l1 − l2) +

l3 + . . .+ ln), which is a W (En) orbit of (n− 2)-simplexes in (n− 4)21.

(3) For i = 2,W (En)λ2 = Fn, which is the set of (n−1)-crosspolytopes in (n−4)21.

(4) For i = 1,W (En)λ1 is equivariantly equivalent to L
n
n, which is the set of (n−1)-

simplexes in (n− 4)21.

P r o o f. (1) Obviously, W (En)λi ⊂ Ln−i
n and we get |W (En)λi| = |Ln−i

n | by

computing the isotropy subgroup of λi.

(2) 2λ3 +KSn
= 2(2h− l1 − l2) +KSn

= 2(2h− l1 − l2) + (−3h+ l1 + . . .+ ln) =

(h− l1 − l2) + l3 + . . .+ ln.

(3) See [11].

(4) 3λ1 +KSn
= 3h+KSn

= l1 + . . .+ ln. �

This theorem leads us to ask if we can extend the results in Theorem 9 and

Table 1 given by the quasi-minuscule representations. Indeed we can obtain the

following result according to the comparison between combinatorics of Gosset poly-

topes (n− 4)21 and special divisor classes in Pic(Sn). Here IEn,λi
is the finite subset

of divisor classes D in Pic(Sn) with D2 = λ2
i , DK = λi ·K.

Corollary 12. Let Sn be a Del Pezzo surface of degree 9 − n and {λ1, . . . , λn}

the set of fundamental dominant weights for En as above.

(1) For n− 2 6 i 6 n, W (En)λi = IEn,λi
.

(2) For i = 2, W (En)λ2 = IEn,λ2
.

(3) For i = 1, n 6= 8, W (En)λ1 = IEn,λ1
.

P r o o f. For each λi, it is easy to see that W (En)λi ⊂ IEn,λi
. We compute

|IEn,λi
| and compare it with |W (En)λi| given in Theorem 11. To compute |IEn,λi

|,

one can use the dual root lattice of En and apply the corresponding theta function

(see Section 5 in [11] for details). The proofs of (1), (2) and (3) can be found in

Theorem 5.2, 5.3 and 5.4 of [11], respectively. �

Remark 13. For λ3, the proof of this corollary can be applied to show W (E6) ·

λ3 = IE6,λ3
. But for n = 8, 7, W (En)λ3 is one of the two W (En) orbits in IEn,λ3

.

Similarly, for n = 8, W (En)λ1 is also one of the two W (E8) orbits in IE8,λ1
.

For An- and Dn-surfaces, we have similar results, stated with brief proofs as

follows.
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Warning: In general, when we consider crosspolytopes bn which are n-dimensional

regular polytopes, the symmetry group is a reflection group W (Cn) of order 2
nn!

(where W (Cn) is the Weyl group of the Lie group Cn), so that it acts transitively on

each type of subpolytopes in a crosspolytope bn. Thus (n− 1)-simplexes in bn are in

one W (Cn) orbit. In this article, we take a smaller symmetry groupW (Dn) of order

2n−1n! for bn, which is also a reflection group producing crosspolytopes bn. But as it

is a smaller symmetry group, there are two W (Dn) orbits of (n− 1)-simplexes in bn
corresponding to two spin representations of Dn. Those two W (Dn) orbits in bn are

also related to W (Dn) orbits in a Dn lattice in the following proposition. Here the

set Lk−1
n of divisor classes is defined similarly to the case of Del Pezzo surfaces Sn.

Proposition 14. Let S be a rational surface of An and Dn type. Let {λ1, . . . , λn}

be the set of fundamental dominant weights as above.

(1) For An, W (An)λi = Ln−i
n , which is the set of (n − i)-simplexes an−i in the

n-simplex an.

(2) For Dn, W (Dn)λn = Ln, which is the set of vertices in bn.

(3) For Dn, W (Dn)λn−1 = L1
n, which is the set of edges in bn.

(4) For Dn, W (Dn)λ2 is equivariantly equivalent toW (Dn).((f− l1)+ l2+ . . .+ ln),

which is a W (Dn) orbit of (n− 1)-simplexes in bn.

(5) For Dn, W (Dn)λ1 is equivariantly equivalent to W (Dn).(l1 + . . . + ln), which

is a W (Dn) orbit of (n− 1)-simplexes in bn.

P r o o f. (1) Obviously,W (An)λi ⊂ Ln−i
n and |W (An)λi| = |Ln−i

n | by computing

the isotropy subgroup of λi. By Theorem 9, W (An)λi = IAn,λi
. Similarly, (2) and

(3) can be proved.

(4) Observe that W (Dn) preserves K and f . And by using

2λ2 +KS +3f = 2(s− l1) + (−2f − 2s+ l1 + . . .+ ln) + 3f = (f − l1) + l2 + . . .+ ln,

we conclude that W (Dn) · λ2 is equivariantly equivalent to W (Dn)((f − l1) +

l2+ . . .+ ln), which is aW (Dn) orbit consisting of 2
n−1 elements of (n−1)-simplexes

in bn. Similarly, (5) can be proved by using

2λ1 +KS + 2f = 2s+ (−2f − 2s+ l1 + . . .+ ln) + 2f = l1 + . . .+ ln.

�

As a corollary, we obtain the result of Theorem 9 via polytopes, and thus we

complete Table 1.
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