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Abstract. A. Rapcsák obtained necessary and sufficient conditions for the projective
Finsler metrizability in terms of a second order partial differential system. In this paper
we investigate the integrability of the Rapcsák system and the extended Rapcsák system,
by using the Spencer version of the Cartan-Kähler theorem. We also consider the ex-
tended Rapcsák system completed with the curvature condition. We prove that in the
non-isotropic case there is a nontrivial Spencer cohomology group in the sequences deter-
mining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore
the system is not integrable and higher order obstruction exists.

Keywords: Euler-Lagrange equation; metrizability; projective metrizability; geodesics;
spray; formal integrability
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1. Introduction

Last year we celebrated the 100th anniversary of the birth of András Rapcsák.
He was one of the founders of the Finsler geometry research school in Debrecen.
His most important results concern the projective Finsler metrizability problem,
where one seeks for a Finsler metric whose geodesics are projectively equivalent to
the solutions of a given system of second order homogeneous ordinary differential
equations (SODE).

The projective Finsler metrizability problem can be considered as a particular
case of the inverse problem of the calculus of variations. Rapcsák in [18] obtained
necessary and sufficient conditions for the projective Finsler metrizability in terms
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of a second order PDE system, called now Rapcsák equations, see [9], [22], [20]. The
coordinate-free formulations of these equations can be found in [14], [22]. Rapcsák’s
approach is simple and natural: one finds conditions directly on the Finsler function
that one seeks for. Recently, several new results appeared about the projective Finsler
metrizability problem, see [4], [8], [9], [10], [15], [16]. Various strategies can be chosen
to deal with the problem: In [9] the generalized Helmholtz system was considered,
in [4] a system in terms of a semi-basic 1-form was investigated and in [10] an
approach in terms of 2-forms was formulated. In this paper, in the perspective of the
projective metrizability problem, we consider the Rapcsák system, which consists of
the homogeneity equation (2.1) and a second order differential equation (3.1), called
the Rapcsák equation. We investigate the integrability of the Rapcsák system and
the extended Rapcsák system by using the Spencer version of the Cartan-Kähler
theorem. The integrability condition can be expressed in terms of the curvature
tensor (Proposition 4.5) which is not necessarily fulfilled in the non-isotropic case.
Therefore, to solve the projective metrizability problem in this case, one has to
consider an enlarged system by including the curvature conditions to the equations.
Analysing the system with the classical Cartan-Kähler theory one can show that
the Cartan test fails and the symbol of the operator is not involutive. Therefore
the system (5.2) is not integrable: higher order integrability conditions exist. Using
Spencer technique, the level where these higher order integrability conditions appear
can be calculated.
The paper is organized as follows. In Section 2 we give a brief introduction to the

Frölicher-Nijenhuis theory and to the canonical structures on the tangent bundle of
a manifold. We also introduce the main structures one needs to discuss the geometry
of a spray: connection, Jacobi endomorphism, curvature. We also recall the basic
tools of Cartan-Kähler theory.
In Section 3 we use the geometric setting presented in Section 2 to show that

the Rapcsák system gives a necessary and sufficient condition for the projective
metrizability problem. Alternative proofs can be found in [22], [21]. We discuss
the integrability of the Rapcsák system by using conditions provided by the Cartan-
Kähler theorem. We conclude the section by showing that the obstruction to the
formal integrability can be expressed in terms of the nonlinear connection induced
by the spray.

In Section 4 we investigate the formal integrability of the extended Rapcsák system
composed by the Rapcsák system and its integrability condition found in Section 3.
We show that the obstruction to the integrability can be expressed in terms of the
curvature tensor of the nonlinear connection induced by the spray. The curvature
of flat and of isotropic sprays satisfies this integrability condition. We remark that
for these classes of spray manifolds the projective metrizability problem has been
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discussed in [4], [7], [6], but our approach here is different. As Section 5 shows, this
approach can be particularly advantageous from the perspective of further investi-
gations of the cases of non-isotropic curvature.

In Section 5 we consider the case when the curvature is not isotropic. We remark
that very few results are known on the inverse problem of the calculus of variations
in this situation (see for example [11], [19]). In the non-isotropic case the extended
Rapcsák system is not integrable and in order to solve the projective metrizability
problem, one has to consider an enlarged system by adding the curvature conditions
to the system. We consider here the generic case, when the eigenvalues of the Jacobi
endomorphism are pairwise distinct. Analysing the system with the classical Cartan-
Kähler theory one can show that the symbol of the operator is not involutive and
that the Cartan test fails. Therefore the system (5.2) is not integrable: higher
integrability conditions exist. We emphasize that from the non-involutivity of the
symbol one cannot obtain information about the level of prolongation where the extra
integrability condition arises. However, using Spencer technique, this level (and also
the number of the extra integrability conditions) can be calculated. We prove that
for this system the H2,2 Spencer cohomology group is nontrivial. Hence to solve the
projective metrizability problem in the non-isotropic case a third order PDE system
(containing the first prolongation of the extended Rapcsák system and the curvature
conditions) should be considered instead of the original second order PDE system.

2. Preliminaries

Throughout this paper,M will denote an n-dimensional smooth manifold. C∞(M)

denotes the ring of real-valued smooth functions, X(M) is the C∞(M)-module of
vector fields on M , π : TM → M is the tangent bundle of M , T M = TM \ {0}

is the slit tangent space. We will essentially work on the manifold TM and on its
tangent space TTM . When there is no danger of confusion, TTM and T ∗TM will
simply be denoted by T and T ∗, respectively. V TM = Kerπ∗ is the vertical sub-
bundle of T . We denote by Λk(M), Sk(M) and Ψk(M) the C∞(M)-modules of
skew-symmetric, symmetric and vector valued k-forms, respectively. We denote by
Λk
v(TM), Sk

v (TM) and Ψk
v(TM) the corresponding semi-basic C∞(TM)-modules.

The Frölicher-Nijenhuis theory provides a complete description of the derivations
of Λ(M) with the help of vector-valued differential forms, for details we refer to [12].
The i∗ and the d∗ type derivations associated to a vector-valued l-form L will be
denoted by iL and dL. They can be introduced in the following way: if L ∈ Ψl(M),
then

iLω(X1, . . . , Xl) = ω(L(X1, . . . , Xl)),
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where X1, . . . , Xl ∈ X(M), ω ∈ Λ1(M). Furthermore, dL is the commutator of the
derivations iL and d, that is,

dL := [iL, d] = iLd− (−1)l−1diL.

We remark that for X ∈ X(M) we have dX = LX the Lie derivative, and iX is
the substitution operator. The Frölicher-Nijenhuis bracket of K ∈ Ψk(M) and L ∈

Ψl(M) is the unique [K,L] ∈ Ψk+l form such that

[dK , dL] = d[K,L].

In the special case, when K ∈ Ψ1(M), X,Y ∈ X(M) we have [K,X ] ∈ Ψ1(M)

defined as
[K,X ](Y ) = [KY,X ]−K[Y,X ].

Spray and associated geometric quantities. Let J : TTM → TTM be the
vertical endomorphism and C ∈ X(TM) the Liouville vector field. In an induced local
coordinate system (xi, yi) on TM we have J = dxi⊗∂/∂yi, and C = yi∂/∂yi. Euler’s
theorem for homogeneous functions implies that L ∈ C∞(TM) is a 1-homogeneous
function in the y = (y1, . . . , yn) variables if and only if

(2.1) yi
∂L

∂yi
− L = 0.

The vertical endomorphism satisfies the following properties: J2 = 0, KerJ =

Im J = V TM and [J,C] = J .
A spray is a vector field S on T M satisfying the relations JS = C and [C, S] = S.

The coordinate representation of a spray S takes the form

S = yi
∂

∂xi
+ f i(x, y)

∂

∂yi
,

where the functions f i(x, y) are homogeneous of degree 2 in y. The geodesics of
a spray are curves γ : I → M such that S ◦ γ̇ = γ̈. Locally, they are the solutions of
the equations

(2.2) ẍi = f i(x, ẋ), i = 1, . . . , n.

Two sprays S and S̃ are called projective equivalent, if their geodesics coincide up to
an orientation-preserving reparametrization. It is not difficult to show that S and S̃
are projective equivalent if and only if they are related by the formula

(2.3) S̃ = S − 2PC,

where P ∈ C∞(TM) is a 1-homogeneous function.
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To every spray S a connection Γ: = [J, S] can be associated. We have Γ2 = Id.
The eigenspace of Γ corresponding to the eigenvalue −1 is the vertical space V TM ,
and the eigenspace corresponding to +1 is called the horizontal space. For any
x ∈ TM we have TxTM = HxTM ⊕ VxTM. The horizontal and vertical projectors
are denoted by h and v. One has

(2.4) h =
1

2
(Id + Γ), v =

1

2
(Id− Γ).

The curvature R = [h, h]/2 of the connection is the Nijenhuis torsion of the horizontal
projection h. The Jacobi endomorphism (or Riemann curvature in [20]) is defined
as Φ = iSR. The Jacobi endomorphism determines the curvature by the formula
R = [J,Φ]/3. The spray S is called flat if its Jacobi endomorphism has the form
Φ = λJ and isotropic if Φ = λJ − α⊗ C with some λ ∈ C∞(T M), α ∈ Λ1

v(T M).
The vector X ∈ HxTM , X 6= 0 is a semibasic eigenvector of Φ if ΦX = λJX . In

this situation λ ∈ R is called the eigenvalue corresponding to X . We remark that R
is skew symmetric, therefore we have Φ(S) = R(S, S) = 0, hence S is an eigenvector
and λ = 0 is an eigenvalue of Φ corresponding to S.

Finsler structure. A Finsler function on a manifold M is a continuous func-
tion F : TM → R, which is smooth and positive away from the zero section, homo-
geneous of degree 1, and strictly convex on each tangent space. The energy function
E : TM → R associated to a Finsler structure F is defined as E := F 2/2. The (0, 2)
tensor field with tensor components

gij :=
∂2E

∂yi∂yj

is positive definite at any point (x, y) ∈ T M . The pair (M,F ) is called a Finsler
manifold. The geodesics of the Finsler manifold (M,F ) are the solutions of the
Euler-Lagrange equations

(2.5)
d

dt

∂E

∂ẋi
−

∂E

∂xi
= 0, i = 1, . . . , n.

It is not difficult to see that for any function E ∈ C∞(T M) the 1-form

(2.6) ωE = iSddJE + dLCE − dE

is semi-basic, and its coordinate representation takes the form ωE = ωi dx
i, where

the coefficients ωi are the functions appearing in the left-hand side of the Euler-
Lagrange equation (2.5). Therefore S corresponds to the geodesic equation of E if
and only if the equation

(2.7) ωE = 0
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holds. The spray S is called Finsler metrizable if there exists a Finsler function such
that for the corresponding energy function (2.7) holds, and S is projective Finsler
metrizable, if it is projective equivalent to a Finsler metrizable spray.

Formal integrability. To investigate the integrability of the Rapcsák system
we shall use Spencer’s technique of formal integrability in the form explained in [13].
For a detailed account see [2]. We recall here the basic notions in order to fix the
terminology.
Let B be a vector bundle over M . If s is a section of B, then jk(s)x will denote

the kth order jet of s at the point x ∈ M . The bundle of kth order jets of the
sections of B is denoted by JkB. In particular Jk(RM ) will denote the kth order jets
of real-valued functions, that is, the sections of the trivial line bundle. Let B1 and
B2 be vector bundles overM and P : Sec(B1) → Sec(B2) a differential operator. An
s ∈ Sec(B1) is a solution to P if Ps ≡ 0.
If P is a linear differential operator of order k, then a morphism pk(P ): Jk(B1)→B2

can be associated to P . The lth order prolongation pk+l(P ) : Jk+l(B1) → Jl(B2) can
be introduced in a natural way by taking the lth order derivatives. Solk+l,x(P ) :=

Ker pk+l,x(P ) denotes the set of formal solutions of order l at x ∈ M . Obviously, we
have

Ps ≡ 0 ⇒ jl,x(s) ∈ Soll,x(P ),

for every l > k and x ∈ M . The differential operator P is called formally integrable
if Soll(P ) is a vector bundle for all l > k, and the restriction πl,x : Soll+1,x(P ) →

Soll,x(P ) of the natural projection is onto for every l > k. In that case any kth order
solution or initial data can be lifted into an infinite order solution. In the analytic
case, formal integrability implies the existence of solutions for arbitrary initial data
(see [2], page 397). To prove the formal integrability, one can use the Cartan-Kähler
theorem. To present it, we have to introduce some notations.
Let σk(P ) denote the symbol of P determined by the highest order terms of

the operator. It can be interpreted as a map σk(P ) : SkT ∗M ⊗ B1 → B2. By
σk+l(P ) : Sk+lT ∗M ⊗ B1 → SlT ∗M ⊗ B2 we denote the symbol of the lth order
prolongation of P . If E = {e1 . . . en} is a basis of TxM , we set

gk,x(P ) = Kerσk,x(P ),

gk,x(P )e1...ej = {A ∈ gk,x(P ) : ie1A = . . . = iejA = 0}, j = 1, . . . , n.

The basis E is called quasi-regular if one has

dim gk+1,x(P ) = dim gk,x(P ) +

n∑

j=1

dim gk,x(P )e1...ej .
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A symbol is called involutive1 if there exists at any x ∈ M a quasi-regular basis. The
notion of involutivity allows us to check the formal integrability in a simple way by
using the following theorem:

Theorem 2.1 (Cartan-Kähler). Let P be a kth order linear partial differential op-
erator. Suppose that P is regular, that is, Solk+1(P ) is a vector bundle over Solk(P ).

If the map πk : Solk+1(P ) → Solk(P ) is surjective and the symbol is involutive, then

P is formally integrable.

It can be shown that the condition of the existence of a quasi-regular basis can
be replaced by a weaker condition. The obstructions to the higher order successive
lift of the kth order solution are contained in some of the cohomological groups of
a certain complex called Spencer complex. The Hm,2 Spencer cohomology group is
defined as

(2.8) Hm,2 =
Ker(gm(P )⊗ Λ2T ∗M

δm2−→ gm−1(P )⊗ Λ3T ∗M)

Im(gm+1(P )⊗ T ∗M
δm
1−→ gm(P )⊗ Λ2T ∗M)

.

The symbol of a kth order linear differential operator P is 2-acyclic if Hm,2 = 0

for all m > k. Using Spencer cohomology groups, a weaker version of integrability
theorem can be stated:

Theorem 2.2 (Goldschmidt). Let P be a kth order regular linear partial differ-
ential operator. If πk : Solk+1(P ) → Solk(P ) is onto and the symbol of the operator

is 2-acyclic then P is formally integrable.

Using a classical result in homological algebra, the surjectivity of πk+1 can be
verified in the following way (see [13]):

Proposition 2.3. There exists a morphism ϕ : Solk(P ) → Coker (σk+1(P )), such

that the sequence

Solk+1(P )
πk−→ Solk(P )

ϕ
−→ Coker(σk+1(P ))

is exact. Therefore πk is surjective if and only if ϕ ≡ 0.

1 In the works of Cartan, and more generally in the theory of exterior differential systems,
“involutivity” means more than the existence of a quasi-regular basis and it refers to
“integrability” (cf. [2], pages 107, 140). Here we follow the terminology of Goldschmidt
(cf. [2], page 409).
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Remark 2.4. The map ϕ is called obstruction map and Coker(σk+1(P )) is
called obstruction space, because a kth order solution s ∈ Solk(P ) can be pro-
longed into a (k + 1)st order solution if and only if ϕ(s) = 0. In particular, if
Coker (σk+1(P )) = {0} then there is no obstruction to the prolongation.

In practice the map ϕ and therefore the integrability conditions can be computed
as follows:

Remark 2.5. Let τ : T ∗ ⊗ B2 → K be a morphism such that Ker τ =

Imσk+1(P ). Then K is isomorphic to Coker (σk+1(P )). Moreover, if sk,x = jk(s)x

is a kth order solution, that is, (Ps)x = 0, then

ϕ(sk,x) = τ(∇(Ps))x,

where ∇ is an arbitrary linear connection on the bundle B2.

Let (xi) be a local coordinate system on M , (xi, yi) the associated coordinate
system on TM in the neighborhood of v ∈ TM . If jk(F )v ∈ Jk(RTM ) is a kth order
jet of a real-valued function F on TM , we set the notation

(2.9) Fi1...iaia+1...il :=
∂lF

∂xi1 . . . ∂xia∂yia+1 . . . ∂yil
(v), 1 6 l 6 k, 1 6 a 6 l.

3. Differential operator of the projective metrizability:

the Rapcsák system

In this section we derive the PDE system describing the necessary and sufficient
condition for a spray to be projective Finsler metrizable. We have the following
statement:

Proposition 3.1. A spray S is projective Finsler metrizable if and only if there

exists a Finsler function F̃ : TM → R (1-homogeneous, continuous, smooth and

positive on T M where ∂2F̃ 2/∂yi∂yj is positive definite), such that

(3.1) iSddJ F̃ = 0.

P r o o f. The spray S is projective Finsler metrizable if and only if there exists
a Finsler metrizable spray S̃ which is projective equivalent to S. Because of the
projective equivalence, there exists a function P such that S̃ = S − 2PC. Let us
denote by F̃ the Finsler function associated to S̃. It is well known that F̃ is invariant
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by the parallel translation associated to the connection Γ̃ = [J, S̃] and therefore we
have d

h̃
F̃ = 0. Using the relation

h̃ = h− PJ − dJP ⊗ C

between the horizontal projectors ([5], Chapter 4) and the 1-homogeneity of F̃ , we
get

(3.2) 0 = d
h̃
F̃ = dhF̃ − dPJ F̃ − dJPCF̃ = dhF̃ −PdJ F̃ − F̃ dJP = dhF̃ − dJ(PF̃ ).

Substituting S into (3.2), using JS = C and the homogeneity of F̃ and P , we get

iSdh̃F̃ = SF̃ − C(PF̃ ) = SF̃ − 2PF̃ = 0,

and we find that the projective factor is P = (1/2F̃ )SF̃ . Replacing P in (3.2) by the
above expression we get

dhF̃ − dJ

( 1

2F̃
(F̃ dS F̃ )

)
= dhF̃ −

1

2
dJ (dSF̃ ) = 0.

Using (2.4) and the relation d[J,S] = dJdS − dSdJ we obtain

0 = dΓ+I F̃ − dJdS F̃ = d[J,S]F̃ + dF̃ − dJdSF̃

= −(iSd+ diS)dJ F̃ + dF̃ = −iSddJ F̃ − dCF̃ + dF̃ = −iSddJ F̃ .

�

We note that a coordinate version of the above theorem was proved by Rapcsák
in [18], and coordinate free versions were given in [14], [21], [22]. Here we presented
a different proof.

Definition 3.2. Let S be a spray on M . The partial differential system com-
posed by the equation (3.1) and the 1-homogeneity condition (2.1) is called the
Rapcsák system.

According to Proposition 3.1 the projective metrizability leads to the investigation
of the Rapcsák system.

Remark 3.3. The Rapcsák system is equivalent to the system composed by the
Euler-Lagrange equations (2.5) and the 1-homogeneity condition (2.1).
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We remark that the system composed by the Euler-Lagrange equations and the
k-homogeneity condition for k 6= 1 can be reduced to a first order partial differential
system which can be interpreted in terms of the holonomy distribution associated to
the spray S. When k = 2 (this case corresponds to the Finsler metrizability problem),
the computation can be found in [17]. The same reasoning can be applied for other
values of k, k 6= 1. But this method cannot be used for the value k = 1. Nevertheless,
in some special situations, the Rapcsák system can also be reduced to a first order
PDE system. This is the case for example for the canonical spray of a Lie group, if
one seeks for an invariant solution to the projective Finsler metrizability problem.
In that case, the Rapcsák system can be reduced to a first order system, and one
can show that the invariant Riemann, Finsler and projective Finsler metrizability
problems are equivalent, see [3].

Integrability conditions of the Rapcsák system. Let us consider the
differential operator P1 corresponding to the Rapcsák system

(3.3) P1 = (PS , PC),

where

PS : C∞(TM) → SecT ∗, PS(F ) = iSddJF,(3.4)

PC : C∞(TM) → C∞(TM), PC(F ) = LCF − F.(3.5)

From the local expression it is clear that PC is a first and PS is a second order
differential operator. The associated morphisms are defined on the first and second
order jet spaces, respectively. Using the coordinate system (2.9) we get

p1(PC) : J1(RTM ) → R, j1(F ) → yiFi − F,

p2(PS) : J2(RTM ) → T ∗, j2(F ) → (yiFij + f iFij − Fj)dx
i − (Fi + yjFij − Fi)dy

i.

The interesting feature of the Rapcsák system is that it is composed by differential
operators of different orders. To find the integrability conditions of the system we
consider the prolongation of the lower order equation. The morphism associated to
this system is

p2(P1) = p2(PS)× p2(PC) : J2(RTM ) → T ∗ × J1(RTM ).

Lemma 3.4. A 2nd order solution s = j2(F )x at x ∈ T M of the Rapcsák system

can be lifted into a 3rd order solution if and only if one has

(3.6) (iΓddJF )x = 0,

where Γ = [J, S] is the canonical nonlinear connection associated to S.
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P r o o f of Lemma 3.4 (first part). The symbols are defined by the highest order
part of the operators. For PC we find

(3.7) σ1(PC) : T ∗ → R, σ1(PC)A1 = A1(C).

The symbol of PS and the prolongation of the symbol of PC are

σ2(PS) : S2T ∗ → T ∗, (σ2(PS)A2)(X) = A2(S, JX)−A2(X,C),(3.8)

σ2(PC) : S2T ∗ → T ∗, (σ2(PC)A2)(X) = A2(X,C)(3.9)

for every X ∈ T , A1 ∈ T ∗, A2 ∈ S2T ∗. The prolongations of the symbols at third
order level are

σ3(PC) : S3T ∗ → S2T ∗, (σ3(PC)A3)(X,Y ) = A3(X,Y,C),(3.10)

σ3(PS) : S3T ∗ → T ∗ ⊗ T ∗, (σ3(PS)A3)(X,Y ) = A3(X,S, JY )−A3(X,Y,C),(3.11)

where X,Y ∈ T , A3 ∈ S3T ∗, and we have

σ3(P1) = (σ3(PS), σ3(PC)) : S3T ∗ → (T ∗ ⊗ T ∗)× S2T ∗.

Let us consider the map τ1 := (τ1S , τ
2
S , τ

1
C , τ

2
C), where

τ1S(BS , BC)(X,Y ) = BS(JX, hY )−BS(hY, JX)(3.12)

−BS(JY, hX) +BS(hX, JY ),

τ2S(BS , BC)(X) = BS(X,S),(3.13)

τ1C(BS , BC)(X,Y ) = BS(X, JY ) +BC(X, JY ),(3.14)

τ2C(BS , BC)(X,Y ) = BS(C, hX)−BC(S, JX) +BC(hX,C)(3.15)

for BS ∈ T ∗ ⊗ T ∗, BC ∈ S2T ∗, X,Y ∈ T .

Remark 3.5. We have Imσ3(P1) = Ker τ1, that is, if we denote K1 = Im τ1
then the sequence

(3.16) S3T ∗ σ3(P1)
−→ (T ∗ ⊗ T ∗)× S2T ∗ τ1−→ K1 → 0

is exact.
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P r o o f. Since by the definition of K1 the sequence (3.16) is exact in the third
term, we have to check only its exactness in the second term. It is easy to com-
pute that τ1 ◦ σ3(P1) = 0 and therefore Imσ3(P1) ⊂ Ker τ1. Let us compute
dimKerσ3(P1). We consider the basis

(3.17) B := {h1, . . . , hn, v1, . . . , vn} ⊂ Tx,

where hi are horizontal, hn = S, Jhi = vi, i = 1, . . . , n (and therefore vn = C). In
the sequel we denote the components of a symmetric tensor A ∈ SkT ∗ with respect
to (3.17) as

(3.18) Ai1...ij ij+1...ik := A(hi1 , . . . , hij , vij+1
, . . . , vik).

It is clear that Kerσ3(P1) = Kerσ3(PS) ∩ Kerσ3(PC). The symmetric tensor A ∈

S3T ∗ is in Kerσ3(PC) if

(3.19) Aijn = Aijn = Ai jn = 0,

and A ∈ S3T ∗ is an element of Kerσ3(PS) if

σ3(PS)(A)(hi, hj) = A(hi, hn, vj)−A(hi, hj , vn) = Ainj −Aijn = 0,(3.20)

σ3(PS)(A)(hi, vj) = −A(hi, vj , vn) = −Aijn = 0,(3.21)

σ3(PS)(A)(vi, hj) = A(vi, hn, vj)−A(vi, hj , vn) = Ainj −Ai jn = 0,(3.22)

σ3(PS)(A)(vi, vj) = −A(vi, vj , vn) = −Ai jn = 0(3.23)

for i, j = 1, . . . , n. Taking into account the symmetry of A we have 2n(n+ 1)/2+n2

independent equations in (3.19). Moreover, counting the independent equations in
(3.20)–(3.23) we get that (3.21) and (3.23) trivially hold because of (3.19). From
(3.20) we have only n2 − n independent equations because for j = n the equa-
tions are trivially satisfied, and from (3.22) we have n(n− 1)/2 independent equa-
tions because, again, for j = n they are trivially satisfied. Consequently, we have
2n(n+ 1)/2+2n2−n+n(n− 1)/2 = 7n2 − n/2 independent equations in the system
(3.19)–(3.23). Therefore we get

(3.24) dim(g3(P1)) = dimKerσ3(P1) = dimS3T ∗ −
7n2 − n

2
=

8n3 − 9n2 + 7n

6

and

(3.25) rankσ3(P1) =
7n2 − n

2
.
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On the other hand, let us compute dimKer τ1. The pivot terms for the equation
τ1S = 0 are BS(vi, hj), i < j < n. Furthermore, BS(vi, hn), BS(hi, hn), i = 1, . . . , n,
are pivot terms for τ2S = 0. Therefore the number of independent equations for
Ker τ1S and Ker τ2S are (n− 1)(n− 2)/2 and 2n, respectively. Moreover, the pivot
terms for the equations τ1C = 0 and τ2C = 0 are BS(hi, vj), BS(vi, vj), i, j = 1, . . . , n,
and BS(vn, hi), i = 1, . . . , n−1, giving in addition 2n2+n−1 independent equations.
Thus,

(3.26) dimKer τ1 = dimS2T ∗ + dim(T ∗ ⊗ T ∗)

−
[ (n− 1)(n− 2)

2
+ 2n2 + 3n− 1

]
=

7n2 − n

2
.

Comparing (3.25) and (3.26) we get Imσ3(P1) = Ker τ1. �

P r o o f of Lemma 3.4 (second part). The morphisms, the symbols and the
obstruction map associated to the Rapcsák system can be represented in the following
commutative diagram:

g3(P1) //

��

S3T ∗
σ3(P1)

//

ε

��

(T ∗ ⊗ T ∗)× S2T ∗ τ1
//

ε

��

K1
// 0

Sol3(P1)
i

//

π2

��

J3(RTM )
p3(P1)

//

π2

��

J1(T
∗)× J2(RTM )

π0×π1

��

Sol2(P1)
i

// J2(RTM )
p2(P1)

// T ∗ × J1(RTM )

Let s = j2(F )x ∈ Sol2,x(P1) be a second order solution of P1 at x, that is,

(3.27) (iSddJF )x = 0, (LCF − F )x = 0, (∇(LCF − F ))x = 0.

The integrability condition can be computed in terms of τ1 = (τ1S , τ
2
S , τ

1
C , τ

2
C). Ac-

cording to Remarks 2.4 and 2.5, s can be lifted into a third order solution if and only
if ϕ(s) = 0, where ϕ(s) = (τ1∇P1(F ))x. Computing ϕ(s) we find the following
(1) Using the notation ω := iSddJF we have ωx = 0 from (3.27) and

τ1S(∇(P1F ))x(X,Y ) = ∇ω(JX, hY )−∇ω(hY, JX)−∇ω(JY, hX) +∇ω(hX, JY )

= JXω(hY )− hY ω(JX)− JY ω(hX) + hXω(JY )

= iJdω(hX, hY ).

Moreover, diS = −iSd+ dS , iJdS = i[J,S] + dSiJ and dJdJ = 0, we obtain that

iJdω(hX, hY )x = (iJdSddJF − iJ iSdddJF )x(hX, hY )

= (i[J,S]ddJF + dSiJddJF )x(hX, hY ) = (iΓddJF )x(hX, hY ).
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(2) τ2S(∇(P1F ))x = (∇ω)x(X,S) = Xxω(S) = XxddJ (S, S) = 0.

(3) Using the identity J [JX, S] = JX we have

τ1C(∇(P1F ))x = Xx(iSddJF (JY )) +Xx(JY (CF − F ))

= Xx(−JY dJF (S)− dJF ([S, JY ])) +Xx(JY CF − JY F )

= −Xx(J [S, JY ]F )−Xx(JY F ) = Xx(JY F )−Xx(JY F ) = 0.

(4) We have ddJ (CF − F )(S, hX) = S
(
JX(CF − F )

)
− hX

(
C(CF − F )

)
. Then

τ2C(∇(P1F ))x = C(iSddJF (hX))− S(JX(CF − F )) + hX(C(CF − F ))

= dCddJF (S, hX)− ddJdCF (S, hX) + ddJF (S, hX).

Since dJdC − dCdJ = d[J,C] = dJ it follows that

dCddJF − ddJdCF + ddJF = dCddJF − ddCdJF = dCddJF − dCddJF = 0.

From the above computation it follows that ϕ(s) = (τ1∇P1(F ))x = (iΓddJFx, 0, 0, 0)

and therefore the only condition to prolong a second order solution into a third order
solution is given by the equation (iΓddJF )x = 0 as Lemma 3.4 stated. �

Lemma 3.6. The symbol of P1 = (PS , PC) is involutive.

P r o o f. Let us consider the basis B introduced in (3.17). Using the notation
(3.18) we have

g2(P1) = Kerσ2(P1) = {A ∈ S2T ∗ : A(X,C) = 0, A(S, JX) = A(X,C)}

= {A ∈ S2T ∗ : Aij = Aji, Aij = Aji, Ain = Ani = Ain = Ani = 0},

and therefore

(3.28) dim(g2(P1)) =
n(n+ 1)

2
+ (n− 1)2 +

n(n− 1)

2
= n2 + (n− 1)2.

Let us consider the basis B̃ = {ei}i=1,...,2n, where

(3.29) B̃ =
{

h1︸︷︷︸
e1

, . . . , hn−1︸ ︷︷ ︸
en−1

, hn + v1 + . . .+ vn︸ ︷︷ ︸
en

, v1︸︷︷︸
en+1

, . . . , vn︸︷︷︸
e2n

}
.

Denoting the coefficients of A ∈ S2T ∗ with respect to B̃ by Ãij , we have

g2(P1)e1...ek = {A ∈ S2T ∗ : ie1A = 0, . . . , iekA = 0}

= {A ∈ S2T ∗ : Ãij = Ãji, Ãij = Ãji,

Ãin = Ãni = Ãin = Ãni = 0, Ãlj = 0, Ãlj = 0, l 6 k},
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therefore

dim (g2(P1))e1...ek

=

{
1
2 (n− k)(n− k + 1) + (n− k)(n− 1) + 1

2 (n− 2)(n− 1) if k 6 n,

1
2 (n− 2− k)(n− k − 1) if k > n,

and hence

dim g2(P1) +

2n∑

k=1

dim g2(P1)e1...ek

= n2 + (n− 1)2 +
n∑

k=1

((n− k)(n− k + 1)

2
+ (n− k)(n− 1)

)
+

n(n− 2)(n− 1)

2

+

n∑

k=1

(n− 2− k)(n− k − 1)

2
=

8n3 − 9n2 + 7n

6

(3.24)
= dim g3(P1),

which shows that the basis (3.29) is quasi-regular, and the symbol of P1 is involutive.
�

From Lemmas 3.4 and 3.6 we get the following proposition:

Proposition 3.7. Let S be a spray on the manifoldM . Then the Rapcsák system

associated to S is formally integrable if and only if for every second order solution

s = j2(F )x the equation (3.6) is satisfied.

P r o o f. According to Lemma 3.4, if equation (3.6) is satisfied, then every second
order solution can be prolonged into a third order solution. Moreover, the symbol
of the differential operator P1 is involutive and therefore there is no higher order
compatibility condition for the operator P1, hence all third order solutions can be
prolonged into an infinite order solution. �

Remark 3.8. For every function F ∈ C∞(TM) the corresponding iΓddJF is
a semi-basic 2-form and as such, it is identically zero if the dimension of the manifold
M is one. In that case, the Rapcsák system is formally integrable. However, if dimM

is greater than one, the equation (3.6) is not satisfied by all second order solutions
and therefore the Rapcsák system is not formally integrable.
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4. Extended Rapcsák system

Lemmas 3.4 and 3.6 show that the conditions of Theorem 2.1 are fulfilled if and
only if for any initial data j2(F )x of P1 we have also iΓddJF = 0. This is true if
dimM = 1. However, when dimM > 2, this condition is not satisfied by every
second order solution. Therefore not every second order solution can be lifted into
a third order solution. Since the set of initial data is too large (containing some
which cannot be prolonged into a higher order solution) we have to reduce it by
including the compatibility condition to the system. This leads us to consider the
operator (PS , PC , PΓ), where PΓ is a second order operator defined as

PΓ : C∞(TM) → Sec(Λ2T ∗
v ), PΓF := iΓddJF.

Remark 4.1. If S is a spray and F is a 1-homogeneous Lagrangian, then we
have

PSF (X) = iSddJF (X) = ddJF (S, hX) = 1
2 iΓddJF (S, hX) = PΓF (S, hX)

for every X ∈ T . Consequently, if F is a solution of PΓ, then it is also a solution
of PS , that is, PΓ contains in particular the equations of PS . That lead us to drop
the system PS and consider the extended Rapcsák system

(4.1) P2 = (PΓ, PC).

It is clear that a function is a solution to the Rapcsák system if and only if it is
a solution to the extended Rapcsák system.

In this chapter we investigate the integrability of the extended Rapcsák system
P2 = (PΓ, PC). Our method is similar to the one we used in Chapter 3.

Lemma 4.2. A 2nd order solution s = j2(F )x of the system P2 = (PΓ, PC) at

x ∈ T M can be prolonged into a 3rd order solution if and only if

(4.2) (iRddJF )x = 0.

P r o o f. The symbol of the operator PΓ and its first prolongation are σ2(PΓ) :

S2T ∗ → Λ2T ∗
v and σ3(PΓ) : S3T ∗ → T ∗ ⊗ Λ2T ∗

v with

(σ2(PΓ)A2)(Y, Z) = 2(A2(hY, JZ)−A2(hZ, JY )),(4.3)

(σ3(PΓ)A3)(X,Y, Z) = 2(A3(X,hY, JZ)−A3(X,hZ, JY )),(4.4)
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where X,Y, Z ∈ T , A2 ∈ S2T ∗, A3 ∈ S3T ∗. Let us consider the map

(4.5) τ2 := (τ1Γ, τ
2
Γ, τΓC)

defined on (T ∗ ⊗ Λ2T ∗
v )× S2T ∗ with

τ1Γ(BΓ, BC)(X,Y, Z) = BΓ(hX, Y, Z) +BΓ(hY, Z,X) +BΓ(hZ,X, Y ),(4.6)

τ2Γ(BΓ, BC)(X,Y, Z) = BΓ(JX, Y, Z) +BΓ(JY, Z,X) +BΓ(JZ,X, Y ),(4.7)

τΓC(BΓ, BC)(X,Y ) = 1
2BΓ(C,X, Y )−BC(hX, JY ) +BC(hY, JX),(4.8)

where BΓ ∈ T ∗ ⊗ Λ2T ∗
v , BC ∈ S2T ∗, X,Y, Z ∈ T . We have the following property:

Property 4.3. Let K2 be the image of τ2. Then the sequence

(4.9) S3T ∗ σ3(P2)
−→ (T ∗ ⊗ Λ2T ∗

v )× S2T ∗ τ2−→ K2 −→ 0

is exact.

P r o o f. A simple computation shows that τ2 ◦ σ3(P2) = 0, and therefore
Imσ3(P2) ⊂ Ker τ2. Let us compute the rank of σ3(P2). By using the basis (3.17)
and the notation (3.18), a symmetric tensor A ∈ S3T ∗ is an element of Kerσ3(P2) if
in addition to the relations describing the symmetry properties, the equations (3.19)
and the equations

(4.10) Aijk = Aikj , Ai jk = Aikj , i, j, k = 1, . . . , n,

hold. We obtain from (4.10) that all of the blocks (3.18) are totally symmetric, and
Aijn = Aijn = Aijn = 0. That way there are n(n+ 1)(n+ 2)/6 free components
in the block (Aijk) and (n− 1)n(n+ 1)/6 free components to choose in each of the
blocks (Aijk), (Aijk) and (Aijk). That is,

(4.11) dim(g3(P2)) =
n(n+ 1)(n+ 2)

6
+ 3

(n− 1)n(n+ 1)

6
=

4n3 + 3n2 − n

6
,

and

(4.12) rankσ3(P2) = dimS3T ∗ − dim(g3(P2)) =
4n3 + 9n2 + 5n

6
.

On the other hand, considering the equations determining Ker τ2 we find that the
pivot terms for τ1Γ = 0 and for τ2Γ = 0 are BΓ(hi, hj , hk) and BΓ(vi, hj, hk), i < j < k,
respectively. Both of them provide

(
n
3

)
independent equations. Furthermore, the
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terms BΓ(vn, hi, hj), i < j, i, j = 1, . . . , n, are pivot terms for τΓC = 0, which gives
n(n− 1)/2 independent equations. Hence

(4.13) dimKer τ2 = dimS2T ∗ + dim(T ∗ ⊗ Λ2T ∗
v )− 2

(
n

3

)
−

n(n− 1)

2

=
4n3 + 9n2 + 5n

6
.

Comparing (4.12) and (4.13) one finds that rankσ3(P2) = dimKer τ2 and that the
sequence (4.9) is exact. �

Let us turn our attention to the proof of Lemma 4.2. We have the following
commutative diagram:

g3(P2) //

��

S3T ∗
σ3(P2)

//

ε

��

(T ∗ ⊗ Λ2T ∗
v )× S2T ∗

τ2
//

ε

��

K2
// 0

Sol3(P2)
i

//

π2

��

J3(RTM )
p3(P2)

//

π2

��

J1(Λ
2T ∗

v )× J2(RTM )

��

Sol2(P2)
i

// J2(RTM )
p2(P2)

// Λ2T ∗
v × J1(RTM )

Let s = j2(F )x be a second order solution of P2 at a point x, that is, (P2F )x = 0.
We have

(4.14) (iΓddJF )x = 0, (LCF − F )x = 0, (∇(LCF − F ))x = 0.

The integrability condition can be computed with the help of the map τ2 (see Propo-
sition 2.3 and Remark 2.5). Indeed, s ∈ Sol2,x(P2) can be prolonged into a third
order solution if and only if ϕ(s) = 0, where ϕ(s) = (τ2∇P2(F ))x. Let us introduce
the notation Ω = ddJF . Using the component maps of τ2 introduced in (4.5) one
finds

τ1Γ(∇(P2F ))x = dh(iΓddJF )x = (dhi2h−IddJF )x(1)

= (2(dhihddJF − dhddJF ))x

= (2dh(ihd− dih)dJF )x = (2dhdhdJF )x

= (dRdJF )x = (iRΩ)x,

τ2Γ(∇(P2F ))x = dJ (iΓΩ)x
(2.4)
= (dJ (i2h−IΩ))x = (2dJ ihddJF − 2dJddJF )x(2)

= (−2dJ ihdJdF − 2iJdddJF + 2diJddJF )x

= −(2dJ(dJ ihdF + dJdF ))x = 0,

486



where we used [d, dJ ] = 0, [ih, dJ ] = dJh − i[h,J] and [J, h] = 0,

τΓC(∇P2(F ))x(X,Y ) = 1
2∇iΓΩ(C,X, Y )−∇PCF (hX, JY ) +∇PCF (hY, JX)(3)

= 1
2dCiΓΩ(hX, hY )− 1

2 iΓdCddJF (hX, hY )

= 1
2d[C,Γ]Ω(hX, hY )

[C,Γ]=0
= 0.

The above computation shows that ϕ(s) = τ2(∇P2(F ))x = (iRΩx, 0, 0), which proves
Lemma 4.2. �

Lemma 4.4. The symbol of P2 is involutive.

P r o o f. We consider the basis (3.17) and use the notation (3.18). We have

g2(P2) = Kerσ2(P2)

= {A ∈ S2T ∗ : A(X,C) = 0, A(hX, JY ) = A(hY, JX)}

= {A ∈ S2T ∗ : Aij = Aji, Aij = Aji, Aij = Aji, Ain = 0, Ani = 0}.

Therefore dim(g2(P2)) = n(n+ 1)/2 + 2(n− 1)n/2. Let us consider the basis Ê =

{êi}
2n
i=1, where

êi = hi + ivi, i = 1, . . . , n− 1,

ên = hn + v1 + . . .+ vn,

êi+n = vi, i = 1, . . . , n.

In the new basis the components of the block (Âij) = (Aij) can be expressed as

a combination of the components Âij as follows: if i 6= j, then Âij = (i − j)−1 ×

(Âij − Âji), and if i = j, we have Âjj = Ânj −
∑
k 6=j

(k − j)−1(Âjk − Âkj). Then,

dim(g2(P2))ê1...êk =

{
1
2 (n− k + 1)(n− k) + (n− 1)(n− k) if k 6 n,

0 if k > n,

and therefore

dim (g2(P2)) +

2n∑

k=1

dim(g2(P2))ê1...êk

=
n(n+ 1)

2
+ 2

(n− 1)n

2
+

n∑

k=1

( (n− k + 1)(n− k)

2
+ (n− 1)(n− k)

)

(4.11)
= dim(g3(P2)),

thus the basis Ê is quasi-regular. �
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From Lemma 4.2 and Lemma 4.4, using the Cartan-Kähler theorem, we get the
following proposition.

Proposition 4.5. The extended Rapcsák system is formally integrable if and

only if for every second order solution j2(F )x the equation (4.2) is satisfied.

The proof is similar to that of Proposition 3.7. According to Lemma 4.2, if equation
(4.2) is satisfied, then every second order solution can be prolonged into a third
order solution. Moreover, the symbol of the differential operator P2 is involutive and
therefore there is no higher order compatibility condition for the extended Rapcsák
system and all third order solutions can be prolonged into an infinite order solution.
Altogether we obtain that every second order solution can be prolonged into an
infinite order solution and the extended system is formally integrable.

Theorem 4.6. Let S be a spray on a manifoldM . The extended Rapcsák system

is formally integrable if and only if one of the following conditions is fulfilled:

(1) dimM = 2;

(2) the spray S is flat;

(3) the spray S is of isotropic curvature.

P r o o f. We have the following cases:

(1) If dimM = 2, then the space of semi-basic 3-forms is trivial, that is,
Λ3
v(TM) = {0}. Therefore for every F ∈ C∞(TM) we have iRddJF ≡ 0.

(2) If S is flat, that is, Φ = λJ , then R = dJλ ∧ J . Using the integrability of the
vertical distribution we get iRddJF = dRdJF = dJλd

2
JF + ddJλ ∧ iJdJF = 0.

(3) If S is of isotropic curvature, then R takes the form R = α∧J + β⊗C, where
α ∈ Λ1

v(TM), β ∈ Λ2
v(TM). Then

iRddJF = iα∧J+β⊗CddJF = α ∧ iJddJF + β ∧ iCddJF = 0.

In all three cases the second order solutions j2(F )x satisfy the equation (4.2). Using
Proposition 4.5 we obtain that in all three cases the extended Rapcsák system is
formally integrable. �

Corollary 4.7. Let S be an analytic spray on an analytic manifold M . If M is

a 2-dimensional manifold, or the spray S is flat, or of isotropic curvature, then S is

locally projective Finsler metrizable.

Indeed, in the analytic context, formal integrability implies the existence of solu-
tions for all initial data.
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The integrability condition iRddJF = 0 also appeared in [1]. It can be shown that
this integrability condition is equivalent to the equation iΦddJF = 0 or iWddJF = 0,
where Φ is the Jacobi endomorphism and W is the Weyl tensor associated to S.

5. Curvature condition: non-2-acyclicity of the system

As the results of Section 4 show, in the case when the curvature is not isotropic
the extended Rapcsák system is not formally integrable. Indeed, the integrability
condition can be expressed in terms of the curvature tensor (Proposition 4.5), and
in the non-isotropic case the curvature condition (4.2) is not necessarily satisfied by
all initial data. Therefore, to solve the projective metrizability problem in this case
one has to consider an enlarged system by including the curvature condition to the
extended Rapcsák system. We remark that equation (4.2) can be replaced by an
equivalent condition

(5.1) iΦddJF = 0

containing the Jacobi endomorphism instead of the curvature tensor (see [9]). There-
fore we introduce the second order differential operator PΦ : C∞(TM) → Sec(Λ2T ∗

v ),

with PΦ(F ) = iΦddJF and consider the system

(5.2) P3 := (PΓ, PC , PΦ).

One can remark that from equation (5.1) it follows that Φ has to be self-adjoint
with respect the symmetric bilinear form g = Ω(J ·, ·), and therefore it must be
diagonalizable. We consider here the generic case, when the eigenvalues of Φ are
pairwise distinct. We have the following theorem:

Theorem 5.1. Let S be a non-isotropic spray on an n-dimensional manifold.

Then the first nontrivial Spencer cohomology group is H2,2(P3). Moreover, one has

dimH2,2(P3) =
(n− 1)(n− 2)

2
.

P r o o f. The symbol of the operator PΦ is defined as

(5.3)
(
σ2(PΦ)A

)
(X1, X2) = A(ΦX1, JX2)−A(ΦX2, JX1),

for X1, X2 ∈ T , A ∈ S2T ∗ and therefore its (m− 2)th order prolongation is defined
as

(5.4) σm(PΦ)A(X1, . . . , Xm)

= A(X1, . . . ,ΦXm−1, JXm)−A(X1, . . . ,ΦXm, JXm−1),
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(Xi ∈ T , A ∈ SmT ∗, m > 2) having an analogous operation as (5.3) in the last two
arguments. We denote by λ1, . . . , λn the distinct eigenvalues of the Jacobi endomor-
phism. For every spray S we have Φ(S) = 0, and therefore λn = 0 is an eigenvalue
of Φ. Let

(5.5) B̂ := {e1, . . . , e2n} = {h1, . . . , hn, v1, . . . , vn} ⊂ TxTM,

be a basis formed by the horizontal and vertical semibasic eigenvectors of Φ. We
have Φhi = λivi, Jhi = vi, i = 1, . . . , n, hn = S, vn = C. We have A ∈ Kerσ2(PΦ)

if and only if A(Φhj , Jhk)−A(Φhk, Jhj) = (λj −λk)A(vj , vk) = 0, that is, using the
notation of (3.18), Aij = 0 for j 6= k. More generally, from (5.4), for an mth order
symmetrical tensor A ∈ SmT ∗ we have

(5.6) A ∈ Kerσm(PΦ) ⇔ A(ei1 , . . . , eim−2
, vj , vk) = 0 ⇔ A...jk = 0, j 6= k,

where 1 6 is 6 2n, 1 6 s 6 m− 2, 1 6 j, k 6 n. In particular

A ∈ Kerσ3(PΦ) ⇔ Aijk = Aijk = 0, i, j, k = 1, . . . , n, j 6= k,(5.7)

A ∈ Kerσ4(PΦ) ⇔ Ailjk = Ailjk = Ailjk = 0, i, l, j, k = 1, . . . , n, j 6= k.(5.8)

Let us consider the Spencer sequence corresponding to m = 2:

(5.9) 0 −→ g4(P3)
δ20−→ T ∗ ⊗ g3(P3)

δ21−→ Λ2T ∗ ⊗ g2(P3)
δ22−→ Λ3T ∗ ⊗ g1(P3) −→ . . .

Computation of Im δ21. We remark that δ20 = i is the canonical inclusion and
the symbol of P3 is 1-acyclic, that is, Hm,1 = 0 for all m > 2. Consequently, (5.9) is
exact in the first two terms. We obtain that

(5.10) rank δ21 = dim(T ∗ ⊗ g3(P3))− dim(g4(P3)).

The symbol of (5.2) and its prolongations are

(5.11) σm(P3) = (σm(PΓ), σm(PC), σm(PΦ)).

In order to compute g3(P3) and g4(P3) we note that by definition

(5.12) gm(P3) = Kerσm(P3) = Kerσm(PΓ) ∩Kerσm(PC) ∩Kerσm(PΦ)

for every m > 2. Therefore a symmetric tensor A ∈ S3T ∗ is an element of g3(P3)

if and only if its components satisfy (3.19) and (4.10). We obtain that the block
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(Aijk) is totally symmetric and contains n(n+ 1)(n+ 2)/6 free components. The
block (Aijk) is also totally symmetric and Aijn = 0. So in the block (Aijk) we have
(n− 1)n(n+ 1)/6 free independent components. In each of the blocks (Aijk), (Aijk)

there are only n−1 free components: the Aiii and the Aiii, 1 6 i 6 n−1. Adding the
number of the independent free components and using the formula for combination
Cn,k =

(
n
k

)
and combination with repetition Crep

n,k =
(
n+k−1

k

)
we can find that

dim g3(P3) = Crep
n,3 + Crep

n−1,3 + 2 Crep
n−1,1.

A completely analogous computation (using components with four indices) shows
that

dim g4(P3) = Crep
n,4 + Crep

n−1,4 + 3 Crep
n−1,1.

Therefore, from (5.10) we obtain that

(5.13) rank δ21 =
7n4

12
+

2n3

3
+

47n2

12
−

43n

6
+ 3.

Computation of Ker δ22. We remark that for 2 6 m we have gm(P3)∩SmT ∗
v =

SmT ∗
v , that is, there is no restriction on the purely horizontal part of the elements

of gm(P3). Therefore we can use the canonical exact sequence

(5.14) 0 −→ S4T ∗
v

i
−→ T ∗

v ⊗ S3T ∗
v

δ21,v
−→ Λ2T ∗

v ⊗ S2T ∗
v

δ22,v
−→ Λ3T ∗

v ⊗ T ∗
v −→ . . . ,

where δ21,v and δ21,v denote the restriction of δ
2
1 and δ22 on the corresponding spaces.

From the exactness of (5.14) we get that for m = 2

dimKer δ22

∣∣∣
Λ2T

∗

v ⊗S2T
∗

v

= dim(T ∗
v ⊗ S3T ∗

v )− dim(S4T ∗
v ) = n Crep

n,3 − Crep
n,4 ,

and the number of independent equations characterizing dimKer δ22,v is

(5.15) N0 = dim(Λ2T ∗
v ⊗ S2T ∗

v )− dimKerδ22,v = (Cn,2 + Crep
n,2)− (n Crep

n,3 − Crep
n,4).

Let us consider the equations of Ker δ22 containing at least one vertical component:
we will determine how many independent parameters characterize the mixed part
of a tensor D in Ker δ22 . Using the basis (5.5) and the convention (3.18) we have
D ∈ Λ2T ∗ ⊗ g2(P3) if and only if ieα ieβD = D(eα, eβ, ·, ·) is an element of g2(P3),
that is, because of (3.9), (4.3), (5.3) we have

D(eα, eβ, eγ , vn) = 0, (⇔ Dαβγn = 0)(5.16)

D(eα, eβ, vk, vl) = 0, (⇔ Dαβkl = 0) k 6= l(5.17)

D(eα, eβ, hn, vk) = 0, (⇔ Dαβnk = 0)(5.18)

D(eα, eβ, hk, vl)−D(eα, eβ, hl, vk) = 0, (⇔ Dαβkl −Dαβlk = 0)(5.19)
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where we use Greek letters to denote indices from 1 to 2n and Latin letters to denote
indices from 1 to n and eα = hα if α 6 n, eα = vα−n if n < α. We consider the
following notation:

Eijkl =

cycl∑

ijk

Dijkl, Eijkl =

cycl∑

ijk

Dijkl, . . . , Eijkl =

cycl∑

ijk

Dijkl.

Then D ∈ δ22 if and only if D ∈ δ22,v and in addition one has

(5.20) Eijkl = Eijkl = Eijkl = Eijkl = Eijkl = Eijkl = Eijkl = 0.

Using the equations (5.16), (5.17), (5.18) and (5.19) we can observe the following:

Equations Eijkl = 0. If i, j, k, l 6= n are pairwise different, then Eijkl = 0 trivially
holds, that is, all of its terms are zeros. The remaining equations are independent.
The pivot terms are
⊲ for (i, j), i < j < n: Djnii, Dnijj ,
⊲ for (i, j, k), i < j < k < n: Dijkk , Djkii, Dkijj ,
and this block gives N1 = 2 Cn−1,2 + 3 Cn−1,3 independent equations.

Equations Eijkl = 0. The equation Eni jk = 0 trivially holds for i < j, i, j, k
pairwise different. Moreover, for i < l < n, j < k, i, j, k, l pairwise different we have
the following relation:

Eijkl = Dijkl +Dkijl +Djkil
(5.17),(5.19)

= Djkli +Dljki +Dklji = Eljki.

The number of the relations is Cn−2,2 · Cn−1,2. The remaining equations in this block
are independent. The pivot terms in the equations are
⊲ for i, i < n: Dnnii, Dniii,
⊲ for (i, j), i < j < n: Dnijj , Dni jj , Djijj , Diijj , Dinij , Djnji, Din jj , Djnii, Dnijj ,

Dn jii, Djnii, Djiii,

⊲ for (i, j, k) pairwise different, i, j, k < n, i < j: Di jik, Di jjk, Di jkk, Dki jj , Dkkii,
⊲ for (i, j, k, l) pairwise different, i < l < n, j < k: Djkli,
therefore in this block we have N2 = 2 Cn−1,1 + 12 Cn−1,2 + 5 Cn−1,2 Cn−3,1 +

Cn−1,2 Cn−2,2 independent equations.

Equations Eijkl = 0. For i, j, k pairwise different, i, k 6= n, i < k we have the
relation Einjk = Eknji and for i < j < l < n, i, j, k 6= l we have Eijkl = Eilkj − Ejlki.

Therefore we have Cn−1,2Cn−2,1 + Cn−1,3Cn−3,1 relations between the equations of
this block. The remaining equations are independent. The pivot terms are:
⊲ for i, i < n: Dnnii, Dinii,
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⊲ for (i, j), i < j < n: Dniij , Dnjji, Dni jj , Dnjii, Djnii, Dnijj , Dinjj , Djnii, Diijj ,
Djiji, Dijjj , Dijii, Dnnij ,

⊲ for (i, j, k) pairwise different, i, j, k < n, i < j: Djkii, Dkijj , Dijkk , Diijk, Djijk,
Dnk ji,

⊲ for (i, j, k, l) pairwise different, i < j < k < n: Dl jki, Dlikj ,
therefore in this block we have N3 = 2 Cn−1,1 + 13 Cn−1,2 + 6 Cn−1,2 Cn−3,1 +

2 Cn−1,3 Cn−3,1 independent equations.

Equations Eijkl = 0. The following relations hold between the equations of this
block: if i < j < k < n, then Eijnk = Eiknj + Ekjni, and Eijkl = Eijlk + Ejkli − Eiklj
for k, l 6= n, i < j < k < l. The number of these relations is Cn,3 + Cn−1,4. The
remaining equations are independent. The pivot terms are:
⊲ for (i, j), i < j < n: Djnii, Dnijj ,
⊲ for (i, j, k) where i < j < k < n: Djkii, Dkijj , Dijkk, Dnikj , Dnkji,
⊲ for (i, j, k, l) where i < j < k < l < n: Dijlk , Djkli, Dijkl ,
therefore in this block we have N4 = 2 Cn−1,2 + 5 Cn−1,3 + 3 Cn−1,3 independent
equations.

Equations Eijkl = 0. We have the relations Eijlk = Eikl j−Ejkli+Eijkl for i < j < k.
The remaining equations are independent. The pivot terms are:
⊲ for (i, j, k) where i < j: Djkii, Dkijj ,
⊲ for (i, j, k, l) where i < j < k: Dlikj , Dl jki,
therefore this block adds N5 = 2 Cn,2 Cn,1 + 2 Cn,3 Cn,1 independent equations.

Equations Eijkl = 0. The following relations hold between the equations of the
type Eijkl = 0 and Eijkl = 0: for j < k and i 6= l we have Eijkl = Eljki + Eilkj − Eiljk.

The pivot terms are
⊲ for (i, j, k) where i < j: Djkii,
⊲ for (i, j, k, l) where i < j, k < l: Dklij ,
therefore this block adds N6 = Cn,2 Cn,1 + Cn,2 Cn,2 independent equations to the
previous.

Equations Eijkl = 0. These equations can be expressed with the equations Eijkl = 0

since we have Eijkl = Elijk + Elkij + Eljki.

The above calculation shows that the system (5.20) contains

(5.21) N =

6∑

i=1

Ni =
31

24
n4 +

7

12
n3 −

175

24
n2 +

113

12
n− 4

independent equations and taking into consideration (5.15) and (5.21) we obtain that

(5.22) dimKerδ22 = dim(Λ2T ∗⊗g2(P3))−(N0+N) =
7

12
n4+

2

3
n3+

53

12
n2−

26

3
n+4.
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Comparing (5.13) and (5.22) we have rank δ21 < dimKer δ22 . More precisely we have

dimH2,2(P3) = dim
(
Ker δ22

/
Im δ21

)
=

(n− 1)(n− 2)

2
,

which proves Theorem 5.1. �

Remark 5.2. In order to solve the projective metrizability problem in the non-
isotropic case, one has to consider the second order partial differential system P3

containing the extended Rapcsák system and the curvature conditions. As The-
orem 5.1 shows, this system is not 2-acyclic, which means that the integrability
condition of the prolonged system is not the prolongation of the integrability con-
ditions. More precisely, there are 1

2 (n − 1)(n − 2) extra obstructions to lift a third
order solution into a fourth order solution. We can expect the same phenomenon
for the system enlarged with the integrability condition of P3 too: second, third and
possibly higher order integrability conditions may arise. The Spencer generalization
of the Cartan-Kähler integrability theory is particularly well adapted to deal with
such systems, therefore it can be the proper tool of further investigation.
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