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The prime ideals intersection graph of a ring

M.J. Nikmehr, B. Soleymanzadeh

Abstract. Let R be a commutative ring with unity and U(R) be the set of unit
elements of R. In this paper, we introduce and investigate some properties of
a new kind of graph on the ring R, namely, the prime ideals intersection graph
of R, denoted by Gp(R). The Gp(R) is a graph with vertex set R∗

− U(R) and
two distinct vertices a and b are adjacent if and only if there exists a prime ideal
p of R such that a, b ∈ p. We obtain necessary and sufficient conditions on R

such that Gp(R) is disconnected. We find the diameter and girth of Gp(R). We
also determine all rings whose prime ideals intersection graph is a star, path,
or cycle. At the end of this paper, we study the planarity and outerplanarity
of Gp(R).

Keywords: the prime ideals intersection graph of a ring; clique number; planar
graph

Classification: 05C40, 05C69, 13A15

1. Introduction

In 1988, Beck in [7] assigned a graph to a commutative ring, namely, the zero-
divisor graph of the ring. He studied the interplay between ring-theoretic and
graph-theoretic properties. After that, a lot of work was done in this area of
research. Several other graph structures were defined on rings. Recently, many
researchers have obtained ring-theoretic properties in terms of graph-theoretic
properties by a suitable assignment of graph structures on some elements of a
ring, for example, the zero-divisor graph, the total graph, and the intersection
graph [1], [2], [3], [4], [5], [7], and [12].

The field of graph theory and ring theory both benefit from the study of al-
gebraic concepts using graph-theoretic concepts. Usually, when one assigns a
graph to an algebraic structure, some problems in ring theory might be more
easily solved. There exist numerous interesting algebraic problems arising from
the translation of some graph-theoretic parameters and properties such as diam-
eter, girth, clique number, planarity, and so on. The main goal of this paper is
the study of the prime ideals intersection graph of a ring using graph-theoretic
concepts.

Throughout this paper, all rings are commutative and have unity. Let R be
a ring. By R∗, U(R), and Z(R), we mean the set of non-zero elements of R, the set
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of unit elements of R, and the set of zero-divisors of R, respectively. A ring R
is said to be local if it has a unique maximal ideal. A local ring with maximal
ideal m is denoted by (R, m). A ring R is said to be zero-dimensional if every
prime ideal is a maximal ideal. The ring R is said to be reduced if it has no non-
zero nilpotent elements. The set of nilpotent elements of R is denoted by Nil(R).
The set of maximal ideals of R is denoted by Max(R), and the intersection of all
maximal ideas of R is called the Jacobson radical of R and is denoted by J(R).
The set of minimal prime ideals of R is denoted by Min(R).

Let G be a graph with the vertex set V (G). The degree of a vertex v in a graph
G is the number of edges incident with v. The degree of a vertex v is denoted
by deg(v). If deg(v) = 0, then v is called an isolated vertex . If u and v are
two adjacent vertices of G, then we write u v. The maximum degree and the
minimum degree of the graph G are ∆(G) and δ(G), respectively. The set of
vertices adjacent to vertex v of the graph G is called the neighborhood of v and
denoted by N(v). The complete graph of order n, denoted by Kn, is a graph with
n vertices in which every two distinct vertices are adjacent. The path graph and
cycle graph with n vertices are denoted by Pn and Cn, respectively. By the null

graph, we mean the graph with no vertices. Recall that a graph G is connected if
there is a path between every two distinct vertices. A tree is a connected graph
which does not contain a cycle. A star is a tree consisting of one vertex adjacent
to all the others. An independent set of G is a subset of the vertices of G such
that no two vertices in the subset represent an edge of G. A graph G is a bipartite

graph if V (G) is the union of two disjoint independent sets. A graph is said to
be planar if it can be drawn in the plane so that its edges intersect only at their
ends. A planar graph is outerplanar if it can be embedded in the plane so that
all its vertices lie on the same face. For every pair of distinct vertices x and y of
G, let d(x, y) be the length of a shortest path from x to y and if there is no such
a path, we define d(x, y) = ∞. The diameter of G, diam(G), is the supremum
of the set {d(x, y) : x and y are distinct vertices of G}. The girth of a graph G
with a cycle is the length of a shortest cycle and is denoted by gr(G). A graph
with no cycles has infinite girth. A clique of G is a complete subgraph of G, and
the number of vertices in the largest clique of G, denoted by ω(G), is called the
clique number of G.

We know that the behavior of the prime ideals of a commutative ring reflects
many properties of a ring. Accordingly, we define a new kind of graph based on
the prime ideals of a ring, namely, the prime ideals intersection graph of a ring.
The prime ideals intersection graph of a ring R is denoted by Gp(R). The graph
Gp(R) is a graph with vertex set R∗ −U(R) and two distinct vertices a and b are
adjacent if and only if there exists a prime ideal p of R such that a, b ∈ p.

2. Some properties of the prime ideals intersection graph

In this section, all rings R whose prime ideals intersection graph is not con-
nected will be characterized. We prove that if Gp(R) is a connected graph for
a ring R, then its diameter is at most 2. We also prove that if the prime ideals



The prime ideals intersection graph of a ring 139

intersection graph contains a cycle, then its girth is 3. Furthermore, we charac-
terize all rings whose prime ideals intersection graph is a star, path, or cycle. At
the end of this paper, we investigate the planarity and outerplanarity of Gp(R).

In the beginning, we state necessary and sufficient conditions on a ring R such
that Gp(R) is disconnected.

Theorem 1. Let R be a ring. Then Gp(R) is disconnected if and only if R ∼=
F1 × F2, where F1 and F2 are fields.

Proof: Let Gp(R) be a disconnected graph. Suppose that C1, C2, . . . , Ck are
the connected components of Gp(R). Because Gp(R) is disconnected, k > 2. Let
a and b be two arbitrary vertices of Gp(R). Without loss of generality, we can
consider a ∈ Ci and b ∈ Cj for i 6= j. In the sequel, we show that Gp(R) is
disconnected only in the case that R ∼= F1 × F2. For this purpose, we consider
the following cases.

(1) If ab 6= 0, then there exist two distinct prime ideals p1 and p2 of R such
that a ∈ p1 and b ∈ p2. If ab = a, then a(1 − b) = 0 ∈ p2, and we have
a ∈ p2 or (1 − b) ∈ p2, which is a contradiction. Hence ab 6= a. Similarly,
ab 6= b. Therefore ab is a vertex of Gp(R) different from a, b. Now it is
clear that a ab b is a path between a and b. This contradicts our
assumption that a and b are in different components.

(2) Let ab = 0 and R be a non-reduced ring. Then there exists 0 6= c ∈
Nil(R), and so we have the path a c b between a and b, which is
a contradiction to the disconnectivity of Gp(R).

(3) Let ab = 0 and R be a reduced ring. We consider two cases, |Min(R)| ≥ 3
and |Min(R)| < 3.
(a) Let |Min(R)| ≥ 3. Let p1, p2, and p3 be distinct minimal prime

ideals of R. Suppose that a ∈ p1 and b ∈ p2. We have p1 ∩ p2 = {0}.
Because if 0 6= c ∈ p1∩p2, then we have the path a c b between
a and b, which is a contradiction. Therefore, p1 ∩ p2 = {0}, but
p1 ∩ p2 ⊆ p3. So p1 ⊆ p3 or p2 ⊆ p3, which is a contradiction.

(b) Let |Min(R)| < 3. If |Min(R)| = 1, then R is an integral domain,
which is a contradiction to ab = 0. Now let |Min(R)| = 2. So
there exist two minimal prime ideals p1, p2 such that Min(R) =
{p1, p2} and a ∈ p1, b ∈ p2. Now we have Z(R) = p1 ∪ p2 and
p1 ∩ p2 = {0}. We claim that R does not contain any regular ele-
ments. Because if c is a regular element of R, then we have the
path a ac c bc b, which is a contradiction. So in this
case, R has no regular elements and every element of R is a unit
or a zero-divisor. Now for every maximal ideal m ∈ Max(R), we
have m ⊆ Z(R) = p1 ∪ p2, and by the Prime Avoidance Theorem [6,
Proposition 1.11], we have m ⊆ p1 or m ⊆ p2. So, for every maximal
ideal m of R, we have m = p1 or m = p2. If the ring R is local, then
the graph Gp(R) is connected. Hence R is not local. Let m1, m2 be
two distinct maximal ideals of R. So m1 = p1, m2 = p2 or m1 = p2,
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m2 = p1. Now the Chinese Remainder Theorem [6, Proposition 1.10]
implies that R ∼= R

m1∩m2

∼= R
m1

× R
m2

∼= F1 × F2.

Conversely, let R ∼= F1 × F2. Then R is an Artinian ring and hence every
element of R is a unit or a zero-divisor. Therefore each vertex of Gp(R) is in
S1 = {(a, 0) : 0 6= a ∈ F1} or S2 = {(0, b) : 0 6= b ∈ F2}. It is clear that there
exists no edge between any vertex of S1 and any vertex of S2. Therefore, Gp(R)
is disconnected. �

Remark 2. Let R be a commutative ring. It is clear that Gp(R) is the null graph
if and only if R is a field.

Remark 3. Let R be a commutative ring. It is obvious that the non-zero elements
of every ideal of R form a clique in the graph Gp(R). So the non-zero elements
of every maximal ideal of R form a maximal clique in the graph Gp(R).

Now, we characterize the diameter of Gp(R).

Theorem 4. Let R be a ring. Then diam(Gp(R)) ∈ {0, 1, 2,∞} and we have:

(1) if Gp(R) is a singleton, then diam(Gp(R)) = 0;

(2) if R is a local ring, then diam(Gp(R)) = 1;

(3) if R is the direct product of two fields, then diam(Gp(R)) = ∞;

(4) in all other cases, diam(Gp(R)) = 2.

Proof: (1) This is clear.
(2) This is clear by Remark 3.
(3)–(4) This is clear by the proof of Theorem 1. �

In the following, we show when Gp(R) has isolated vertices.

Proposition 5. Let R be a ring.

(1) Gp(R) has an isolated vertex if and only if R ∼= Z2×F , where F is a field.

(2) Gp(R) has two isolated vertices if and only if R ∼= Z2 × Z2.

Proof: (1) If R ∼= Z2 × F , where F is a field, then it is clear that Gp(R) has an
isolated vertex. Now suppose that Gp(R) has an isolated vertex. So Gp(R) is a
disconnected graph, and hence by Theorem 1, we have R ∼= F1 × F2, where F1

and F2 are two fields. We know that the maximal ideals of R are F1 × {0} and
{0} × F2. But Gp(R) has an isolated vertex. So F1 × {0} has only one non-zero
element. Therefore we have R ∼= Z2 × F .

(2) If R ∼= Z2 × Z2, then it is clear that Gp(R) has two isolated vertices. Now
suppose that Gp(R) has two isolated vertices. So Gp(R) is a disconnected graph,
and hence by Theorem 1, we have R ∼= F1 × F2, where F1 and F2 are two fields.
We know that the maximal ideals of R are F1 ×{0} and {0}×F2. But the graph
Gp(R) has two isolated vertices. So F1×{0} and {0}×F2 have only one non-zero
element. Therefore we have R ∼= Z2 × Z2. �

Next, we obtain the girth of Gp(R) for a ring R.

Theorem 6. Let R be a ring. Then gr(Gp(R)) ∈ {3,∞}.
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Proof: Let Gp(R) have a cycle and gr(Gp(R)) = n > 3. Let x1, x2, . . . , xn be
distinct vertices of Gp(R) and x1 x2 x3 · · · xn x1 be the shortest
cycle in Gp(R). So there exist distinct prime ideals p1, p2, . . . , pn−1, pn such that
xi, xi+1 ∈ pi for 1 ≤ i < n and xn, x1 ∈ pn. If R is non-reduced, then there
exists 0 6= c ∈ Nil(R). Therefore we have the cycle x1 c x2 x1, which
is a contradiction. Now let R be reduced. We consider two cases: x1x2 = 0 and
x1x2 6= 0.

(a) If x1x2 = 0, then x1 ∈ p3 or x2 ∈ p3. Therefore we have the cycle
x1 x2 x3 x1 or the cycle x2 x3 x4 x2, which is a contra-
diction in either case.

(b) If x1x2 6= 0, then we consider three cases.
(1) If x1x2 = xi for 2 < i < n, then we have the cycle x1 x2 xi x1,

which is a contradiction.
(2) Let x1x2 = x1 or x1x2 = x2. If x1x2 = x1, then x1(x2 − 1) = 0. So

we have x1 ∈ p2 or x2 − 1 ∈ p2. If x1 ∈ p2, then we have the cycle
x1 x2 x3 x1, which is a contradiction. If x2 − 1 ∈ p2, then
we have 1 ∈ p2, which is a contradiction. By a similar argument, if
x1x2 = x2, then we have a contradiction.

(3) Let x1x2 6= x1 and x1x2 6= x2. Thus we have the cycle
x1 x1x2 x2 x1, which is a contradiction.

�

Corollary 7. Let R be a ring such that Gp(R) contains no cycles. Then R is an

Artinian ring.

Proof: Since Gp(R) contains no cycles, for every maximal ideal m of R, we have
|m| < 4. Because if there exists a maximal ideal m of R such that |m| ≥ 4, then
the non-zero elements of m form a cycle. Since all maximal ideals of R are finite,
R is an Artinian ring. �

Example 8. Let R be a ring. In Theorem 6, we showed that gr(Gp(R)) ∈ {3,∞}.
For example, if R = Z8, then Z8 is a local ring with maximal ideal Z(R) = m =
{0, 2, 4, 6}. So Gp(Z8) ≈ C3 and gr(Gp(Z8)) = 3.

The next theorem shows when the prime ideals intersection graph is a bipartite
graph.

Theorem 9. Let R be a ring. Then the following statements are equivalent:

(1) Gp(R) is a bipartite graph;

(2) Gp(R) is a tree;

(3) R is a local ring with maximal ideal m such that |m| = 3, or R has two

maximal ideals m1, m2 such that |m1| = |m2| = 3 and |m1 ∩ m2| = 2.

Proof: (1)=⇒ (2) Since Gp(R) is a bipartite graph, by [11, Theorem 1.2.18],
Gp(R) contains no odd cycles. By Theorem 6, if Gp(R) contains a cycle, then
gr(Gp(R)) = 3. Therefore, Gp(R) contains no cycles and hence it is a tree.
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(2)=⇒ (3) Assume that Gp(R) is a tree. So Gp(R) has no cycles, and hence
we have |m| 6 3 for every maximal ideal m of R. Because if there exists a
maximal ideal m such that |m| > 3, then we have a cycle, which is a contradiction.
Therefore, R is a local ring with maximal ideal m such that |m| = 3, or R has two
maximal ideals m1, m2 such that |m1| = |m2| = 3 and |m1 ∩ m2| = 2.

(3)=⇒ (1) This is clear. �

In the next theorem, we show that if Gp(R) is a star graph, then Gp(R) ≈ K1,1

or Gp(R) ≈ K1,2.

Theorem 10. Let R be a ring and Gp(R) ≈ K1,n. Then n ≤ 2.

Proof: Suppose to the contrary that n > 2. Let a, a1, a2, a3, . . . , an be distinct
vertices of Gp(R) and a be the center of the star. Therefore, there exist prime
ideals p1, p2, p3, . . . , pn such that a, ai ∈ pi for 1 ≤ i ≤ n. It is clear that a1a2 = 0
or a1a2 is a vertex of Gp(R). We consider three cases.

(1) If a1a2 = 0, then we have a1 ∈ p3 or a2 ∈ p3, and we have edges a1 a3

or a2 a3, which is a contradiction.
(2) If a1a2 = a or a1a2 = ai and i > 2, then we have a1 ∈ pi or a2 ∈ pi, and

we have edges a1 ai or a2 ai, which is a contradiction.
(3) If a1a2 = a1, then a1(a2 − 1) = 0. So we have a1 ∈ p2 or a2 − 1 ∈ p2,

which is a contradiction. If a1a2 = a2, then a2(a1 − 1) = 0. So we have
a2 ∈ p1 or a1 − 1 ∈ p1, which is a contradiction.

�

Example 11. Let R be a ring. In Theorem 10, we showed that if Gp(R) is a star
graph, then Gp(R) ≈ K1,1 or Gp(R) ≈ K1,2. For example, if R = Z9, then Z9 is
a local ring with maximal ideal M = {0, 3, 6}. So Gp(Z9) ≈ K1,1.

Remark 12. It is well known that if p be a prime number and R is a ring
with |Z(R)| = p, then R is isomorphic to one of the rings Zp2 , Zp[x]/(x2), or
Fq1

×Fq2
× · · ·×Fqn

, where Fq1
, Fq2

, . . . , Fqn
are fields and p = q1q2 · · · qn − (q1 −

1)(q2 − 1) · · · (qn − 1).

Using Remark 12, we show that Gp(R) is a star graph only for the rings R = Z9

and R = Z3[x]/(x2).

Corollary 13. Let R be a ring and Gp(R) be a star graph. Then R ∼= Z9 or

R ∼= Z3[x]/(x2), and Gp(R) ≈ K1,1.

Proof: Since Gp(R) is a star graph, then by Theorem 10, we have Gp(R) ≈ K1,1

or Gp(R) ≈ K1,2. If Gp(R) ≈ K1,1, then |Z(R)| = 3 and by Remark 12, we have
R ∼= Z9, R ∼= Z3[x]/(x2), or R ∼= Z2 × Z2. But only for the rings R = Z9 and
R ∼= Z3[x]/(x2), Gp(R) is a star graph.

Now let Gp(R) ≈ K1,2. So R is a local ring with maximal ideal m such that
|m| = 4, or has two maximal ideals m1, m2 such that |m1| = |m2| = 3 and
|m1 ∩ m2| = 2. In the first case, Gp(R) has a cycle, which is a contradiction. In
the second case, we have R ∼= Z2 × Z3, so Gp(R) is disconnected. �
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In the following, we determine all rings R such that Gp(R) is a path or cycle.

Theorem 14. Let R be a ring and Gp(R) ≈ Pn. Then n ≤ 3.

Proof: Let R be a ring such that Gp(R) ≈ Pn and n > 3. Let a1, a2, a3, . . . , an

be distinct vertices of Gp(R) ≈ Pn. So we have the path graph a1 a2 a3 · · ·
an. Therefore there exist prime ideals p1, p2, p3, . . . , pn such that ai, ai+1 ∈ pi,

for 1 ≤ i ≤ n. It is clear that a1a2 = 0 or a1a2 is a vertex of Gp(R). We consider
two cases.

(1) If a1a2 = 0, then we have a1 ∈ p3 or a2 ∈ p3, and we have edges a1 a3

or a2 a4, which is a contradiction.
(2) If a1a2 = ai and i > 2, then we have a1 ∈ pi or a2 ∈ pi, and we have

edges a1 ai or a2 ai, which is a contradiction.

�

Corollary 15. Let R be a ring such that Gp(R) ≈ Pn. Then R is isomorphic to

Z4, Z2[x]/(x2), Z3[x]/(x2), or Z9, and Gp(R) ≈ P1 or Gp(R) ≈ P2.

Proof: By Theorem 14, we have Gp(R) ≈ P1, Gp(R) ≈ P2, or Gp(R) ≈ P3.
If Gp(R) ≈ P1, then |Z(R)| = 2, and hence by Remark 13, R ∼= Z4, R ∼=
Z2[x]/(x2). If Gp(R) ≈ P2, then |Z(R)| = 3 and hence by Remark 12, R ∼= Z9,
R ∼= Z3[x]/(x2), or R ∼= Z2 ×Z2. But Gp(Z9) and Gp(Z3[x]/(x2)) are isomorphic
to P2. If Gp(R) ≈ P3, then R is a local ring with maximal ideal m such that
|m| = 4, or R has two maximal ideals m1 m2 such that |m1| = |m2| = 3 and
|m1 ∩ m2| = 2. In the first case, Gp(R) has a cycle, which is a contradiction. In
the second case, we have R ∼= Z2 × Z3 and Gp(R) is disconnected. �

Similarly, we have the next theorem.

Theorem 16. Let R be a ring and Gp(R) ≈ Cn. Then n = 3.

Corollary 17. Let R be a ring and Gp(R) ≈ Cn. Then R is isomorphic to

Z8, Z2[x, y]/(x, y)2, Z2[x]/[x3], F4[x]/[x2], or GR(16, 4), where GR(16, 4) is the

Galois ring of order 2.

Proof: Since Gp(R) ≈ Cn by Theorem 16, we have n = 3. Hence R is a local
ring with maximal ideal Z(R) = m such that |m| = 4. Therefore, by [8, p. 687]
and [9, Theorem 12], R is isomorphic to one of Z8, Z2[x, y]/(x, y)2, Z2[x]/[x3],
F4[x]/[x2], or GR(16, 4), where GR(16, 4) is the Galois ring of order 2. �

In the next theorem, we obtain the clique number for the prime ideals inter-
section graph.

Theorem 18. Let R be a ring. Then ω(Gp(R)) = sup{|m| − 1 : m ∈ Max(R)}.

Proof: It is clear that the non-zero elements of every ideal of R form a clique.
Therefore, the non-zero elements of every maximal ideal of R form a maximal
clique because every ideal is contained in a maximal ideal. So we have ω(Gp(R)) =
sup{|m| − 1 : m ∈ Max(R)}. �
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Corollary 19. Let (R, m) be a ring. Then Gp(R) is a complete graph.

Proof: Let R be a local ring with maximal ideal m. Therefore, m contains all
non-unit elements of R. So ω(Gp(R)) = |m| − 1, and hence Gp(R) is a complete
graph. �

Corollary 20. Let R be a ring such that ω(Gp(R)) < ∞. Then R is an Artinian

ring.

Proof: Let m be a maximal ideal of R with the greatest cardinal of any maximal
ideal of R. Since ω(Gp(R)) < ∞, therefore |m| < ∞. So R is an Artinian ring. �

Let R be a ring and let the zero-divisor graph of R be denoted by Γ(R). The
set of vertices of Γ(R) is Z(R)∗, and two distinct vertices x and y are adjacent if
and only if xy = 0. Since Z(R) is a union of prime ideals of R, there exist some
relationships between the two graphs Γ(R) and Gp(R). In the following, we state
two examples such that Γ(R) and Gp(R) are not a subgraph of each other.

Example 21. Let R = Z6. Then 2 4 is an edge of Gp(R) that is not an edge
of Γ(R).

Example 22. Let R = Z12. Then 3 8 is an edge of Γ(R) that is not an edge
of Gp(R).

In the next theorem, we state some conditions on the ring R so Γ(R) = Gp(R).

Theorem 23. Let (R, m) be a zero-dimensional ring. If m2 = 0, then Γ(R) =
Gp(R).

Proof: Since R is a zero-dimensional ring, every non-unit element of R is a
zero-divisor. Therefore, the vertices of Γ(R) and Gp(R) are equal. Also, R is a
local ring. So we have Z(R) = m. Now suppose that a and b are two vertices
of Γ(R) (or Gp(R)). Thus there exists an edge between a and b in Gp(R) since
Z(R) = m. Also, by [5, Theorem 2.8], there exists an edge between a and b
in Γ(R). Therefore, the proof is complete. �

In the sequel, we state some results about the planarity and outerplanarity of
the prime ideals intersection graph.

Theorem 24. Let R be a ring. If there exists a maximal ideal m of R with

|m| ≥ 6, then Gp(R) is not planar.

Proof: Since |m| ≥ 6 for a maximal ideal m of R, the non-zero elements of m form
the graph K5 as an induced subgraph of Gp(R). Therefore, by [11, Theorem 6.2.2],
Gp(R) is not a planar graph. �

Corollary 25. Let R be a ring. If Gp(R) is a planar graph, then R is an Artinian

ring.

Proof: Let Gp(R) be planar. Then by Theorem 24, for every maximal ideal m

of R we have |m| ≤ 5. So R is an Artinian ring. �
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Theorem 26. Let R be a ring. If there exists a maximal ideal m of R with

|m| ≥ 5, then Gp(R) is not an outerplanar.

Proof: Since |m| ≥ 5 for a maximal ideal m of R, the non-zero elements of m form
the graph K4 as an induced subgraph of Gp(R). Therefore, by [10, Theorem 1]
the graph Gp(R) is not an outerplanar graph. �

Corollary 27. Let R be a ring. If Gp(R) is outerplanar, then R is an Artinian

ring.

Proof: Let Gp(R) be outerplanar. Then by Theorem 26, for every maximal
ideal m of R, we have |m| ≤ 4. So R is an Artinian ring. �
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